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Abstract

The activated spindle assembly checkpoint (SAC) potently inhibits the anaphase-promoting

complex/cyclosome (APC/C) to ensure accurate chromosome segregation at anaphase.

Early studies have recognized that the SAC should be silenced within minutes to enable

rapid APC/C activation and synchronous segregation of chromosomes once all kineto-

chores are properly attached, but the underlying silencers are still being elucidated. Here,

we report that the timely silencing of SAC in fission yeast requires dnt1+, which causes

severe thiabendazole (TBZ) sensitivity and increased rate of lagging chromosomes when

deleted. The absence of Dnt1 results in prolonged inhibitory binding of mitotic checkpoint

complex (MCC) to APC/C and attenuated protein levels of Slp1Cdc20, consequently slows

the degradation of cyclin B and securin, and eventually delays anaphase entry in cells

released from SAC activation. Interestingly, Dnt1 physically associates with APC/C upon

SAC activation. We propose that this association may fend off excessive and prolonged

MCC binding to APC/C and help to maintain Slp1Cdc20 stability. This may allow a subset of

APC/C to retain activity, which ensures rapid anaphase onset and mitotic exit once SAC is

inactivated. Therefore, our study uncovered a new player in dictating the timing and efficacy

of APC/C activation, which is actively required for maintaining cell viability upon recovery

from the inhibition of APC/C by spindle checkpoint.

Author summary

During eukaryotic mitotic cycle, the anaphase-promoting complex/cyclosome (APC/C)

ubiquitin ligase is tightly regulated to ensure programmed ubiquitination and proteolysis

of securin and cyclin B to consequently initiate anaphase entry and mitotic exit. Multiface-

ted negative regulation of the APC/C activity is mediated primarily through direct binding

by its potent inhibitor, the mitotic checkpoint complex (MCC). Here in this study, we

have identified an unexpected role for the fission yeast nucleolar protein Dnt1 in main-

taining a sufficient level of APC/C co-activator, Slp1Cdc20, for anaphase entry, and
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restraining overly inhibitory action of MCC on APC/C activation. Interestingly, Dnt1

physically interacts with APC/C upon spindle assembly checkpoint (SAC) activation, this

possibly allows it to actively fine tune the association of MCC with APC/C, especially dur-

ing the process of SAC inactivation and mitotic exit. Our study also revealed that Dnt1 is

actively involved in maintaining cell viability when yeast cells are released from the inhibi-

tion of APC/C by spindle checkpoint.

Introduction

The eukaryotic cell cycle comprises two major alternate events, chromosome duplication dur-

ing interphase and subsequent chromosome segregation during mitosis, usually with

extremely high fidelity. When errors do occur, they can have catastrophic consequences,

including cell death or genome instabilities. In late mitosis, chromosome segregation and ana-

phase onset are initiated through the action of a 1.2 MDa multi-subunit E3 ubiquitin ligase

known as the anaphase-promoting complex or cyclosome (APC/C) [1]. Most of the APC/C

subunits are essential for viability and are conserved in all eukaryotes from yeast to humans

[2,3]. To fulfill its proper functions during mitosis, APC/C needs to cooperate with at least two

ubiquitin-conjugating (E2) enzymes and one essential co-activator, Cdc20 (Slp1 in the fission

yeast Schizosaccharomyces pombe), to recruit and ubiquitylate substrates for proteasomal deg-

radation [4–8]. Securin (Cut2 in fission yeast) and cyclin B (Cdc13 in fission yeast) are two

major APC/C substrates, and their polyubiquitylation and degradation are critical for ana-

phase onset and chromosome segregation [9]. In humans, deregulation of these control mech-

anisms and altered activity of the APC/C can lead to severe mitotic defects and genome

instabilities and has been associated with the development of various human cancer types [10–

14].

The spindle assembly checkpoint (SAC) is an intricate surveillance mechanism that pro-

longs mitosis until all chromosomes achieve correct bipolar attachments to spindle micro-

tubules. The core components of the SAC, including Mad1, Mad2, BubR1 (also known as

Mad3 in yeasts and worms), Bub1, Bub3 and Mps1 (Mph1 in fission yeast), accumulate on

unattached kinetochores and start a signaling cascade that ultimately inhibits Cdc20

[4,15,16]. The mitotic checkpoint complex (MCC) is composed of 3–4 core proteins

(Cdc20-BubR1/Mad3-Mad2 with or without Bub3 depending on species) and has been

found to be the most potent inhibitor of the APC/C prior to anaphase [4,17,18]. Recent bio-

chemical and structural studies revealed that the human and fission yeast MCCs bind two

Cdc20 molecules, one (Cdc20MCC) through cooperative binding to Mad2 and Mad3/BubR1

(forming the “core MCC”) and the other (Cdc20APC/C) through additional binding motifs

in BubR1/Mad3 [19–23].

Although it has been well established that the production of MCC and SAC signaling must

be inactivated once chromosomes are properly aligned on the spindle before anaphase onset,

the molecular mechanisms of SAC inactivation remain obscure [4,17]. So far, about six pro-

teins including p31comet, the AAA+ ATPase TRIP13, UbcH10, Spindly, CUEDC2 and phos-

phatase PP2A have been suggested to be involved in checkpoint inactivation in mammalian

cells [24–31]. p31comet, TRIP13, CUEDC2 and Spindly ensure timely spindle checkpoint

silencing subsequent to kinetochore attachment through promoting the release of Mad2 from

MCC or stripping of Mad2 from the kinetochore, respectively [27,28,32–38], while PP2A inac-

tivates SAC by reversing the Mps1-mediated Knl1 phosphorylation necessary for Bub1/BubR1

recruitment [29]. By contrast, the spindle checkpoint-silencing mechanisms in fungi remains
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less well explored, limiting the full understanding about this key cellular process. In both bud-

ding and fission yeast, type 1 phosphatase PP1 (Dis2 in fission yeast) is required for spindle

checkpoint silencing by opposing Aurora B kinase, although their targeted substrates still

remain unidentified [39–41]. Whether other proteins and mechanisms are involved in SAC

silencing in yeast is currently unclear.

Fission yeast Dnt1 accumulates mainly in the nucleolus throughout the entire cell cycle and

was originally identified in a genetic screen for suppressors of the cytokinesis checkpoint

defects in the septation initiation network (SIN) mutants [42]. This suppression was later

attributed to a mechanism that is mediated by the Cdk1 regulator Wee1 kinase [43]. Dnt1 also

appears as a negative regulator of Dma1 in early mitosis [44]. Dma1, the checkpoint protein

and E3 ubiquitin ligase, is a distinct spindle checkpoint protein and plays an important role in

delaying cytokinesis by inhibiting the SIN when chromosomes are not attached to the mitotic

spindle [45–47]. In this study, we identified Dnt1 as a novel factor involved in inhibiting exces-

sive and prolonged MCC-APC/C association and promoting Slp1Cdc20 stability, and thus it

ensures timely spindle checkpoint inactivation, which is essentially required for maintaining

cell viability upon recovery from the inhibition of APC/C by checkpoint.

