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Recent discovery of an association of low serum melatonin levels with relapse in 
multiple sclerosis (MS) opens a new horizon in understanding the pathogenesis of this 
disease. Skin is the main organ for sensing seasonal changes in duration of sunlight 
exposure. Level of melatonin production is dependent on light exposure. The molecular 
mechanisms connecting peripheral (skin) sensing of the light exposure and developing 
brain inflammation (MS) have not been investigated. We hypothesize that there is a 
connection between the reaction of skin to seasonal changes in sunlight exposure 
and the risk of MS and that seasonal changes in light exposure cause peripheral 
(skin) inflammation, the production of cytokines, and the subsequent inflammation 
of the brain. In skin of genetically predisposed individuals, cytokines attract memory 
cutaneous lymphocyte-associated antigen (CLA+) T lymphocytes, which then maintain 
local inflammation. Once inflammation is resolved, CLA+ lymphocytes return to the 
circulation, some of which eventually migrate to the brain. Once in the brain these 
lymphocytes may initiate an inflammatory response. Our observation of increased 
CC chemokine ligand 27 (CCL27) in MS sera supports the involvement of skin in the 
pathogenesis of MS. Further, the importance of our data is that CCL27 is a chemokine 
released by activated keratinocytes, which is upregulated in inflamed skin. We propose 
that high serum levels of CCL27 in MS are the result of skin inflammation due to exposure 
to seasonal changes in the sunlight. Future studies will determine whether CCL27 
serum level correlates with seasonal changes in sunlight exposure, MS exacerbation, 
and skin inflammation.

Keywords: melatonin, multiple sclerosis, ccL27, inflammation, brain, skin, light

ccL27 eXPressiON

CC chemokine ligand 27 (CCL27) was first described by Ishikawa-Mochizuki et  al. as a CC 
chemokine, named based on the presence of two adjacent cysteines, selectively expressed in skin 
infected with molluscum contagiosum (1). Subsequently, Morales et al. confirmed the exclusive 
expression of CCL27 in skin keratinocytes (2). However, later studies demonstrated that CCL27 
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expression was not restricted to keratinocytes as it was found 
in normal mucosa-associated colon epithelium, trachea, and 
mammary glands (3). In addition, CCL27 transcripts were 
detected in the retinal layer of the eye under normal and inflam-
matory conditions (4). The fact that retinal cells have a neuronal 
origin prompted investigation of CCL27 expression in cells 
within the central nervous system (CNS). Although brain tissue 
lacks full-length CCL27 transcripts, two alternatively spliced 
forms of RNA were identified. One form, termed PESKY, is a 
non-secreted form targeting the nucleus where it modulates 
transcriptional activity and cytoskeletal actin rearrangement 
(5). The second form of CCL27 appears to be a truncated pep-
tide of 67 amino acids, which is abundantly expressed in mouse 
brain tissue (6). Both the truncated RNA and the expressed pro-
tein were found predominantly in the olfactory bulbs, dentate 
gyrus of the hippocampus, amygdala, and the external layer of 
the cerebellum. In another study conducted by Arimitsu et al., 
expression of CCL27 was found in freshly isolated human 
neurons and astrocytes (7). Therefore, these data support the 
expression of CCL27 beyond skin tissue, including in mucosal 
epithelium and brain.

Although constitutively present, CCL27 expression can be 
augmented by exposure to pro-inflammatory stimuli. For 
example, CCL27 was upregulated in keratinocytes by tumor 
necrosis factor (TNF)-α and interleukin (IL)-1β (8). In addition, 
TNF-α activation of CCL27 can be potentiated in the presence 
of CCL17, a chemokine shown to play a role in induction of 
mucosal inflammation (9, 10). Therefore, it was suggested that 
CCL27 may play a role in the pathogenesis of inflammation. 
This hypothesis has been confirmed by numerous studies where 
increased serum levels of CCL27 were found in inflammatory 
conditions such as atopic dermatitis (11), grafts-vs-host disease 
(12), and psoriasis (13). Reiss et al. have shown that CCL27 pro-
motes inflammation by regulating antigen-induced lymphocyte 
tissue recruitment (14). In addition, Homey et al. confirmed a 
specific role of CCL27 in T lymphocyte trafficking into inflamed 
skin (15). The nature of lymphocytes recruited by CCL27 was 
investigated by Morales et al. (2). These authors demonstrated 
that CCL27 selectively recruits cutaneous lymphocyte-associated 
(CLA+) memory T lymphocytes into the skin, while failing to 
attract CD4+, CD8+ naive T cells, CD8+ memory lymphocytes, B 
cells, monocytes, or neutrophils. These data suggest that attrac-
tion of CLA+ lymphocytes plays a role in the pathogenesis of 
atopic dermatitis, since lymphocyte accumulation correlates 
with disease severity.

