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a b s t r a c t

Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive tumor behavior and poor prog-
nosis. Recent next-generation sequencing (NGS)-based genomic studies have provided novel treatment
modes for pancreatic cancer via the identification of cancer driver variants and molecular subtypes in
PDAC. Genome-wide approaches have been extended to model systems such as patient-derived xeno-
grafts (PDXs), organoids, and cell lines for pre-clinical purposes. However, the genomic characteristics
vary in the model systems, which is mainly attributed to the clonal evolution of cancer cells during their
construction and culture. Moreover, fundamental limitations such as low tumor cellularity and the com-
plex tumor microenvironment of PDAC hinder the confirmation of genomic features in the primary tumor
and model systems. The occurrence of these phenomena and their associated complexities may lead to
false insights into the understanding of mechanisms and dynamics in tumor tissues of patients. In this
review, we describe various model systems and discuss differences in the results based on genomics
and transcriptomics between primary tumors and model systems. Finally, we introduce practical strate-
gies to improve the accuracy of genomic analysis of primary tissues and model systems.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Pancreatic cancer is a notoriously devastating disease with a 5-
year survival rate of about 10 % [1]. Unfortunately, the incidence
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Fig. 1. Characteristics of PDAC tissue and patient-derived model. (A) PDAC exhibits low tumor cellularity surrounded by plenty of non-cancerous normal cell components.
Also, PDAC is characterized by high tumor heterogeneity due to complex TME and diverse cancer cell clones with genetic alterations. (B) Representative PDAC patient-derived
model systems are cell line, PDX, and organoid. Cell line is the most basic and easiest to handle. PDX has the advantage of being able to perform various in vivo tests, and
organoid is a model that supplements disadvantages of 2D culture in cell lines. Model systems have biased proportions of PDAC molecular subtypes.
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and mortality of pancreatic ductal adenocarcinomas (PDAC), the
most common pancreatic cancer accounting for 90 % of pancreatic
cancer, are increasing worldwide [2,3]. In 2020, this disease was
the seventh leading cause (4.7 %) of all cancer deaths in both
men and women and had the 14th highest incidence of all cancers.

To characterize this fatal cancer, state-of-the-art genomic
approaches have been extensively applied to human and animal
tissues and in vitro cultured cells [4]. Nevertheless, the intra-
tumoral complexity of PDAC limits the advances in treatment effi-
cacy, and targeted therapy is still under development [5]. Addition-
ally, resolving the inter-tumoral and inter-systematic variability
remains a challenge to the precise understanding of genomic and
transcriptomic profiles.

PDAC is one of the cancers with the lowest tumor cellularity,
which is the proportion of tumor cells in a tissue [6]. Large-scale
genomic studies have shown that the median cellularity of PDACs
was only 26 % compared to that of all cancers (81.1 %) [7]. This low
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tumor cellularity results in the heterogeneity and complexity of
the tumor microenvironment (TME) consisting of various non-
cancer cells (Fig. 1A) [5,8]. For example, the diverse cells include
cancer-associated fibroblasts (CAFs), macrophages, stellate cells,
lymphocytes, and a high proportion of normal pancreatic acinar
cells [5,8–10]. The presence of this complex composition hinders
the accurate genomic characterization of cancer cells in PDAC as
non-cancer cell contaminants. Furthermore, the cellularity issue
in PDAC studies is aggravated when tumor tissues are exposed to
conditions of selection and expansion of cells within the TME,
therefore, clonal drift diversifies the genomic features of PDACs
[11,12].

To explore the complexity of PDAC and develop the relevant
therapeutics, various model systems such as cell lines, patient-
derived xenografts, and organoids, have been constructed. Exten-
sive genomic studies on these model systems showed that distinct
genomic characteristics between primary tumor tissue and model
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system were a cautionary consideration in the interpretation of the
experimental results [13,14]. This discrepancy is mainly due to the
phenomenon of activated clonal evolution relative to the primary
tissue, occurring in model systems [4,15]. The differential selection
of a variety of tumor cell clone types from primary tumor tissues
for the construction and culturing of the model system leads to dif-
ferences in mutation frequency, copy number variation (CNV), and
gene expression between the primary tumor tissue and model sys-
tem [15,16]. Therefore, understanding the clonal transition from a
primary tumor tissue to a model system is essential for acquiring
accurate insights into the biology of PDAC and its therapeutic
opportunities.