Results

Dnt1 is involved in facilitating proper mitotic chromosome segregation

In the course of our characterizing Dnt1 as a negative regulator of Dma1 in early mitosis [44],

we noticed that dnt1Δ cells were extremely sensitive to microtubule-destabilizing drug thia-

bendazole (TBZ), and deletion of dma1+ in these cells only slightly reversed this phenotype

(Fig 1A). Since the disruption of genes participating in chromosome segregation, such as the

kinetochore- or spindle checkpoint-related genes, usually results in TBZ sensitivity [48,49], we

assumed that dnt1+ gene might have dma1+-irrelevant function that is essential for chromo-

some segregation.

Consistent with this assumption, we found that dnt1Δ cells lost minichromosomes (Ch16,

ade6-M216) at an elevated rate that is almost 100 times higher than that of the wild-type (Fig

1B), and displayed increased frequency of lagging chromosomes and chromosome mis-segre-

gation at mitotic anaphase (Fig 1C). By following the kinetochore separation and spindle

dynamics during mitosis under time-lapse microscopy, we found that dnt1Δ cells spent almost

the same length of time at late prometaphase/metaphase and anaphase A as wild-type cells

except for the occasionally observed lagging chromosomes (2 cases in 14 dnt1Δ cells but 0 in

17 wild-type cells) at early anaphase, but dnt1Δ cells stayed for extended length of time at ana-

phase B (Fig 1D–1F). These data strongly suggested that Dnt1 is involved in facilitating proper

chromosome segregation.

Chromosome segregation is a precisely regulated process involving many proteins,

including kinetochore proteins, monopolins, cohesins, chromosome passenger proteins,

centromeric heterochromatin proteins, microtubule-binding proteins, and regulators of

kinetochore-microtubule attachment [50]. In order to dissect the mechanism behind how

Dnt1 is involved in maintaining the fidelity of chromosome segregation, we systematically

tested the genetic interactions between dnt1Δ and some representative mutants that have

been previously reported to cause chromosome missegregation. Strikingly, dnt1Δ showed

mild to strong negative genetic interactions with almost all these mutants (S1 Fig), indicating

that Dnt1 became essential when any of these proteins was absent or mutated. Thus, Dnt1

should be involved in faithful mitotic chromosome segregation in a previously unrecognized

manner.
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Fig 1. Characterization on the involvement of Dnt1 in facilitating proper mitotic chromosome segregation. (A) Tenfold serial dilution analyses of the

indicated yeast strains grown on the indicated media to measure the TBZ sensitivity. (B) Minichromosome loss rate per division was measured in strains

bearing the Ch16 (ade6-M216) minichromosome and ade6-M210 allele (n> 8,000). (C) (Left) Chromosome segregation was observed in anaphase in the

indicated cells carrying mCherry-tagged α-tubulin (atb2+) (red) after being fixed and stained with DAPI (blue). (Right) Quantitative analysis of chromosome

missegregation and lagging chromosome phenotypes. n, numbers of anaphase cells analyzed. Scale bar, 5 μm. (D-F) Anaphase B is slightly delayed in dnt1Δ
cells. (D) Time-lapse microscopy of a wild-type and a dnt1Δ cell carrying ndc80-GFP and sad1-mCherry during mitosis. Images were acquired at 2-min
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Dnt1 is dispensable for activating the SAC in the absence of kinetochore-

microtubule attachment or tension

The spindle checkpoint is another safeguard mechanism that ensures proper chromosome seg-

regation, which is rapidly activated when the kinetochore-spindle microtubule attachment or

the tension generated by this attachment is absent or compromised [16]. We then examined

whether the SAC is properly activated in dnt1Δ cells when the kinetochore-spindle microtu-

bule attachment or the tension was compromised by either the cold-sensitive β-tubulin muta-

tion nda3-KM311 [51] or the temperature-sensitive cohesin subunit mutation psc3-1T [52,53],

respectively. In these two experimental set-ups, the accumulation of two major APC/C sub-

strates cyclin B (Cdc13-GFP) and securin (Cut2-GFP) at SPBs or within nuclei, respectively,

served as an indicator of SAC activation and mitotic arrest (S2 Fig). Our quantified data

showed that the Cdc13-GFP or Cut2-GFP were accumulated at SPBs or within nuclei in

nda3-KM311 or pst3-1T cells, respectively, with indistinguishable rate in the presence and

absence of dnt1+ (S2B and S2D Fig), indicating that Dnt1 is largely dispensable for activating

SAC in the absence of either attachment or tension.

Dnt1 facilitates efficient anaphase initiation upon SAC inactivation

The foregoing results rendered us to hypothesize that Dnt1 might have a role in turning off the

spindle checkpoint in mitosis. To explore this, we adopted two well-established SAC silencing

assays [39,54]. In these assays, the SAC was first robustly activated by the nda3-KM311 mutant

simultaneously carrying ark1-as3 and then inactivated by addition of ATP analogue

1-NM-PP1 or simply by shifting mitotically arrested cells back to permissive temperature

(30˚C) as previously described (Figs 2A and S3A). Because Cdc13 (cyclin B) and Cut2

(securin) localize to the spindle pole bodies (SPBs) or nucleus, respectively, in early mitosis

and should be degraded by APC/C to promote metaphase-anaphase transition, the disappear-

ance rate of Cdc13-GFP spot or nuclear Cut2-GFP after 1-NM-PP1 addition or shifting back

to 30˚C reflects the SAC inactivation efficacy (Figs 2B and S4A). We found that dnt1Δ cells

retained high amounts of SPB-localized Cdc13-GFP and nuclear Cut2-GFP for much pro-

longed period compared to wild-type cells, almost to the same degree as previously identified

SAC-inactivation defective mutant dis2Δ [39] (Figs 2C, S3B, and S4B). Also, the total cellular

protein of Cdc13 or Cut2 was indeed degraded much slower in dnt1Δ cells than in wild-type

cells recovered from nda3-mediated checkpoint arrest (Figs 2D, 2E and S4B). All above data

suggested that Dnt1 is required for the timely inactivation of SAC to efficiently initiate

anaphase.

Dnt1 is required for timely dissociation of MCC from APC/C during SAC

inactivation

In fission yeast, the key SAC components Mad2 and Mad3 and one molecule of Slp1Cdc20 form

mitotic checkpoint complex (MCC) which binds to APC/C through another molecule of

Slp1Cdc20 upon checkpoint arrest, and the recovery from mitotic arrest accompanies the loss of

MCC-APC/C binding [22,39,55,56]. To examine whether delayed anaphase initiation upon

recovery from mitotic arrest in dnt1Δ cells was due to persistent MCC-APC/C binding, we

intervals. Arrows indicate a lagging chromosome. The enlarged image corresponding to the time frame indicated by red dot is shown in inset. Scale bar, 5 μm.