Interestingly, the role of CCL27 truncated form in allergic 
brain inflammation was shown by Gunsolly et  al  (6). Authors 
have shown upregulation of truncated CCL27 in the cerebral 
cortex and limbic structures. The transcriptional activation of 
CCL27 variant 1 (PESKY) was in response to the peripheral 
allergic inflammation and paralleled the upregulation of T 
helper 2 (Th2) cytokines IL-4, IL-5, and IL-13. It appears that 
Th2 stimuli are essential for transcriptional regulation of CCL27 
family cytokines. For example, the complete isoform of CCL27 
(CTACK) was shown upregulated in allergic skin reaction (16, 
17), while transcription of truncated cytokine PESKY increased 
in brain during olfactory bulb allergic inflammation (6). Since 

PESKY is exclusively expressed in the CNS, its role in allergic 
brain inflammation could be suggested.

ccL27 FUNctiON

Published reports suggest that CCL27 has a broader function than 
just regulation of lymphocyte trafficking. For example, Kraynyak 
et  al. have shown that CCL27 has adjuvant activity, enhancing 
immune responses to HIV-1 and SIV antigens (18). Animals 
immunized with HIV-1gag/CCL27 plasmid demonstrated an 
enhanced immune response at mucosal sites, which was accom-
panied by high levels of antigen-specific IgA in bronchoalveolar 
lavage and fecal samples. In addition, increased CD4 counts 
significantly increased interferon-γ secretion and CD8+ T-cell 
proliferation in peripheral blood of immunized animals. These 
data suggested that CCL27 modulation of the immune response 
is associated with promoting T helper 1 (Th1)-activating antigen-
presenting cells. Supporting this assumption data, published by 
He et  al. (19), demonstrated early upregulation of CCL27 in 
antigen primed IL-10 knockout dendritic cells (DCs). These 
authors hypothesized that the upregulation of CCL27 by DC 
was associated with an increased expression of co-stimulatory 
molecules and activation of Th1 lymphocytes. Therefore, this 
suggests that the role of the CCL27 chemokine in inflammation 
involves lymphocyte recruitment and promotion of the Th1 type 
immune response.

ccL27 recePtOrs

CCL27 is a ligand for two CC chemokine receptors (CCR), 
CCR4 and CCR10. CCR10 is expressed on DCs, memory T 
lymphocytes, and IgA-secreting mucosal plasma cells (15, 20, 
21), while CCR4 is expressed by activated lymphocytes (22). 
Interestingly, both receptors are known to be major regulators 
of lymphocyte homing to inflamed skin (15, 23). However, 
expression of CCR4 and CCR10 are not limited to skin-targeted 
leukocytes as they have been found to be expressed in astrocytes, 
the major component of neuroglia (24, 25). Interestingly, Lui 
et al. demonstrated that the expression of CCR10 is mainly local-
ized to the hippocampus (26), where Gunsolly et al. detected the 
receptor ligand, CCL27 (6). This suggests that the interaction 
between CCL27 and its receptors is not exclusive to the skin, but 
it plays a role in maintenance of the brain homeostasis as well 
as CNS immune surveillance. In addition, CCL27, released by 
damaged or activated neurons and astrocytes within the brain, 
could be a trigger for the chemotaxis of memory T lymphocytes 
primed in the skin.

ccL27 cAN Be secreteD BY 
AstrOcYtes, A strUctUrAL 
cOMPONeNt OF tHe BLOOD–BrAiN 
BArrier (BBB)