In this review, we summarize the current status and statistics of
patient-derived model systems for PDAC. Genomic profile differ-
ences between primary tumor tissue and model system are intro-
duced in two perspectives: (1) landscape of structural variations
(SVs), DNA mutations, and CNVs; and (2) characterization of
molecular subtypes. Finally, we discuss the approaches to avoid
the pitfalls of analyzing the profiles in PDAC. Therefore, we show
that caution should be exercised when interpreting genomic data
from the model systems of PDAC.
2. Patient-derived model systems of PDAC

2.1. Cell line

Cell lines are the most classical and widely used model among
patient-derived model systems. The advantage of cell lines is that
they are inexpensive and convenient for maintenance and handling
(Fig. 1B) [10]. In addition, since the cell populations are much more
homogeneous than primary tumor tissues, cell lines ensure repro-
ducibility by making it convenient to conduct repeated experi-
ments [17]. However, the cell line system, unfortunately, does
not reflect the environment of the primary tumor, meaning that
cell lines often fail to reproduce the experimental results obtained
in tumor tissues [18,19]. Patient-derived cell lines (PDCLs) might
include the TME of the corresponding primary tumor in early pas-
sages but rapidly lose the complexity upon repeated subculturing
[20]. Thus, the use of cell lines is more appropriate for investiga-
tions into the biology of cancer cells rather than the cancer
environment.

PANC-1, MIA PaCa-2, AsPC-1, and Capan-1 are examples of pan-
creatic cancer cell lines bearing mutations at KRAS G12 which is
frequently mutated in the primary tumor, but the cell lines have
distinct KRAS genotypes [21]. PANC-1 and AsPC-1 have the KRAS
G12D mutation whose allelic status is heterozygous and homozy-
gous, respectively [22]. Furthermore, MIA PaCa-2 and Capan-1
have homozygous KRAS G12C and KRAS G12V mutations, respec-
tively. As a result, the cell lines of pancreatic cancer exhibit differ-
ent phenotypes such as cell adhesion, growth rate, tumorigenicity,
and even drug resistance [21]. Therefore, careful choice of cell lines
considering the pair of genotype and phenotype is necessary for
the purpose and context of experiments.

The landscape of genotype and phenotype (e.g., drug sensitivity)
have been comprehensively examined in the cancer cell line con-
sortiums; for instance, the Cancer Cell Line Encyclopedia (CCLE),
established in 2012 [23]. In 2019, this database was expanded to
include the genomic data (e.g., RNA-seq and whole exome sequenc-
ing (WES)) of the cell lines in addition to the existing drug screening
information [24]. As a result, the availability of genome-wide infor-
mation for cell lines has offered an opportunity to reinforce insights
into the primary tumors. As ofMarch 7, 2022, CCLE includes 58 pan-
creatic cancer samples and 55 PDAC samples. The PDAC cell lines
account for a relatively smaller proportion than lung cancer (275
samples) and breast cancer (83 samples) lines in the database.
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Considering that the survival rates of PDAC are steady and the inci-
dence is increasing gradually, the construction of PDAC cell lines is
warranted for further research. Beyond KRAS G12mutation, the cell
lines with diverse genotypes should be available for expanding the
choice to examine the heterogenous cancer cell types. Currently,
genome-wide genotyping followed by characterization of pheno-
types derived from complex genotypes has become a common
practice for cancer research using cell lines.

To comprehensively search pancreatic cancer genotypes, the
catalogue of somatic mutations in cancer (COSMIC) revealed that
the proportion of the samples with cancer mutations in 32 pancre-
atic cancer cell lines is as follows: KRAS (94 %), TP53 (91 %), SMAD4
(34 %), and CDKN2A (25 %) [25]. A database for primary tumors, the
international cancer genome consortium (ICGC), described that
KRAS mutations were found in 92.16 %, 89.51 %, and 66.67 % of
cohorts in Canadian (PACA-CA), Australian (PACA-AU), and The
Cancer Genome Atlas (PAAD-US), respectively [26]. These results
show that COSMIC cell line data have a similar or higher proportion
of samples with KRAS mutation compared to KRAS mutation rates
in primary tumors. In contrast, TP53 mutations account for a lower
proportion of the ICGC data (PACA-CA: 78.93 %, PACA-AU: 65.98 %,
and PAAD-US: 54.24 %) than the COSMIC cell lines data. The fre-
quent observation of TP53 mutations in the cell lines suggests that
cell lines have higher tumor cellularity than primary tumor tissue
through the rapid growth of the clones bearing TP53 mutations.