(E) Distance between SPBs (SPB to SPB, marked by Sad1-mCherry) was measured at 2-min intervals. Each line represents data collected from an individual

cell. Dashed lines indicate 3 μm, which roughly marks the timing for start of anaphase B in most cases. (F) Box-and-whiskers representation of anaphase B

(during which pole-to-pole distance increases with separated sister chromatids) duration, in which boxes indicates median and upper and lower quartile and

whiskers indicates range of data. The data were extracted and quantified from spindle dynamics measurements in (D). ����, p<0.0001.

https://doi.org/10.1371/journal.pgen.1010397.g001
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Fig 2. Dnt1 facilitates timely degradation of Cyclin B and dissociation of Mad2 and Mad3 from APC/C complex

upon SAC inactivation. (A) Schematic depiction of the experiment design for (B-G and I). (B-E) Dnt1 is required for

timely degradation of Cyclin B upon SAC inactivation. Example pictures of cells with Cdc13-GFP signals enriched or

disappeared at spindle pole bodies (SPBs) are shown in (B). The percentage of cells with Cdc13-GFP on SPBs was

assessed at each time point after shift to 30˚C (C), which served as an indicator for mitotic exit. Total protein levels of

Cdc13-GFP were detected by Western blotting (D) and normalized to those of total Cdc2 at each time point, with the

relative ratio between Cdc13-GFP and Cdc2 at 0 min set as 1.0 (E). Scale bar, 5 μm. (F-G) Dissociation of the Mad2
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analyzed the rate of dissociation of the MCC from the APC/C by immunoprecipitations of the

APC/C subunit Apc4/Lid1 from mitosis-exiting cells. Indeed, the levels of MCC bound to the

APC/C in dnt1Δ cells stayed high for longer period than in wild-type cells (Fig 2F and 2G),

suggesting that Dnt1 functions for timely and efficient MCC-APC/C dissociation and spindle

checkpoint inactivation (Fig 2H), which is required for activating APC/C to degrade Cdc13

and Cut2. Deletions of mad2+ or bub1+ significantly lowered the percentage of dnt1Δ cells

with Cdc13 at SPBs upon nda3-mediated checkpoint activation (Fig 2I), indicating that sus-

tained SAC activation and consequent prometaphase- or metaphase-arrest in the absence of

Dnt1 relies on prior SAC activation.

Dnt1 positively regulates the protein levels of Slp1Cdc20

Given that MCC functions as a potent inhibitor of APC/C upon spindle checkpoint activation

and Dnt1 is required to promote timely dissociation of MCC from APC/C, we were suspicious

that one direct consequence of the prolonged MCC-APC/C association in dnt1Δ cells might be

the inhibition of APC/C activity. Consistent with this assumption, we found that dnt1Δ
enhanced the growth defects of some temperature-sensitive mutants of essential APC/C sub-

units, such as nuc2-663, cut9-234, cut20-100 and cut23-547, though dnt1Δ did not have any

negative genetic interactions with two other APC/C mutants apc15Δ and slp1-mr63, both are

defective in spindle checkpoint arrest [55, 57] (Fig 3A). Most strikingly, we observed that

dnt1Δ rescued slp1-362 surprisingly well (Fig 3A). This specific genetic interaction suggested a

possible role of Dnt1 in MCC-APC/C dissociation through regulating Slp1Cdc20. To test this

hypothesis, we examined the protein levels of the full-length Slp1Cdc20 in nda3-KM311 dnt1+

and nda3-KM311 dnt1Δ cells after being released from metaphase-arrest. Surprisingly,

Slp1Cdc20 was slightly, but appreciably and reproducibly, less abundant (ranging from roughly

20% to 50% at different time points) in dnt1Δ cells than in wild-type cells (Fig 3B), suggesting

Dnt1 may indeed positively regulate the levels of intact Slp1Cdc20. In addition, this regulation

of Slp1Cdc20 stability by Dnt1 is Dma1-independent, as the dnt1Δ dma1Δ double mutant has a

similar level and degradation profile of Slp1Cdc20 as dnt1Δ single mutant (S5 Fig).

Artificially increased Slp1 abundance mitigates TBZ sensitivity of dnt1Δ
cells

Based on the above results, we wondered whether the decreased levels of Slp1Cdc20 may be the

major cause of the TBZ sensitivity and the defective anaphase initiation upon SAC inactivation

in dnt1Δ cells. To test this possibility, we artificially increased Slp1Cdc20 abundance by express-

ing one or two extra copies of slp1+ under its endogenous regulatory sequences (Fig 3C). Inter-

estingly, two and three copies of slp1+ restored abundance of Slp1Cdc20 in metaphase-arrested

dnt1Δ cells to close to or slightly above the endogenous level in wild-type cells (Fig 3D).

and Mad3 checkpoint proteins from the APC/C during mitotic arrest-and-release is delayed in dnt1Δ cells. The

association of Mad2 and Mad3 to Apc4/Lid1 was assessed by immunoprecipitation of Apc4/Lid1-TAP and Western

blot (F). The amount of co-immunoprecipitated Mad2 and Mad3 was normalized to those of total

immunoprecipitated Apc4/Lid1 at each time point, with the relative ratio between Mad2-GFP or Mad3-GFP and

Apc4/Lid1-TAP at 0 min set as 1.0 (G). (H) Schematic summary of results shown in C-G. Prolonged MCC-APC/C

association in dnt1Δ cells anti-correlates with decelerated anaphase entry and mitotic exit upon spindle checkpoint

inactivation. (I) Depletion of SAC signaling by deletions of mad2+ or bub1+ abrogates the delayed SAC inactivation

after release from checkpoint arrest in dnt1Δ cells. Cells of indicated strains bearing Cdc13-GFP were treated and

assessed as in (B and C). The experiments were repeated two (D-G) or three (C and I) times. Error bars correspond to

standard deviation (SD).

https://doi.org/10.1371/journal.pgen.1010397.g002
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Fig 3. Dnt1 is required for maintaining the protein levels of Slp1Cdc20 upon SAC activation. (A) dnt1Δ rescues the temperature-sensitivity of slp1-362 but

not other loss-of-function APC/C mutants. Serial dilutions (10-fold) of the indicated strains were spotted on YE plates and incubated at the indicated

temperatures. Note that temperature-sensitivity of most loss-of-function APC/C mutants is exacerbated by dnt1Δ, but dnt1Δ rescues slp1-362. In addition,

dnt1Δ does not have any negative genetic interactions with two other APC/C mutants, apc15Δ and slp1-mr63, both are defective in spindle checkpoint arrest.