Although the pathogenesis of immune reactivity in neuroinflam-
matory disease remains largely unknown, leukocyte infiltration 
is often a hallmark of the disease. For example, leukocytes 
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FigUre 1 | the multiple sclerosis (Ms) risk rate distribution worldwide. More MS cases are registered in countries with tempered climate north from the 40° 
latitude. Dark brown, high risk; brown, potentially high risk; yellow, low risk; white, data not available.
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crossing the BBB was shown at the early stages of multiple 
sclerosis (MS) (27), a chronic inflammatory disease of the CNS. 
Therefore, it is generally accepted that the integrity of the BBB is 
essential for regulation of leukocyte trafficking and establishing 
CNS inflammation. Astrocytes are major component of the BBB, 
maintaining permeability and regulating leukocyte trafficking 
upon activation (28). Interestingly, astrocytes can secrete 
CCL27, which when released to the nearby BBB, can contribute 
to leukocyte trafficking (29). However, the BBB may not be the 
only entry point for leukocytes, as it has been shown by Gunsolly 
et al. (6), using an animal model, that upregulation of CCL27 
in olfactory bulbs after the intranasal allergen challenge was 
associated with the presence of mature T cells. Thus, it may be 
hypothesized that T lymphocytes may access the CNS via the 
nasal mucosa, the cribriform plate, and the perineural spaces 
of the olfactory bulb, bypassing the leukocyte traffic control by 
BBB (30).

MeMOrY cLA+ t ceLLs iN Ms

Although leukocyte infiltration of brain tissue in MS is well docu-
mented, our knowledge of the mechanisms controlling leukocyte 
trafficking is limited. Studies have shown a role for integrins and 
selectins in leukocyte recruitment into the CNS, where P-selectin 
blockade or treatment with anti-α4 integrin antibody partially 
decreases lymphocyte trans-BBB migration and reduces the 
severity of experimental autoimmune encephalitis, an animal 
model of MS (31–33). However, the most interesting observa-
tion was that CLA+ T cells were found in the cerebrospinal fluid 
(CSF) of healthy individuals (34). Expression of CLA antigen is 
the characteristic for cutaneous lymphocytes, while expression of 
integrins is indicative of gut homing (35, 36). These findings sug-
gest that lymphocyte homing to the brain involves the recruitment 
of memory T cells primed outside the CNS. Therefore, immune 

response to pathogens in skin and gut tissues may influence the 
intrathecal immune response.

Skin is the largest organ providing the first-line defense 
in infection and injury. Interestingly, the connection between 
skin sun exposure and the risk of developing MS has been 
documented. For example, the majority of MS patients reside 
in temperate regions where sunlight is rarely intense (37, 38) 
(Figure 1). Even within the same country in northern latitudes, 
the highest prevalence of MS was found in the northern regions 
as compared to the south (39, 40). The role of the sunlight 
exposure in MS pathogenesis is also supported by documented 
higher frequency of the disease relapse in seasons with higher 
skin sun exposure and increased solar radiation. For example, 
Salvi et al. reported increased frequency of MS relapse in May 
to June as compared to September (41). Also, Meier et al. have 
shown a likelihood of higher MS activity in March to August 
as compared to the rest of the year, which was correlated with 
the changes in solar radiation (42). It has been suggested that 
both skin color and ultraviolet (UV) exposure play a role in the 
onset of MS. An increased latitudinal gradient of MS prevalence 
is documented, where higher incidence rate is registered among 
patients residing above the 42° latitude (37, 43). Therefore, it was 
not surprising that the highest prevalence of MS in the world 
was registered in Scotland and England (44, 45). Indigenous 
population of these northern European regions developed 
adaptive changes including maximum skin depigmentation (46). 
Decreased skin pigmentation promotes vitamin D synthesis, 
which is especially important in the high latitude where the 
low UVB rate is characteristic (47). However, the depigmented 
skin will also have less protection against harmful effect of 
the damaging sun UV spectrum, thus producing local skin 
inflammation (48, 49).