2.2. Organoid

Organoids are advantageous as models due to their three-
dimensional (3D) cell culture (Fig. 1B) [10,17]. Three-dimensional
cultures can be prevented from attaching to the culture dish using
a matrix such as collagen or Matrigel [4], allowing them to mimic
in vivo conditions, mainly the extracellular matrix (ECM). In addi-
tion, it is possible to establish organoid cultures with relatively
fewer cells. However, organoids cannot fully account for the action
of environment-related stromal cells including immune cells, and
the subtypes of cancer organoids could be altered during culture
[27,28]. To overcome these limitations, attempts to coculture orga-
noids with CAFs or use media that includes immune cells while
culturing organoids have been increasing [4]. Since the construc-
tion of organoids has not been standardized, the protocols for qual-
ity control are still actively under development [29].

The characteristics of PDAC organoids are known to change
dynamically according to genomic studies and drug screening
[30–35]. Seino et al. analyzed 39 PDAC patient-derived organoids
through WES and microarray [31]. Generally, the proportion of fre-
quently mutated genes such as KRAS, TP53, SMAD4, and CDKN2A in
organoids is similar to that seen in patient tumors. However, the
detailed genomic profiles such as variant allele frequency, struc-
tural variation, and CNV showed discrepancies between patient
tumors and organoids [14,32,34]. Another example is a study con-
ducted in 2021 on single-cell RNA-seq for 24 organoids derived
from PDAC patients [36]. Investigators observed a lack of cells with
basal-like characteristics in the PDAC organoid, indicating that the
in vitro condition made the PDAC organoid acquire classical char-
acteristics due to selective pressure. These results support that the
characteristics of tumor cells are not static during the process of
organoid construction from the primary tumor.

To take advantage of organoids, several biobanks have been
established by academia and industry [37]. The Human Cancer
Models Initiative (HCMI) is a representative database containing
genomic data and patient information regarding various cancer-
derived models, including organoids (https://ocg.cancer.gov/pro-
grams/HCMI). Pancreatic cancer organoid accounts for 28 samples
of 127 3D organoids, making it the second most represented in this
database after colon cancer, among 18 cancer types. Taking the
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incidence into account, the proportion of pancreatic cancer orga-
noids is relatively similar to or slightly higher than that of other
cancer types, indicating that a number of PDAC organoids were
constructed despite the lower incidence than other cancers. Tiriac
et al. established PDAC organoid using the endoscopic ultrasound-
guided fine needle biopsy sampling method with a success rate of
87 % (33/38) [38]. Methods using a core needle are known to
increase the accuracy of PDAC diagnosis by conserving the tissue
structure. Therefore, reducing the normal cell content using these
methods could be a solution to increase the success rate for the
establishment of PDAC organoids.

2.3. Patient-derived xenograft

Patient-derived xenografts (PDXs) are representative of in vivo
model systems (Fig. 1B) [17]. This model is established by trans-
planting human primary tumor tissue into immunocompromised
mice [4]. A majority of PDAC PDXs (1833/1965 = 93 %) are con-
structed through subcutaneous implantation, and establishing
orthotopic PDXs are relatively infrequent compared to subcuta-
neous PDXs although they have been used for tissue-specific
research by imitating pancreatic TME [14,15,34,39–45]. PDX is
expected to have a TME similar to that of primary tumor tissue,
and thus, it can accurately predict drug response by facilitating
in vivo experimentation [39].

However, while PDX is constructed from the primary tumor and
cultured across the passage, the human stroma is lost and is
replaced with mouse stroma [40]. Tumor-stroma interaction in
PDACs is known as a desmoplastic reaction, which is a universal
characteristic of PDACs [46]. This interaction occurs between com-
plex cell components and ECM, normal epithelial cells, stromal
fibroblasts, and tumor cells. It can determine the genomic varia-
tion, drug resistance, tumor growth, and invasion. In summary,
the replacement of human stroma with mouse stroma triggers dif-
ferent tumor-stroma interactions from the primary tumor and
could provide a mouse-specific tissue environment in PDX, which
can induce strong clonal evolution of the tumor [47].

Regarding clonal selection, the occurrence of evolution in a
mouse-specific manner during the progression from the primary
tumor to PDX is controversial. Through CNV analysis as an evolu-
tionary genomic signature, Ben-David et al. analyzed CNVs of
1,110 PDX samples and identified the augmented changes in CNVs
during engraftment and passaging PDX [15], distinctively from pri-
mary tumors. For instance, the patient-specific recurrent CNVs dis-
appeared during PDX progression. These results suggest that clonal
evolution occurred through mouse-specific selective pressure.
Since alterations in the genomic characteristics of PDX determined
drug response, these results suggested that PDX might not ade-
quately explain the primary tumor.