(B) Slp1Cdc20 levels are slightly reduced in dnt1Δ cells compared to wild-type cells during metaphase arrest and SAC inactivation. Strains with indicated

genotypes were grown, treated and synchronized as in Fig 2A. Mid-log phase samples at 30˚C were also collected as asynchronous cultures (Asyn.). (Left)
Samples were subjected to Western blot analyses using anti-Slp1 and anti-Cdc2 antibodies. (Right) Slp1Cdc20 levels were normalized to those of total Cdc2 at
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Consequently, sensitivity of dnt1Δ cells to TBZ was largely but not completely suppressed by

excessive Slp1Cdc20 expression achieved by three copies of slp1+ (Fig 3E). It should be noted

that although the ectopic expression of leu1-32::slp1+ restored Slp1Cdc20 in dnt1Δ cells almost

to the same levels as in wild-type cells, it still could not rescue sensitivity of dnt1Δ cells to TBZ

(Fig 3E). Nevertheless, increased Slp1Cdc20 abundance compromised the checkpoint activation

in both wild-type and dnt1Δ cells, as revealed by lower percentages of cells with Cdc13-GFP at

SPBs and metaphase-arrest upon cold-shock treatment, and the extent of failed checkpoint

response was largely proportional to Slp1Cdc20 levels (Fig 3F and 3G). This result is consistent

with previous reports in both fission and budding yeast that have underlined the importance

of accurate relative abundance between checkpoint proteins and Cdc20/Slp1Cdc20, which sets

an important determinant of checkpoint robustness [58, 59]. However, we noticed that the dis-

appearance rate of Cdc13-GFP from SPBs was not accelerated in either wild-type or dnt1Δ
background strains when Slp1Cdc20 abundance was artificially increased, regardless of the copy

number of Slp1Cdc20 present (Fig 3F), indicating that the SAC silencing tempo was not altered

by Slp1Cdc20 overexpression.

Together, these results suggested that the excessive Slp1 by three copies of slp1+ antagonizes

the negative effects of dnt1 deletion on TBZ sensitivity and lowered Slp1Cdc20 protein levels

may only partly contribute to the TBZ sensitivity of dnt1Δ cells. The failure of complete rescue

of the TBZ sensitivity of dnt1Δ cells by artificially increased Slp1Cdc20 abundance is possibly

due to the retained and prolonged MCC-APC/C association, which still poses inhibition on

APC/C activity.

Enhanced MCC-APC/C association and lowered Slp1Cdc20 abundance in

dnt1Δ cells can be reversed by depletion of Apc15

It has been shown in both human and fission yeast cells that Apc15 mediates MCC binding to

APC/C and is required for Cdc20/Slp1 autoubiquitylation and its turnover by APC/C

[22,55,60,61]. Since our above data suggested that the TBZ sensitivity of dnt1Δ cells is likely

caused by at least two aspects of defects in this mutant: one is the prolonged MCC-APC/C

association, and the other is the lowered Slp1Cdc20 protein level, we reasoned that the absence

of Apc15 may reverse the positive effect of deletion of dnt1+ on MCC-APC/C association and

its negative effect on Slp1Cdc20 levels.

We first investigated how the absence of apc15+ affected the MCC-APC/C interaction in

dnt1Δ cells. By immunoprecipitation of Apc4/Lid1-TAP, we found that the absence of Dnt1

enhanced MCC-APC/C interaction as more Mad2 and Mad3 were co-immunoprecipitated in

dnt1Δ cells when compared to those in wild-type cells, whereas the deletion of apc15+ abol-

ished the MCC-APC/C interaction both in wild-type and dnt1Δ cells (Fig 4A). Quite unexpect-

edly, although the total cellular level of Slp1Cdc20 was significantly attenuated in dnt1Δ cells

compared to that in wild-type cells (see Input in Fig 4A and 4B), we observed much more

Slp1Cdc20 was co-immunoprecipitated by Apc4/Lid1-TAP but significantly reduced in

each time point, with the relative ratio between Slp1Cdc20 and Cdc2 at time 0 min in nda3-KM311 set as 1.0. (C) Schematic depiction of the genomic positions

of endogenous slp1+ locus and ectopic slp1+ at lys1+ on chromosome I and at leu1+ on chromosome II. Red bars, two centromeres 1 and 2. (D) Western blot

analyses of Slp1Cdc20 protein levels in metaphase-arrested cells. Slp1Cdc20 levels were normalized to those of total Cdc2 for each sample, with the relative ratio

between Slp1Cdc20 and Cdc2 at 0 min in nda3-KM311 without extra copies of slp1+ set as 1.0. Note that in the strain carrying both endogenous slp1+ and lys1Δ::

slp1+, Slp1Cdc20 level is close to 2.5 instead of 2 times of endogenous level, most likely due to its flanking adh1 terminator sequence. Error bars correspond to

standard deviation. p values were calculated against the strain of nda3-KM311 without extra copies of slp1+. ���, p<0.001; ��, p<0.01; n.s., not significant. (E)

Elevated Slp1Cdc20 levels rescue the TBZ sensitivity of dnt1Δ cells. (F) Elevated Slp1Cdc20 levels reverse the anaphase initiation defect upon SAC inactivation in

dnt1Δ cells. (G) Schematic summary of data from (B-F). The balance of relative abundance between Slp1Cdc20 and checkpoint proteins governs the robustness

of spindle checkpoint and thus mitotic exit rate. Lighter or darker shading depicts lower or higher levels of Slp1Cdc20 present in MCC or APC/C in dnt1Δ or

slp1+-overexpression (slp1oe) cells.

https://doi.org/10.1371/journal.pgen.1010397.g003
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Mad3-GFP immunocomplexes in dnt1Δ cells (Fig 4A and 4B). Interestingly, apc15Δ restored

Slp1Cdc20 levels bound to MCC in dnt1Δ cells (Fig 4B). These observations seem to support the

idea that the efficiency of Slp1Cdc20 being co-immunoprecipitated by APC/C subunit or MCC

component differs significantly. Also, these data suggested that the increased APC/C-
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Fig 4. apc15Δ reverses enhanced MCC-APC/C association and lowered Slp1Cdc20 abundance in dnt1Δ cells. (A) apc15Δ
abolishes the elevated binding of MCC to APC/C in dnt1Δ cells. The association of Mad2, Mad3 and Slp1Cdc20 to Apc4/Lid1

was assessed by immunoprecipitation of Apc4/Lid1-TAP in checkpoint-arrested cells as in Fig 2F. Note that more Mad2,