Skin color is determined by the type of melanin produced by 
melanocytes. Dark pigment, eumelanin, protects skin cells from 
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FigUre 2 | cutaneous lymphocyte-associated antigen (cLA)+ t lymphocyte trafficking from the skin to the brain. Sunlight ultraviolet damage to the skin 
causes keratinocyte activation and CC chemokine ligand 27 (CCL27) release. CCL27 recruits CLA+/CC chemokine receptor 4 (CCR4)+ T cells into the skin, where 
they become primed to various cutaneous pathogens as well as antigens and autoantigens. Once skin inflammation is resolved, CLA+/CCR4+ T lymphocytes 
return back into the circulation and can enter other tissues, including the brain. Within the brain, primed CLA+/CCR4+ T lymphocytes can target brain tissue, 
triggering inflammation. Long-lasting inflammation within the central nervous system can be ensured by yearly seasonal trans-blood–brain barrier (BBB) migration of 
activated CLA+/CCR4+ T lymphocytes.
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UV damage (50). In contrast, the yellow-red-colored pheomela-
nin is less effective in providing UV protection (51). Recently, 
Mitra et  al  have shown that pheomelanin may even promote 
oxidative DNA injury by generating free radicals in the absence 
of UV in fair skin individual (52). Therefore, this suggests that 
increased oxidation and DNA damage caused by UV exposure 
in persons with pheomelanin can trigger a cutaneous immune 
response. The skin immune response is mainly associated with a 
subset of resident CLA+ memory T cells (35, 53, 54). However, 
little is known about the dynamics of CLA+ T lymphocytes in 
MS skin during remission and exacerbation, as well as about the 
correlation between the type of cutaneous melatonin and CLA+ 
lymphocytes.

We have previously shown that serum levels of CCL27 are 
upregulated in subjects with MS (55). CCL27 was two times 
higher in the serum of acute MS subjects and remained upregu-
lated in the later stages of the disease. The origin of CCL27 in MS 
serum remains unknown; however, it could be suggested that it 
is produced in the periphery, for example, in the skin. Increased 
CCL27 within the skin regulates CLA+ T lymphocyte cutaneous 
trafficking; therefore, high serum levels of CCL27 are commonly 
found in inflammatory skin diseases (10, 14). Interestingly, an 
increased number of circulating CLA+ lymphocytes were also 
found in inflammatory skin diseases; however, the most striking 
observation was that circulating CLA+ T cells remained upregu-
lated even during remission (56). As a result, skin-activated 
CLA+ T cells will recirculate to the blood and will be retained in 
circulation (57). These recirculating CLA+ T cells target various 
cutaneous pathogens as well as antigens and autoantigens, as the 
lymphocyte phenotype will be influenced by the skin environ-
ment to which they were exposed. Once in circulation, CLA+ 
lymphocytes may migrate into other tissues, including the brain 
(Figure 2). Interestingly, the presence of CLA+ lymphocytes in 
the CSF of healthy individuals was described by Kivisäkk et al. 
(34), suggesting that activated memory cells generated in the skin 
are trafficking into the brain under normal conditions. Therefore, 

it could be postulated that when the number of circulating 
cutaneous memory leukocytes increases, more skin-activated 
lymphocytes will be migrating into the brain. In addition to the 
CLA marker, cutaneous lymphocytes express CCR4, which was 
found on a high number of lymphocytes in the CSF in MS (34). 
These data corroborate the notion that lymphocytes infiltrating 
CNS in MS may have a cutaneous origin. Furthermore, CCL27 
could act as a chemoattractant facilitating intrathecal migration 
of skin-activated lymphocytes, since this cytokine is a ligand for 
CCR4 (17).

In conclusion, our observation of increased CCL27 in serum 
of MS cases suggests a role for this cytokine in pathogenesis of 
the disease. Although the mechanisms of the contribution of 
CCL27 in MS pathogenesis remain largely unknown, the fact that 
CCL27 is a known chemoattractant for skin-derived memory 
T  lymphocytes suggests a connection between cutaneous inflam-
mation and developing MS. We propose that skin damage due to 
UV exposure and the type of melanin produced by melanocytes 
may play a role in cutaneous inflammation and development of 
activated memory T lymphocytes. Once inflammation is resolved, 
activated skin T lymphocytes are recirculated and become avail-
able to migrate into the CNS. After entering the brain via many 
routes, bypassing the BBB, cutaneous T cells may reach brain 
tissue where lymphocytes could attack neural cells and induce 
inflammation.
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