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ABSTRACT
Advanced high-throughput sequencing technology accumulated massive amount of genomics and
transcriptomics data in the public databases. Due to the high technical accessibility, DNA and RNA
sequencing have huge potential for the study of gene functions in most species including animals
and crops. A proven analytic platform to convert sequencing data to gene functional information is
co-functional network. Because all genes exert their functions through interactions with others,
network analysis is a legitimate way to study gene functions. The workflow of network-based
functional study is composed of three steps: (i) inferencing co-functional links, (ii) evaluating and
integrating the links into genome-scale networks, and (iii) generating functional hypotheses from
the networks. Co-functional links can be inferred from DNA sequencing data by using
phylogenetic profiling, gene neighborhood, domain profiling, associalogs, and co-expression
analysis from RNA sequencing data. The inferred links are then evaluated and integrated into a
genome-scale network with aid from gold-standard co-functional links. Functional hypotheses
can be generated from the network based on (i) network connectivity, (ii) network propagation,
and (iii) subnetwork analysis. The functional analysis pipeline described here requires only
sequencing data which can be readily available for most species by next-generation sequencing
technology. Therefore, co-functional networks will greatly potentiate the use of the sequencing
data for the study of genetics in any cellular organism.
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Introduction

Revolutionary advances in high-throughput sequencing
technology enabled genomics and transcriptomics
approaches to the study of gene functions in any living
organism. As of December 2016, Genomes Online Data-
base (GOLD) (Mukherjee et al. 2017) reported over 80,000
cellular organisms with sequenced genomes including
approximately 3000 animal and plant species. One of
the key goals of sequencing projects is to identify func-
tions of genes in an organism. Sequencing data alone
may suggest gene functions to some extent based on
sequence homology between evolutionarily conserved
genes. However, abundant sequencing data for diverse
species and the wide variety of biological contexts may
allow the extraction of higher-order functional infor-
mation. Since all genes exert their functions through
their molecular interactions, exploiting the map of func-
tional associations between genes (i.e. co-functional
network) will facilitate identification of gene functions.
There are several steps in the network-based workflow
to identify gene functions from sequencing data: (i) infer-
encing co-functional links, (ii) evaluating and integrating
the inferred links into genome-scale networks, and (iii)

generating functional hypotheses from the networks.
Here, we review recent progress in network-based
approaches to the study of gene functions in the
respect of those three work steps. Since sequencing
technology is accessible for most organisms, the work-
flow described here will be applicable to most organisms
as well.

Inference of co-functional links from
sequencing data

Based on co-inheritance of ancestral genes

The genes that are conserved or lost in a similar pattern
across species can be due to their functional relevance.
The pattern of gene inheritance during speciation can
be profiled by homology search for reference species
with fully sequenced genomes, called phylogenetic profil-
ing (PG) (Figure 1, Inference step A) (Pellegrini et al. 1999;
Kensche et al. 2008). Thus, a phylogenetic profile for each
gene is a vector of presence or absence of homologs
across reference species genomes. The profile can be
based on binary score, indicating presence or absence
of homology, or based on significance scores derived
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from sequence alignment software, such as Basic Local
Alignment Search Tool (McGinnis & Madden 2004). Simi-
larity of phylogenetic profiles between two genes can
be measured by various metrics, and mutual information
(MI) scores generally givehigh correlation betweenphylo-
genetic profile similarity and degree of functional coup-
ling between genes (Shin & Lee 2017). The PG method
has been used to successfully infer functional association
between genes in bacterial species, but not in higher
eukaryotes such as animals and plants. Recently, we
found that the PG method can be more effective when
profile similarity is measured within each of three
domains of life: Archaea, Bacteria, and Eukaryota (Shin &
Lee 2015). We also demonstrated that, with domain-
specific PG, the size of the inferred human gene networks
increased as additional reference species genomes were
used. This study suggests that better understanding of
speciation and functional evolution may improve the
effectiveness of PG even further in the future.