Mad3 and Slp1Cdc20 was co-immunoprecipitated in dnt1Δ cells compared to wild-type cells, although the amount of Slp1Cdc20

was less abundant in dnt1Δ cells than that in wild-type cells. Results shown are the representative of three independent

experiments. (B) apc15Δ restores the amount of Slp1Cdc20 bound to MCC in dnt1Δ cells. The assembly of MCC was assessed

by immunoprecipitation of Mad3-GFP in checkpoint-arrested cells as in (A). Note that less Slp1Cdc20 was co-

immunoprecipitated in dnt1Δ cells compared to wild-type cells. Results shown are the representative of three independent

experiments. (C) apc15Δ restores the abundance of Slp1Cdc20 in dnt1Δ cells. Strains with indicated genotypes were grown and

treated as in (A) to enrich checkpoint-arrested cells. Slp1Cdc20 levels were quantified with the relative ratio between Slp1Cdc20

and Cdc2 in wild-type strain set as 1.0. The experiments were repeated 3 times and the mean value for each sample was

calculated as in Fig 3D. Error bars correspond to standard deviation. ���, p<0.001; ��, p<0.01; n.s., not significant. (D)

apc15Δ suppresses the delayed APC/C activation defect in dnt1Δ cells. Cells were synchronized by HU and then arrested at

18˚C for 6 hours before being released at 30˚C. The percentage of cells with Cdc13-GFP on SPBs was assessed at each time

point as in Fig 2C. (E) Schematic summary of data from (A-D). White wavy lines depict the absence of Apc15. Lighter or

darker shading depicts lower or higher levels of Slp1Cdc20 present in MCC or APC/C in mutant cells compared to wild-type

cells.

https://doi.org/10.1371/journal.pgen.1010397.g004
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associated Slp1Cdc20 is likely “trapped” in the interface between MCC and APC/C and is unable

to fulfill its function as the activator for APC/C.

Next, we examined whether depletion of Apc15 could rescue decreased Slp1Cdc20 abun-

dance in dnt1Δ cells. As expected, we indeed observed that the absence of apc15+ restored

Slp1Cdc20 to a level that was even higher than that in wild-type cells (Fig 4C). This quantitative

data suggested that the attenuated Slp1Cdc20 levels in dnt1Δ cells were most likely due to

Apc15-faciltated degradation once Slp1Cdc20 is incorporated in MCC.

Furthermore, the absence of Apc15 also compromised the spindle assembly checkpoint

response to disruption of spindles in dnt1Δ cells due to the loss of MCC-APC/C association, as

the percentages of cells with Cdc13-GFP at SPBs were sharply reduced from over 90% to only

about 70% in apc15Δ cells after nda3-mediated SAC activation (Fig 4D). These results are con-

sistent with previous report showing that the relatively higher amount of Slp1Cdc20 can over-

ride the inhibitory effect of checkpoint proteins on APC/C activation [58]. Our results also

suggested that Dnt1 is required for antagonizing the APC/C-mediated Slp1Cdc20 degradation

and maintaining Slp1Cdc20 above its threshold level necessary for activating APC/C once the

inhibitory signal from SAC is removed (Fig 4E).

Human CUEDC2 can partially rescue the TBZ sensitivity and spindle

checkpoint inactivation defects of dnt1Δ cells

In humans, CUEDC2 mediates the release of APC/CCdc20 activity from Mad2 inhibition, and

depletion of CUEDC2 causes a checkpoint-dependent delay of the metaphase-anaphase transi-

tion [27]. Since deletion of dnt1+ in fission yeast also causes a checkpoint-dependent delay in

anaphase entry, we wondered whether human CUEDC2 and fission yeast Dnt1 might share

similar functions. To test this possibility, we ectopically expressed human CUEDC2 in fission

yeast cells, and examined whether it could rescue the TBZ sensitivity and anaphase initiation

defects upon SAC inactivation in dnt1Δ cells. Interestingly, the expression of nuclear localized

CUEDC2 [i.e. CUEDC2 tagged with two copies of SV40 nuclear localization sequence

(2×NLS)] slightly restored their growth at low concentrations of TBZ and efficiency of ana-

phase entry after SAC inactivation (S7 Fig). Cytoplasmic CUEDC2 did not have the same effect

(S7B Fig), which was likely due to the fact that fission yeast undergoes “closed” mitosis, during

which APC/C and MCC function only inside the nucleoplasm. On the contrary, similarly

expressed human p31comet, another factor with verified function in timely spindle checkpoint

silencing by promoting the release of Mad2 from MCC [32–35, 37], failed to exert a rescuing

effect on TBZ sensitivity of dnt1Δ cells (S7B Fig). Interestingly, we found limited homology

between N-terminal portion of Dnt1 and CUEDC2 (S8 Fig). These data raised a possibility

that fission yeast Dnt1 might be a functional homologue of human CUEDC2 and they may

share a similar function in releasing APC/CCdc20 from checkpoint inhibition during mitotic

exit.

Dnt1 associates with APC/C upon SAC activation and during anaphase

initiation

It has been previously shown that Cdk1-phosphorylated CUEDC2 directly binds to human

Cdc20, and mediates the release of APC/CCdc20 activity from Mad2 inhibition [27]. To further

dissect the possible mechanism that how Dnt1 promotes SAC inactivation, facilitates APC/C

activation and maintains Slp1Cdc20 stability, we examined whether Dnt1 also similarly associ-

ated with Slp1Cdc20 or APC/C. By immunoprecipitation of sfGFP-Slp1 from SAC-activated

cells arrested by nda3-KM311, we found limited amount of co-purified Dnt1 in addition to

APC/C subunit Apc4/Lid1 and MCC component Mad2 (Fig 5A). Weak association between
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Fig 5. Dnt1 associates with APC/C upon SAC activation and during anaphase initiation. (A) Slp1Cdc20 co-immunoprecipitates

Dnt1 in metaphase-arrested and mitosis-exiting cells. nda3-KM311 mad2-13myc strains simultaneously carrying either sfGFP-slp1 or

dnt1-13myc or both were arrested in mitosis at 18˚C and then released to 30˚C, samples were collected at 0 and 40 min. Whole-cell

extracts (input) were incubated with GFP-Trap beads and immunoprecipitated (IP) fractions were analyzed by immunoblotting. (B, C)

Dnt1 can be co-immunoprecipitated by Apc4/Lid1 in metaphase-arrested but not asynchronous interphase cells. nda3-KM311 strains
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Dnt1 and APC/C was also detected in mitotically arrested but not asynchronized cultures by

immunoprecipitation of Apc4/Lid1-TAP (Fig 5B and 5C). On the contrary, despite our inten-

sive efforts, we were unable to detect the interaction between Mad2 or Mad3 and Dnt1 by co-

immunoprecipitation (Fig 5D). These data suggested that very likely Dnt1 physically interacts

more directly with APC/C but not MCC. Supporting this scenario, the interaction between

sfGFP-Slp1 and Dnt1 was enhanced by depletion of Mad3 (Fig 5E), possibly because more

APC/C assemblies devoid of MCC are available, thus Dnt1 gains better access to APC/C in

mad3Δ cells. Unfortunately, we failed to detect the direct interaction between Dnt1 and APC/

C subunits including Slp1Cdc20 by yeast two-hybrid analyses (S6 Fig). These data suggested

that possibly Dnt1 physically interacts with APC/C through a “mediating” factor, which

remains to be identified in the future studies.