In contrast, another study showed that clonal evolution does
not occur in PDX and is consistent with the CNV profile of the pri-
mary tumor [41]. In this study, CNV profiling of 509 PDXs matched
with patients revealed the strong conservation of CNVs during the
engraftment process from patient tumors to late-passage PDXs.
These results reveal that mouse-specific genomic alterations and
clonal evolution did not severely occur during PDX construction.

This general debate on PDX is likely to be more serious with
PDAC PDX. The stroma proportion of PDAC is higher than that of
other cancer types because PDAC has low tumor cellularity and a
heterogeneous environment. Our group performed an integrative
genomics analysis of 36 PDAC PDXs and matched tissue samples
(unpublished data). We confirmed that the CNV and variant allele
frequency of cancer-associated genes are discordant between the
primary tumor and PDX. Therefore, when PDAC PDX is used as a
model system, the issue of clonal evolution should be seriously
considered.
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An increase in the importance of PDX in preclinical testing has
led to the establishment of large-scale databases. Patient-Derived
Model Repository (PDMR), Jackson Laboratory, and the EurOPDX
Consortium are the representative databases of PDX [42–44].
EurOPDX and Jackson Laboratory hold 34 and 15 pancreatic cancer
PDXs, respectively. In contrast, 466 PDXs derived from 47 patients
with pancreatic cancer are available in PDMR. PDMR has abundant
PDX samples because various passages are included. However, the
number of patients is small in the PDMR database because PDX is
difficult to engraft. The establishment success rate of PDAC PDXs is
approximately 62 %, which is higher than that of breast cancer (13–
27 %) [17,40]. This shows that PDAC PDX has a high engraftment
rate among cancer types. In 2017, a study demonstrated that
engraftment rates and tumor growth rates of PDX have a correla-
tion with the prognosis of patients [39]. In this study, PDAC PDXs
derived from patients with poor prognosis have high engraftment
rates and rapid xenograft growth rates. These results suggest that
aggressive and metastatic tumors are stably engrafted while con-
structing PDXs. In other words, primary tissues with high normal
cell contents may have low PDX engraftment rates because those
subtypes are correlated with favorable prognoses. Therefore,
although PDAC is known as an aggressive cancer type, the estab-
lishment of PDAC PDX can be difficult because primary tumor tis-
sues often have low tumor cellularity.
3. Clonal evolution by genetic alterations in model systems

Clonal evolution is driven by genetic variations such as somatic
mutations, chromosomal rearrangement, CNV, and epigenetic
modification [48]. Since these variations accelerate tumor cell pro-
liferation, specific clones of tumor cells are selected by genetic
selection pressure. When PDAC is generated from normal cells,
tumor progression occurs through the three pancreatic intraep-
ithelial neoplasia (PanIN) stages [49]. In the PanIN-1 stage, KRAS
mutation is introduced in over 99 % of the samples [50]. CDKN2A
mutation occurs during early PanIN-2 stage. In PanIN-3, mutations
leading to inactivation of TP53 and SMAD4 are accumulated and
subsequently cause the generation of invasive cancer. These
genetic alterations that accumulate as tumors are initiated and
progress, driving clonal evolution.

Clonal evolution occurs during passaging and constructing
model systems as well as tumor progression and metastasis in
the patient [51]. PDX was not accurately reflected in the hetero-
geneity of metastatic tumors due to clonal evolution analysis from
primary tumors [45]. Mutations of APC, TP53, and TCF7L2 genes
were commonly identified in primary tumor and PDX, but muta-
tions of ROBO1, SMAD3, and KMT2C were not represented in PDX.
In addition, the KRAS Q22K mutation found in the primary tumor
did not appear in PDX. Therefore, it is important to map the genetic
characteristics different from primary tumors in the model system
for elucidating the evolution of PDAC.