Based on conserved genomic neighborhood
relationship in bacterial genomes

In bacterial genomes, genes for operating the same
pathway are frequently encoded as co-transcriptional

gene clusters, called operons. Functional association
between genes, therefore, can be inferred based on
neighborhood relationships between genes in bacterial
genomes (Dandekar et al. 1998). The principle of the
gene neighborhood (GN) method (Figure 1, Inference
step B) can be applied not only for bacterial genes but
also for eukaryotic genes with bacterial orthologs. If
two genes of a eukaryotic organism have counterpart
orthologous genes that tend to be in proximity to each
other in bacterial genomes, they are likely to be involved
in similar processes. The degree of GN can be measured
by either distance or probability of being neighbors in
bacterial genomes. Recently, we showed that the two
different measures of GN are complementary so that
their integration improves the quality of co-functional
networks (Shin et al. 2014).

Based on similar domain compositions

Protein domains are considered as structural, functional,
and evolutionary units of proteins. Therefore, functional
associations between protein coding genes can be
inferred based on domain-level information of each pro-
teins. For example, extrapolation of domain–domain
interactions (DDIs) from known protein–protein

Figure 1. From sequencing data to co-functional networks. Functional links between genes can be inferred by (A) phylogenetic profil-
ing (PG), (B) gene neighborhood (GN), (C) domain profiling (DP), (D) associalogs (AS) using DNA sequencing data, and by (E) co-
expression (CX) analysis using RNA sequencing data. All inferred links are evaluated by gold-standard co-functional links derived
from pathway annotation databases. The inferred links are scored for likelihood (represented by edge thickness, in which the
thicker edge indicates higher likelihood of functional association), and then integrated into a genome-scale co-functional network.
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interactions (PPIs) can be used to identify functional
associations between protein coding genes (Sprinzak &
Margalit 2001; Deng et al. 2002). Many computational
methods have been developed to identify DDIs from
PPIs and to infer new PPIs from the DDIs, which are
now available from meta-databases (Yellaboina et al.
2011). However, these methods require reference PPIs
or known DDIs to identify new functional associations
between coding genes. Recently, we proposed domain
profiling (DP) (Figure 1, Inference step C), a domain-
based method to infer functional links that requires
only domain annotations for each protein coding
genes (Shim & Lee 2016). In this method, the domain
composition of each protein coding gene is represented
as a domain profile, which is a vector of presence or
absence of each domain of a comprehensive domain
database, Interpro (Mitchell et al. 2015). Next, functional
associations between protein coding genes are
measured based on the similarity between domain pro-
files. There are various metrics to measure profile simi-
larity. We developed a new metric, a weighted version
of MI, and found that this metric outperformed other
popular metrics including traditional MI (Shim & Lee
2016).

Based on co-functional links between orthologous
genes

Functions can be evolutionarily conserved not only at
the gene-level but also at the network-level. Evolutiona-
rily conserved interactions between proteins whose
homologous proteins in other organisms also interact
are called interologs (Walhout et al. 2000). This
network inference method has been particularly
useful for species with not much experimental data
available. Although interologs can be used for any
sequenced species, the resulting networks generally
have limited size because many functional associations
are not based on physical interactions between pro-
teins. Furthermore, the majority of the known PPIs
were identified from only few species: Saccharomyces
cerevisiae (budding yeast), Caenorhabditis elegans
(worm), Drosophila melanogaster (fruit fly), Arabidopsis
thaliana, and human. Recently, we applied the evolutio-
narily conserved relationship between genes to func-
tional association, associalogs (AS) (Figure 1, Inference
step D), which are evolutionarily conserved functional
associations between genes whose orthologs are also
functionally associated in other organisms (Kim et al.
2013). There are substantially more functional associ-
ations that can be identified by AS than those by
interologs.