Presence of Dnt1 is beneficial to maintaining APC/C activity and cell

survival upon spindle checkpoint activation

Our above data suggested that the absence of Dnt1 causes prolonged and enhanced SAC

activation. We wondered whether this defective SAC silencing is beneficial to cells. Very

intriguingly, we noticed that individually isolated nda3-KM311 dnt1Δ cells formed far fewer

colonies on solid rich medium at the permissive temperature 30˚C than nda3-KM311 dnt1+

cells (47% vs. 68% viability) when they were treated at 18˚C for 10 hours to activate SAC

(Fig 6A). In contrast, the viability of dnt1Δ cells was not affected by this transient cold-

shock (Fig 6A). This data indicated that Dnt1 is required to maintain cell viability specifi-

cally upon spindle stress, although it is largely dispensable for spindle checkpoint activation

(S2 Fig).

It has been previously shown that overexpression of spindle checkpoint protein Mad2 can

activate SAC and block anaphase entry even in the absence of spindle defects [55,62], this is

due to the fact that SAC proteins function as potent inhibitors of APC/C. Consistently, it is not

surprising that fission yeast cells with temperature-sensitive mutations in the APC/C subunits

were sensitive to elevated levels of Mad2 (Pnmt1-mad2+) [62] (Fig 6B). Given that Dnt1 is

required to promote timely disassembly of MCC and cell survival, we examined whether ele-

vated levels of Dnt1 can reverse the deleterious effects of overexpressed Mad2 on temperature-

sensitive APC/C mutants. As expected, ectopic expression of dnt1+ under the control of adh1
promoter (Padh1-dnt1+) rescued the growth defects of tested APC/C mutants overexpressing

Mad2 (Fig 6B). Most strikingly, higher levels of Dnt1 allowed the survival of cut20-100 Pnmt1-
mad2+ mutant, which is lethal by its own (Figs 6B and S9).

Together, these results revealed that Dnt1 is required for maintaining cell viability, and also

for antagonizing SAC thus resulting timely and efficient anaphase initiation and mitotic exit,

especially when the SAC needs to be inactivated.

with indicated genotypes were either arrested at metaphase at 18˚C or grown as asynchronous cultures at 30˚C. Apc4/Lid1-GFP or

Apc4/Lid1-HA was immunoprecipitated with GFP-Trap beads or anti-HA antibodies respectively and purified fractions were analyzed

by immunoblotting. (D) Dnt1 cannot be co-immunoprecipitated by Mad2 and Mad3 in metaphase-arrested cells. nda3-KM311 strains

with indicated genotypes were arrested at metaphase as in (B). Both Mad2-GFP and Mad3-GFP were immunoprecipitated with

GFP-Trap beads and purified fractions were analyzed by immunoblotting. The around 120 kDa band corresponding to Dnt1-13myc

was not detectable in co-immunoprecipitated sample (lane #3). Note that one strain carrying apc4/lid1-TAP but without dnt1-13myc
served as a positive control, and anti-myc antibodies cross-reacted with Apc4/Lid1-TAP. (E) Mad3 imposes inhibitory effect on

association between Slp1 and Dnt1. cdc25-22 strains expressing the indicated tagged proteins in the presence or absence of mad3+ were

first arrested at 36˚C for 3.5 hours and then released to 25˚C, samples were collected at 60 min after release. Immunoprecipitations

were performed as in (A). In Fig 5A–5E, all asterisks indicate the unspecific band recognized by anti-myc antibodies, and all results

shown are the representative of three independent experiments.

https://doi.org/10.1371/journal.pgen.1010397.g005
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Fig 6. Dnt1 involves in antagonizing SAC and maintaining cell survival upon spindle checkpoint activation. (A) nda3-KM311
dnt1Δ cells lose viability after transient cold-shock. nda3-KM311 dnt1+, nda3-KM311 dnt1Δ or dnt1Δ cells were first grown at 30˚C in

liquid cultures and then being shifted to 18˚C for 10 hours. Individual cells (n�80 for each strain) were isolated using tetrad dissection

manipulator and placed on solid rich media at the permissive temperature of 30˚C (Left). The number of colonies formed before and

after cold-treatment was quantified (Right). (B) Overexpressed Dnt1 antagonizes negative effect of Mad2 overexpression on loss-of-

function APC/C mutants. Serial dilutions (10-fold) of the indicated strains were spotted on YE plates and incubated at the indicated

temperatures. Overexpression of Mad2 and Dnt1 was achieved under nmt1 promoter (Pnmt1) or adh1 promoter (Padh1), respectively.

Note that cut20-100 Pnmt1-mad2+ mutant was lethal and thus not included in the spot assay.

https://doi.org/10.1371/journal.pgen.1010397.g006
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Discussion

The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit ubiquitin ligase

that triggers the metaphase-to-anaphase transition in the cell cycle by targeting the substrates

cyclin B and securin for destruction. APC/C activity toward its substrates requires its co-acti-

vator Cdc20. To ensure that cells enter mitosis and partition their duplicated genome with

high accuracy, APC/CCdc20 activity must be tightly controlled. So far, besides Cdc20, several

factors have also been identified in higher eukaryotes to regulate APC/CCdc20 activity, such as

mitotic protein kinases Cdk1 and Polo-like kinase 1 (Plk1), which increase Cdc20 binding and

APC/CCdc20 activity by phosphorylating Apc1, Apc3 and likely also other subunits [63–65],

and the mitotic checkpoint complex (MCC), which functions as a specific inhibitor of Cdc20

and APC/CCdc20 activity mediated mainly by Mad3/BubR1 binding to two molecules of Cdc20

[19,20]. The above Cdc20-regulating components and mechanisms are largely or most likely

conserved in fission yeast [22,66].

In this study, we have identified the fission yeast nucleolar protein Dnt1 as a novel positive

regulator of Slp1Cdc20 protein level and APC/CCdc20 activity, especially when cells are recovered

from arrest by activated spindle checkpoint. Although not tested, it is possible that our observed

synthetic lethality between dnt1Δ and mutants with compromised kinetochores, peri-centro-

meric heterochromatin, cohesins, and microtubule-kinetochore attachment (S1 Fig) is due to

low Slp1Cdc20 level and resulted prolonged activated SAC signaling. Actually, one previous

study has underlined the importance of accurate relative abundance both within checkpoint

proteins and between checkpoint proteins and the checkpoint target Slp1Cdc20 [58].