Since clonal evolution occurs by the accumulation of genetic
alterations during tumor progression, analysis of genetic alter-
ations such as SV, mutation, and CNV enables us to track clonal
evolution (Table 1). First, SV discrepancy between primary tumor
and model system indicates genetic alteration resulting from clo-
nal evolution. One study observed inconsistent SV between pri-
mary tumor tissue and model system in PDAC using whole
genome sequencing [14]. SVs within most chromosomes were mis-
matched between primary tumor and PDX pairs, and only 40 % of
the total samples showed a high SV concordance score. Addition-
ally, they confirmed that PDX had at least twice as many insertions
and deletions as the primary tumor. These results indicate that
variants could be accumulated by deficiency of the DNA repair
pathway in PDX. The SV discrepancy between the primary tumor



Table 1
Discrepancies in genetic alteration between primary tumor and model system. Clonal evolution occurs due to accumulation of genetic alterations while model system is
constructed from primary tumor. Clonal evolution leads to discrepancies in genetic alteration profiles between primary tumor and model system. This table summarizes the
differences in genetic alterations between the two groups.

Genetic alteration Primary tumor Model system Reference

SV
SV events concordance � The frequency and pattern of SV events were sufficiently

different among PDAC tumors to allow classification
into four subtypes according to the information: stable,
unstable, locally rearranged, and scattered.

� Stable subtype was characterized by 50 or fewer SV
events whereas unstable subtype had over 200.

� Locally rearranged subtype accounts for 30 % of the total
sample and had critical focal events on a small number
of chromosomes.

� Scattered subtype showed the largest proportion (36 %)
with less than 200 SV events.

� SV event concordance was higher between PDX and
organoid than between primary tumor and model
systems.

� The comparison of PDAC PDX and matched primary
tumor showed low SV event concordance in 60 % of
samples.

� Organoid had a similar SV event pattern to PDX.

[14,52]

Insertion and deletion � Total of 11,868 SV events were identified in 100 PDAC
primary tumors.

� Intra-chromosomal events were relatively abundant,
with the highest proportion of rearrangements (5,860)
and the lowest proportion of duplications (128).

� The number of deletions was 1,393.

� PDAC PDX had more than twice the indels as
matched primary tumor, suggesting the accumula-
tion of genetic alterations in the DNA repair pathway
of the PDX.

[14,52]

Mutation
Significantly mutated genes � As PDAC progressed through the PanIN stages, muta-

tions accumulated in KRAS, CDKN2A, TP53, and SMAD4
genes in order.

� A large-scale PDAC mutation showed that mutations in
KRAS (93 %), TP53 (72 %), SMAD4 (32 %), and CDKN2A
(30 %) were found most frequently in the cohorts.

� Mutations in KRAS, TP53, and CDKN2A genes found in
primary tumors were conserved in matched model
systems.

� However, the VAF of mutations was higher than the
primary tumor in the model system (VAF median:
primary tumor = 12.44 and model system = 57.69).

[34,50,53,54]

KRAS mutation genotype � Based on genomic profiles of the tumors from 150 pan-
creatic cancer patients, KRAS G12D, G12V, and G12R
mutations accounted for approximately 44 %, 29 %,
and 20 %, respectively.

� In early passage, the KRAS MAFs of early organoids
were 33 %, 9 %, and 1 % for G12V, G12D, and G12R,
respectively.

� In passage 3, the MAF of KRAS G12R dominated with
51 %, and KRAS G12V and G12D mutation
disappeared.

[35,54]

CNV
Loci and concordance � More than one-third of PDAC tumors had significant

CNV.
� In PDAC tissues, the copy number of GATA6, ERBB2,
KRAS, AKT2, and MYC were amplified, whereas the copy
number of CDKN2A, SMAD4, ARID1A, and PTEN were
deleted.

� In the genome-wide view of CNV, the concordance
was high between primary tumor and PDX.

� At the local chromosome levels, the CNV of primary
tumor and PDX was distinct.

[14,54,55]

Recurrence � 61 arm-level recurrent CNVs were identified from TCGA
data.

� As the PDX was established and passaged, the recur-
rent CNVs disappeared in PDX.

[15]

Copy number of CDKN2A CNV mean log2 ratio was approximately �1.5 for CDKN2A
and CDKN2B.

� In the organoid, CNV mean log2 ratio was remarkably
decreased by approximately �6 for CDKN2A and
CDKN2B.

[56]

S. Hyun and D. Park Computational and Structural Biotechnology Journal 20 (2022) 4806–4815
and the model system indicates that there is structural hetero-
geneity, which can be explained as the result of clonal evolution
by selective pressure.