Based on co-expressions across various contexts

RNA sequencing data are also widely used for inferring
co-functional links between genes. Under the hypothesis
that two genes that operate same cellular processes are
likely to show similar expression patterns across exper-
imental conditions, co-expression (CX) (Figure 1, Inference
step E) can be used to infer functional associations. The
degree of CX between genes can be measured by
using various metrics such as Pearson correlation coeffi-
cient, Spearman’s correlation coefficient, and MI (Song
et al. 2012). There is no universally best measure for
the correlation. Rather, selecting the one that fits the
given data would be a better strategy. CX analysis has
twomajor advantages in inferring functional associations
between genes. First, the large amount of publicly avail-
able transcriptomics data based on both microarray and
RNA sequencing allows to identify many functional links.
There are central public repository databases such as
Gene Expression Omnibus (Edgar et al. 2002), ArrayEx-
press (Parkinson et al. 2005), and The Sequence Read
Archive (Kodama et al. 2012). These databases provide
downloadable transcriptomics data which were sub-
mitted by individual researchers. The amount of data in
these databases is sharply rising recently as RNA sequen-
cing popularity is increasing. RNA sequencing has several
merits over microarray: platform-independence, higher
sensitivity, and it is more robust against technical
noises such as probe cross-hybridization. Therefore, the
rapid growth of RNA sequencing data will potentiate
CX analysis for the study of gene functions. Second, CX
links can provide context-associated functional models.
Transcriptomics data are often produced in a particular
biological context. Thus, accounting the context infor-
mation allows the investigation of gene functions that
are associated with specific biological conditions such
as cell-types, tissue-types, developmental stages, and
environmental stresses. For example, if two genes
show CX as the disease progresses, they are highly
likely to function together in the disease progression.
By exploiting context-specific CX networks, researchers
are able to gain functional insight into disease pathways
(Gargalovic et al. 2006; Miller et al. 2010).

Evaluation and integration of inferred
co-functional links

Success of network-based functional study relies on the
quality of individual network links. Therefore, we need
to evaluate the quality of inferred functional links. The
quality of inferred links is measured by using gold-stan-
dard functional links (Figure 1, Evaluation step). Thus,
the quality of gold-standard data could influence the
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entire process of studying gene functions from sequen-
cing data via co-functional networks. The gold-standard
set of co-functional links can be derived from pathway
annotation databases such as Gene Ontology (GO)
(Gene Ontology 2015), Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa et al. 2017), and
MetaCyc (Caspi et al. 2016). GO provides controlled voca-
bulary of gene attributes in a loosely hierarchical struc-
ture and is composed of three categories: molecular
function, cellular component, and biological process.
Two genes that share biological process terms are
highly likely to be participating in the same biological
pathway. Pairing all genes of a single biological process
term can generate gold-standard sets of co-functional
links. Since GO, KEGG, and MetaCyc databases provide
complementary pathway annotations, the combination
of these resources would be useful in generating less
biased and more comprehensive gold-standard sets of
co-functional links. The quality of inferred co-functional
links can be assessed by measuring how much the
inferred links overlap with the gold-standard links. Co-
functional links inferred from multiple sequencing data
can then be integrated based on the standardized
quality score into a genome-scale co-functional
network (Figure 1, Integration step). A popular scheme
of evaluation and integration of co-functional links is
the log likelihood score based on the Bayesian statistics
framework (Lee et al. 2004).

Generating functional hypotheses from
co-functional networks

No gene is standalone. The functional interdependence
of genes is the conceptual foundation for network-
based generation of functional hypothesis. Network-
based analysis can generate functional hypotheses by
using the networks alone or by integrating networks
with other external data such as functional genomics
and genetics data. Numerous methods of network-
based generation of functional hypotheses have been
proposed, and most of them belong to one of the follow-
ing categories.

Based on network connectivity

There are several different ways to use network connec-
tivity for generating functional hypothesis (Figure 2(A)).
In general, genes that are connected to many other
genes are functionally important. The hypothesis gener-
ation using network connectivity exploits genes with
high network centrality (i.e. hub genes) to identify key
genes called essential genes for cellular viability (Jeong
et al. 2001). Network connectivity information can also

be integrated with functional genomics data to identify
key modulators of the relevant process. For example,
the MAster Regulator INference algorithm (MARINa)
(Lefebvre et al. 2010) and Context-Associated Hubs
(CAH) method (Cho et al. 2014) identify genes that are
associated with a particular disease by significantly
enriched connections to the differentially expressed
genes (DEGs) in the disease-relevant context. In addition,
group-wise connectivity measure can be used to identify
functional modules for disease processes. For example,
Disease Association Protein–Protein Link Evaluator
(DAPPLE) (Trost et al. 2016) evaluates the significance
of the observed network connectivity within a group of
candidate genes from genome-wide association study
(GWAS) to identify functional modules for the given
disease.