Our observations that deletion of dnt1+ causes elevated and prolonged MCC-APC/C asso-

ciation and reduced abundance of Slp1 when cells are recovered from activated spindle check-

point arrest could be explained by several different possibilities. The simplest of these would be

that Dnt1 directly interacts with Slp1Cdc20 or other APC/C subunits to prevent the excessive and

prolonged MCC binding to APC/C and consequently impede the degradation of MCC-bound

Slp1Cdc20 by partially activated APC/C, thus to maintain Slp1 above its threshold level when

SAC is active (Fig 7). We favor the idea that Dnt1 directly regulates the MCC-APC/C, although

the possibility of its indirect regulation cannot be excluded. In humans, depletion of CUEDC2

causes a checkpoint-dependent delay of the metaphase-anaphase transition, and Cdk1-pho-

sphorylated CUEDC2 binds to Cdc20 directly and mediates the release of APC/CCdc20 activity

from Mad2 inhibition [27]. Since deletion of dnt1+ in fission yeast also causes a checkpoint-

dependent delay in anaphase entry and Dnt1 physically interacts with APC/C, it is thus plausible

to assume that fission yeast Dnt1 might function similarly to human CUEDC2, though Dnt1

and CUEDC2 do not share high homology in their sequences (S8 Fig). However, we were

unable to detect any interaction between Dnt1 and Slp1Cdc20 and other APC/C subunits by yeast

two-hybrid analysis (S6 Fig), this is very distinct from human CUEDC2, which directly binds to

Cdc20 [27]. It is fairly possible that Dnt1 interacts with APC/C through an unidentified “media-

tor” protein, this may explain why Dnt1 comes down only weakly with Slp1Cdc20 or Apc4/Lid1

in our immunoprecipitation assays (Fig 5). Therefore, we considered the fission yeast Dnt1 as a

peripheral and phase-specific activator rather than an integral and permanent component or

subunit of APC/C for two reasons. First, previous proteomics analyses of purified APC/C or

potential Dnt1-interacting proteins did not identify Dnt1 or any APC/C subunits, respectively

[44,67]. Second, we could detect the physical interaction between Dnt1 and Slp1Cdc20 or

Apc4/Lid1 by immunoprecipitation only in metaphase-arrested and mitosis-exiting cells (Fig

5A and 5B), but not in cells from asynchronized cultures (Fig 5C), suggesting Dnt1 may facilitate

APC/C activity in a cell cycle stage-specific and transient manner. This timely involvement of

Dnt1 may aid a rapid and complete release of APC/C activity once the SAC signaling is satisfied
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and switched off. It is possible that one or more extra unrecognized factors might exist in higher

eukaryotes to regulate APC/CCdc20 activity in a way similar to Dnt1 does. In future, it would be

interesting to know whether Dnt1 indeed interacts indirectly with Slp1Cdc20 itself, and whether

and how Dnt1 might antagonizes the autoubiquitylation of Slp1Cdc20.

Materials and methods

Fission yeast strains and genetic analyses

Standard media (either YE (yeast extract) rich medium or EMM (Edinburgh minimal

medium) and culturing methods were used [68,69]. G418 disulfate (Sigma-Aldrich), hygromy-

cin B (Sangon Biotech) or nourseothricin (clonNAT; Werner BioAgents) was used at a final

concentration of 100 μg/ml and thiabendazole (TBZ) (Sigma-Aldrich) at 5–15 μg/ml in YE

media. For serial dilution spot assays, 10-fold dilutions of a mid-log-phase culture were plated

on the indicated media and grown for 3 to 5 days at indicated temperatures. To examine the

possible synthetic lethality of double mutants, at least 20 complete tetrads were dissected after

each genetic cross. Yeast strains containing Cdc13-mCherry, Mad2-13myc and Mad3-13myc

were generated by a PCR-based module method [70], with the DNA sequence information

obtained from PomBase (https://www.pombase.org/). To create strains with an extra copy of

slp1+ or dnt1+ at lys1 locus, the slp1+ genomic region from 1,504 bp 5’ to stop codon of the

open reading frame or 1852 bp of the open reading frame of dnt1+ was first cloned into the vector

pUC119-Padh1-MCS-hphMX6-lys1� with adh21 promoter (Padh21) maintained or removed using

the ‘T-type’ enzyme-free cloning method [71]. Similar procedures were employed to construct

pUC119-Padh21-MCS-hphMX6-lys1�-based plasmids carrying sequences corresponding to human

p31comet or CUEDC2 (with plasmid or cDNA kindly provided by Hongtao Yu or Jiahuai Han

respectively). Then, GFP or two tandem SV40 NLS or both sequences was introduced in front of

dnt1+, p31comet or CUEDC2 coding sequences by Quikgene method [72]. Finally, the resultant

plasmids were linearized by ApaI and integrated into the lys1 locus, generating the strains lys1Δ::

Pslp1-slp1+-Tslp1::hphMX6, lys1Δ::Pslp1-slp1+-Tadh1::hphMX6, lys1Δ::Padh21-dnt1+-Tadh1::hphMX6,

Fig 7. Proposed model for positive regulation of the APC/C activity by Dnt1. Upon SAC activation, APC/C-associated Dnt1 is likely involved in preventing

the excessive and prolonged MCC binding to APC/C and thus impeding the degradation of MCC-bound Slp1Cdc20 by partially activated APC/C. The presence

of Dnt1 possibly help to maintain Slp1Cdc20 protein (likely including both MCC-bound and free Slp1Cdc20) level and APC/CCdc20 activity. Lighter brown color

of Slp1MCC depicts lower levels of Slp1Cdc20 present in MCC in dnt1Δ cells, which is likely caused by Apc15-faciliated autoubiquitylation and degradation.

Darker green color of Slp1APC/C depicts higher levels of activation-incapable Slp1Cdc20 “trapped” in APC/C in dnt1Δ cells. In parallel, Dnt1 may also indirectly

regulate the inhibitory action of MCC on APC/C (dotted arrows) through a yet unrecognized factor/mechanism (question mark).

https://doi.org/10.1371/journal.pgen.1010397.g007
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lys1Δ::Padh21-GFP-dnt1+-Tadh1::hphMX6, lys1Δ::Padh21-GFP-p31comet-Tadh1::hphMX6, lys1Δ::Padh21-
2×NLS-p31comet-Tadh1::hphMX6, lys1Δ::Padh21-2×NLS-GFP-p31comet-Tadh1::hphMX6, lys1Δ::Padh21-
GFP-CUEDC2-Tadh1::hphMX6, lys1Δ::Padh21-2×NLS-CUEDC2-Tadh1::hphMX6, and lys1Δ::Padh21-
2×NLS-GFP-CUEDC2-Tadh1::hphMX6. The other strain with an extra copy of slp1+ at leu1 locus

has been described previously [58]. Strains used in this study are listed in S1 Table.