Second, clonal evolution also can be traced by identifying the
accumulation of the mutation. Romero-Calvo et al. conducted tar-
geted capture DNA sequencing while constructing primary tumors,
PDXs, organoids, PDX-derived organoids, and cell lines [34]. KRAS,
TP53, and CDKN2A mutations in the primary tumor were main-
tained in the model system. However, the model system revealed
a high variant allele frequency (VAF) compared to the primary
tumors; 57.69 and 12.44 are the medians of PDX and primary
tumors, respectively. In another study, KRAS mutant allele fre-
quency (MAF) increased by passages of PDAC organoids. The first
passage had G12V, G12D, and G12R mutations in KRAS with MAF
33 %, 9 %, and 1 %, respectively [35]. In passage 3, the MAF of
G12R was steeply increased to 51 %, whereas G12V and G12D vari-
ants disappeared. In passage 4, the pattern of passage 3 was main-
tained. This result supports the expansion of clones with particular
variant alleles through clonal evolution during culture and estab-
lishment in the model system.

Finally, copy number amplification or deletion provided evi-
dence of clonal evolution. When CNV was estimated for primary
tumor and PDX pairs, most pairs had similar ploidy, but a few pairs
4810
showed that PDX ploidy was twice higher than that of primary
tumors [14]. This indicated that primary tumor and PDX pairs
had CNV concordance across the entire genome, but not in local
chromosome regions. These results were also reproduced in orga-
noids. Another study described that the clonal evolution of sub-
clones in primary tumors plays an important role in developing
the CNV environment of PDX [15]. They investigated whether the
recurrent CNV identified in the patient tumor tissue was main-
tained by selection pressure during PDX construction and passage.
Interestingly, repeatedly occurring CNV in the TCGA data tended to
be lost during PDX passages. This suggested that the acquisition
and maintenance of patient-specific CNV may not exist in the
model environment due to clonal evolution. These clonal dynamics
should be considered for experimental design and interpretation,
and caution is warranted in using the model system for further
preclinical steps such as drug response tests.

4. Inconsistencies in molecular subtypes between primary
tissue and model system

Gene expression profiles have been primarily used to classify
molecular subtypes of PDAC primary tumor tissue. Based on the
expression profiles, representative molecular subtypes for PDAC
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primary tumors were defined in Collison et al., Moffitt et al., and
Bailey et al. [57–59]. The molecular subtypes of PDAC are divided
into three major lineages (Fig. 2A). First, basal lineage includes
quasimesenchymal (QM-PDA), basal-like, and squamous. These
subtypes typically have a poor prognosis compared to the subtypes
of other lineages. The transcriptional signatures of the basal lin-
eage subtypes are characterized by over-expression of inflamma-
tion, mesenchymal, keratin, and cell proliferation genes. Second,
classical lineage contains the classical and pancreatic progenitor.
Classical lineage subtypes highly express GATA6 and genes associ-
ated with transcription factor network, xenobiotic metabolism,
and differentiation [36,58,59]. Finally, non-cancer cell-related lin-
eage consists of aberrantly differentiated endocrine exocrine
(ADEX), immunogenic, and exocrine-like. These subtypes have
been argued to be subtypes caused by normal cell contamination
[59,60]. Tumors in the subtypes upregulated genes relevant to
tumor cell-derived digestive enzymes, immune signaling, exocrine
secretion, and b-cell development regulation [57,59]. Exception-
Fig. 2. Transition of molecular subtypes during model system establishment. (A) PDAC m
basal, classical, and non-cancerous. (B-C) Clonal evolution and TME transition occur durin
cancer and stromal cells, leading to differences in molecular characteristics of cancer cell
TME. (D) Unique properties of culture conditions and clonal evolution in each model sy
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ally, Chan-Seng-Yue et al. and Topham et al. defined the hybrid
and discordant subtypes for samples that do not belong to these
three representative lineages [61,62]. In the model systems, clonal
evolution and TME reshaping lead to inconsistent subtypes com-
pared to primary tumor tissues (Fig. 2B, C). Therefore, the model
system-specific gene expression profiling followed by subtyping
is essential for using the model system as a preclinical tool to cor-
rectly reflect patients’ subtypes.