Based on network propagation

Gene networks generally contain some genes already
known for functions or phenotypes. Since genes are
connected by functional associations in the co-func-
tional networks, we can infer the functions of uncharac-
terized genes by propagating functional information of
known genes through networks. The network propa-
gation algorithms are divided into two conceptual cat-
egories (Figure 2(B)): (i) direct neighborhood, in which
node information can propagate only to direct neigh-
bors, and (ii) network diffusion, in which node infor-
mation diffuses throughout the entire network (Shim
et al. 2015). A popular form of direct neighborhood
method is the naïve Bayes algorithm, in which the
score of propagated function is based on the sum of
all edge weights to the connected neighbors for the
given function. Typical network diffusion methods
include random walk with restart, iterative ranking, and
Gaussian Smoothing (Wang & Marcotte 2010). Infor-
mation from GWAS and mutation studies can be propa-
gated through co-functional gene networks to prioritize
candidate genes for diseases (Shim & Lee 2015). For
examples, propagated GWAS significance scores from
candidate genes through the network were used to
identify additional candidate disease genes with low
GWAS significance (Lee et al. 2011), and propagated
mutation occurrence scores were used to identify
cancer genes with low mutation occurrences among
patients (Cho et al. 2016).

Based on subnetwork analysis

Identification of highly connected network communities
that are enriched for genes of a phenotype will facilitate
to study functional organization of phenotypes such as
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diseases and to identify additional phenotype-associated
genes. Highly connected subnetwork structures may
reflect functional modules, in which functionally
coupled genes are highly interconnected. There are
two approaches to finding subnetworks (Figure 2(C)): (i)
de novo discovery and (ii) seed enrichment. The de novo
discovery of subnetworks is generally based on
network topology and finds a cohesive community in
the network through network clustering algorithms
such as greedy search for non-overlapping communities
(Clauset et al. 2004; Newman 2004) and clique-based
search for overlapping communities (Palla et al. 2005).
In the case of seed enrichment approaches, subnet-
works are identified by enrichment for seed genes
which are known for a phenotype, often derived from
external genome-wide unbiased genetic analysis such
as GWAS and whole exome sequencing for disease
samples. For example, dmGWAS (Jia et al. 2011) pro-
vides a dense module searching algorithm to identify
candidate subnetworks or genes for diseases. HyperMo-
dules (Leung et al. 2014) software identifies significantly
mutated subnetworks among patients using local
network search heuristics to detect closely connected
network regions. A software jActiveModule (Ideker
et al. 2002) was developed to identify subnetworks
enriched for DEGs.

Conclusions

We are facing an upcoming onslaught of sequencing data
for diverse species due to revolutionary next-generation
sequencing technology. Effective conversion of this major
type of high-throughput data into functional information
will be critical in enhancing our understanding of gene-
to-phenotypeassociations in theeraofgenomics. The strat-
egy described above can be easily generalized to any cellu-
lar organism. Methods of network inference and network-
based hypothesis generation will continue to improve by
incorporating additional data mining and graph analysis
technologies. Systematic approaches to study gene func-
tionshavebeenpossible in several laboratorymodel organ-
isms only for many years. Integration of high-throughput
sequencing technology and network science will open
new avenues for genetics in all living organisms.
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Figure 2. From co-functional networks to gene functions. Functional hypotheses can be generated by three different network
approaches. (A) Methods based on network connectivity identify hub genes as essential genes, disease-associated genes by
network connections to the DEGs in disease conditions, and disease-associated modules based on network connectivity within a
group of candidate disease genes from genome-wide unbiased screening. (B) Functional information of known genes can be propa-
gated to the direct neighbors or throughout the entire network by network diffusion. (C) Modules for processes and phenotypes can be
identified by de novo discovery based on clustered network communities or by subnetwork enriched for seed genes, which are already
known for the processes or phenotypes.
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