Minichromosome loss assay

The minichromosome loss assay was performed in cells bearing the Ch16 (ade6-M216) mini-

chromosome and ade6-M210 allele as previously described [54,73]. The rate of minichromo-

some loss per division was calculated by dividing the number of at least half red-sectored

colonies grown on YE containing 12 mg/L adenine at 30˚C by the number of total colonies

(red colonies were excluded from the count).

Cell synchronization methods

For cdc25-22 strains, cells were grown at 25˚C until mid-log phase and arrested at late G2

phase by shifting to 36˚C for 3.5 hr and released at 25˚C. For nda3-KM311 strains, cells were

grown at 30˚C to mid-log phase, synchronized at S phase by adding HU (Sangon Biotech) to a

final concentration of 12 mM for 2 hr followed by a second dose of HU (6 mM final concentra-

tion) for 3.5 hr. HU was then washed out and cells were released at specific temperatures as

required by subsequent experiments.

Spindle checkpoint activation assay

For metaphase arrest due to spindle checkpoint activation by disrupting mitotic spindles and

abolishing kinetochore-microtubule attachment using the cold-sensitive nda3-KM311 muta-

tion, cells synchronized by HU at 30˚C were released to 18˚C for up to 9 hr. For spindle check-

point activation by the absence of tension generated by a temperature-sensitive mutation of a

cohesin subunit, psc3-1T, cells were first arrested at S phase by HU at 25˚C and then released

to 37˚C. For both methods, cells were withdrawn at certain time intervals and fixed with cold

methanol and stained with DAPI (4’, 6-diamidino-2-phenylindole, Sigma-Aldrich). 200–300

cells were analyzed for each time point.

Spindle checkpoint silencing assay

For checkpoint silencing assay in the absence of microtubules, mid-log phase ark1-as3
cdc13-GFP nda3-KM311 cultures were first synchronized with HU at 30˚C and then arrested

in early mitosis by shifting to 18˚C for 6 hr. 5μM ATP analog 1-NM-PP1 (Toronto Research

Chemicals) was added to inactivate ark1-as3 and therefore spindle checkpoint. For checkpoint

inactivation by shifting microtubule-depolymerized nda3-KM311 cells back to permissive

temperature, cells were first synchronized with HU at 30˚C and then arrested in early mitosis

by shifting to 18˚C for 6 hr, followed by incubation at 30˚C to allow spindle reformation and

therefore spindle checkpoint silencing. For both methods, cells were withdrawn at certain time

intervals and fixed with cold methanol and stained with DAPI. 200–300 cells were analyzed for

each time point. Each experiment was repeated at least three times.

Yeast two-hybrid assay

For yeast two-hybrid analysis, the Matchmaker system (Clontech) was used. Bait plasmids

were constructed into pGBKT7 vector. Prey plasmids were constructed into pGADT7 vector.

Bait and prey plasmids were co-transformed into the AH109 strain, and transformants were
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selected on double dropout medium (SD-Leu-Trp). The bait-prey interaction, which would

activate the HIS3 and ADE2 reporter genes, was assessed by the growth on the triple (SD-Leu-

Trp-His) or quadruple (SD-Leu-Trp-Ade-His) dropout media.

Immunoblotting, immunoprecipitation and antibodies

Western blot and immunoprecipitation experiments were performed essentially as previously

described [44]. Proteins were immunoprecipitated by IgG Sepharose beads (GE Healthcare)

(for Apc4/Lid1-TAP), GFP-Trap beads (ChromoTek) (for sfGFP-Slp1 and Apc4/Lid1-GFP) or

anti-HA antibody-coupled protein A/G beads (for Apc4/Lid1-HA). When necessary, 300 mM

instead of 150 mM NaCl was used in lysate buffer to remove unspecific binding of proteins to

beads. The primary antibodies used for immunoblot analysis of cell lysates and immunopre-

cipitates were peroxidase-anti-peroxidase (PAP) soluble complex (Sigma-Aldrich), rabbit

polyclonal anti-Myc (GeneScript), mouse monoclonal anti-GFP (Beijing Ray Antibody Bio-

tech), rat monoclonal anti-HA (Roche), mouse monoclonal anti-Cdc13 antibodies (Novus

Biologicals) or rabbit polyclonal anti-Slp1 (generated at Xiamen University antibody facility

using recombinant N-terminal 290 amino acids region of Slp1 (6His-Slp1(1-290aa) as anti-

gens, same as previously described [57]). Cdc2 was detected using rabbit polyclonal anti-

PSTAIRE (sc-53, Santa Cruz Biotechnology) as loading controls. Secondary antibodies were

anti-mouse or anti-rabbit HRP conjugates (Thermo Fisher Scientific) and were read out using

chemiluminescence.

Fluorescence microscopy and live-cell imaging

GFP- and mCherry-fusion proteins (such as Cdc13-GFP, Cut2-GFP, Dnt1-GFP,

CUEDC2-GFP, Cdc13-mCherry, and mCherry-Atb2) were observed in cells after fixation

with cold methanol. Cells were washed in PBS and resuspended in PBS plus 1 μg/ml DAPI.

Photomicrographs were obtained using a Nikon 80i fluorescence microscope coupled to a

cooled CCD camera (Hamamatsu, ORCA-ER). Time-lapse imaging of live cells was performed

at 30˚C using a Perkin Elmer spinning-disk confocal microscope (UltraVIEW VoX) with a

100x NA 1.49 TIRF oil immersion objective (Nikon) coupled to a cooled CCD camera (9100–

50 EMCCD; Hamamatsu Photonics) and spinning disk head (CSU-X1, Yokogawa). Image

processing, analysis and spindle length measurement were carried out using Element software

(Nikon), ImageJ software (National Institutes of Health) and Adobe Photoshop.

Statistical analysis

For quantitative analyses of each experiment, at least 200 cells were counted for each time

point or sample, and each experiment was conducted at least three times. Error bars corre-

spond to standard deviation (SD) throughout.

Supporting information

S1 Fig. Summary of synthetic lethality between dnt1Δ and mutants with defective chromo-

some segregation.

(PDF)

S2 Fig. Dnt1 is dispensable for activating the SAC in the absence of kinetochore-microtu-

bule attachment or tension.

(PDF)
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S3 Fig. Dnt1 is required to efficiently silence the spindle checkpoint when Aurora B kinase
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(PDF)

S4 Fig. Dnt1 is required for timely degradation of securin (Cut2 in S. pombe) upon SAC

inactivation.

(PDF)

S5 Fig. Dma1 does not affect the abundance of Slp1Cdc20 or restore Slp1Cdc20 protein level

in dnt1Δ cells during anaphase after SAC inactivation.

(PDF)

S6 Fig. Dnt1 does not directly associate with APC/C subunits based on yeast two-hybrid

assays.

(PDF)

S7 Fig. Human CUEDC2 partially rescues the TBZ sensitivity and spindle checkpoint inac-

tivation defects of dnt1Δ cells.

(PDF)
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(PDF)
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