Cancerous subtypes of PDAC make up a high proportion of the
model system. The relatively poor proliferating capability of nor-
mal cells results in more cancer cells in model systems. Accord-
ingly, TME transitions in PDCL reduce the proportion of normal
cells involved in digestive enzyme secretion. As the subtype asso-
ciated with endocrine and exocrine activities was characterized by
high normal cell content, this subtype was deficient in PDCL [53].
To explain the difference, attempts have been made to define the
specific subtype for the model system [32,63]. Most of the sub-
types identified in the model system were similar to the basal
olecular subtypes based on gene expression are largely divided into three lineages:
g model system construction. These phenomena alter gene expression levels of both
s compared to primary tissues. Also, model systems do not perfectly mimic patient’s
stem yield skewed proportions of three PDAC subtype lineages.
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and classical lineages defined in PDAC primary tumors, meaning
that the construction of the model system does not modify the
characteristics of the cancer cell itself but alters the cellular com-
position from the primary tumor (Fig. 2D). Taken together, the
model system is lack of subtypes such as ADEX and immunogenic
due to insufficient TME components, thereby basal and classical
subtypes are abundant because of clonal evolution or expansion.

The model system consists of mostly subtypes known as basal
and classical lineages, but each model has different proportions
for these two subtypes. Previous studies have confirmed that the
basal type was predominant in cell lines. In a study by Moffitt
et al., all 17 PDAC cell lines were found to belong to the basal-
like subtype [58]. Consistently, independent research for subtyping
of PDAC cell lines showed that the basal lineage subtype accounted
for 63 % (23/36) of the total samples [63]. In contrast, 80 % (35/44)
of PDAC organoids were classified as a classical lineage subtype
[32].

In order to examine the dynamic alteration of subtypes in the
model systems, single-cell RNA-seq (scRNA-seq) technology has
been actively utilized for dissecting heterogeneous cellular states.
scRNA-seq data showed that the cell state of the organoids
shifted from the classical to basal when PDAC organoids were cul-
tured without major components of the organoid medium such as
mEGF and Wnt3A [64]. Furthermore, the basal score of PDAC
organoids increased when the cell line media was treated to the
organoid instead of the organoid media, whereas growing the cell
line in organoid media reduced the basal score. Autocrine TGFB
and paracrine IFNG were the key shifting factors from a classical
state into a basal or intermediate cell state that was a precursor
to the basal cell state, indicating that secretory TME components
can determine the subtype state of tumor cells. Notably, ADEX
and immunogenic subtypes are not well-maintained in the
ex vivo model system due to the TME component deficiency,
and subtype transition occurs depending on culture media and
condition.

A drug sensitivity study using scRNA-seq revealed that precise
subtyping of the model system is crucial for the proper use and
interpretation of the system [36]. When PDAC organoids were trea-
ted with drugs such as 5-fluorouracil and gemcitabine, the classical
subtype organoids showed sensitive drug response and had highly
differentiated cell states. In contrast, basal-like organoids had pro-
liferating gene signatures and exhibited poor drug response, sug-
gesting the subtype-specific drug response. Since the classical
subtype constituted a majority of PDAC organoids, drug tests using
organoids could lead to biased results and provide inaccurate
insights. Moreover, a few primary tumor subtypes (i.e., ADEX,
immunogenic subtype) are rarely present in the model systems,
and even the molecular subtypes shift due to culture conditions.
Therefore, inconsistency of molecular subtypes with the primary
tumor should be considered when using the model system.
5. Strategies to overcome pitfalls of genomics analysis of PDAC
model systems

The heterogeneity of PDAC is augmented by the high proportion
of normal cells and low tumor cellularity in the PDAC tissue [65].
These characteristics reduce the detection sensitivity of genetic
variants, interrupting interpretations of PDAC progression. In addi-
tion, these issues hinder the classification of subtypes and drug
responses, preventing the development of personalized medicine.
The model system has emerged to disentangle these issues, but
the limitation of the model system is that it cannot perfectly mimic
the TME of the patient tumor tissue. Since TME is altering dynam-
ically during the construction of model systems, tracing the TME
transition is crucial to correctly interpreting PDAC. Therefore, it is
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necessary to understand the TME and tumor heterogeneity of the
model system in combination with the primary tumor.

To overcome the obstacles posed by low tumor cellularity in tis-
sue, previous studies have used microdissection as an attempt to
analyze the high tumor cellularity state [58,61]. Recently, an elab-
orate and convenient technique known as laser microdissection
(LMD) has been used to focus on the region of interest [66]
(Fig. 3A). For instance, a study by Immervoll et al., showed 67 %
mutation to be detected in the 12th codon of KRAS after DNA
extraction from whole tissue [67]. In contrast, the frequency of this
mutation was 91 % in samples that underwent LMD. LMD facili-
tates accurate analysis of tumors specifically and decreases normal
cell contamination.

Another approach to overcome the low tumor cellularity issue
is to increase the sequencing depth (Fig. 3B). By increasing the
sequencing depth, the elevated chance of detecting nucleic acids
derived from cancer cells improves genomic interpretation for
low abundance cancer cells [68]. Furthermore, the classification
of gene expression-based subtypes could be incorrect in samples
with low tumor cellularity due to the inclusion of normal tissue-
associated gene expression, suggesting that measurement of low
abundant tumor RNAs is critical for the correct classification of
PDAC tumor tissues. Previous studies have already adopted strate-
gies to increase the sequencing depth of the tumor compared to
that of the normal control or to perform targeted sequencing of
specific genes [52,54,69,70]. A study by the TCGA network
described deep coverage sequencing (mean � 30,000X) being con-
ducted for the hotspot codon of KRAS to improve the detection of
somatic mutations in samples with low cellularity [54]. In addition,
they performed targeted sequencing (�644X) for PDAC-specific
mutated genes. As the model systems have high tumor cellularity
compared to the primary tumors, excessive sequencing depth is
not necessary for the samples in the model systems. Therefore,
optimal sequencing depth should be produced mainly based on
the tumor cellularity of the primary tumor in order to compare
genomic characteristics between primary tumors and model sys-
tems in pairs.

We previously discussed that human stroma is replaced by
mouse stroma, resulting in an interaction between the mouse
stroma and the transplanted tumor in PDX. Mouse stroma is one
of the causes of genetic discrepancies between PDX and primary
tumors. In addition, even though tissues from xenograft models
are cautiously resected for sequencing, cross-contamination may
occur because human or mouse DNA or RNA are mixed [71]. There-
fore, in order to prevent errors in interpretation, genomic data
derived from xenografts and human tissues should be separated
(Fig. 3C). One previous study inferred that unfiltered mouse-
derived reads caused more false-positive variant calls [72]. Filtered
samples exhibited a proper correlation between the predicted
allele frequency and the real allele frequency. Thus, analysis of
the xenograft should be followed by filtering genomic data from
non-human sources.

The development of scRNA-seq technologies has resolved the
cellular complexity of the model system at single-cell resolution
(Fig. 3D). These methods can help to accurately understand the
transcriptomic discrepancy and TME between the tumor and the
model system. In a scRNA-seq study for PDAC organoid, the prolif-
erating cells either re-entered the cell cycle stage or entered the
differentiation phase and acquired unique characteristics of pan-
creas tissue [36]. This suggested that the TME dynamics during
organoid establishment can be delineated at a single cell level.
Subsequently, drug tests showed that the cellular ratio between
the classical and basal cell types determined the drug sensitivity
in an organoid. Drug-sensitive organoids were made of cells with
high expression of differentiation genes. In contrast, the cells in
drug-resistant organoids upregulated the expression of genes



Fig. 3. Advanced genomic analysis strategies for PDAC model systems. Low tumor cellularity and complex TME of PDAC are obstacles to performing precise genomic analysis.
(A) Issues of low tumor cellularity issue can be physically resolved by resecting tumor cells through microdissection. (B) Acquisition of more genomic data by increasing
sequencing depth, improving chances of detecting genomic information of cancer cells. (C) Filtering out genomic data of other species helps to focus on human-derived cells
in cases of low cellularity caused by including non-human genomic data such as PDX. (D) scRNA-seq provides highest resolution to unravel complex TME at a single-cell level.
(E) Classification accuracy can be improved by subtype prediction model using computational approaches such as artificial intelligence. (F) Addition of stromal components
on 3D cultures is an experimental strategy to mimic complex TME of tissues.
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related to proliferation and cell cycling. This demonstrated that the
drug response in the model system could be inferred by tracking
TME dynamics at the single cell level. Ultimately, identifying the
TME dynamics of organoids using scRNA-seq can improve the reli-
ability when organoids are used as a preclinical model.

Recently, prediction modeling methods are developed using
machine learning and deep learning. Based on the prediction of
the improved computational model, it is possible to accurately
understand the model system by resolving the difference in classi-
fication with the primary tumor (Fig. 3E). In a previous study, the
authors predicted the molecular subtype of pancreatic cancer cell
line based on gene expression through prediction model establish-
ment [73]. They applied the nearest template prediction method to
predict the subtype of the cell lines. This prediction model revealed
a 96 % classification accuracy for the PAAD TCGA tumor test set. In
addition, they predicted the subtype of the PAAD cell line using the
prediction model. Ten of the cell lines used in this study over-
lapped the Moffitt et al. study [58]. These ten cell lines were known
as the basal-like subtype in Moffitt et al. study. However, this study
predicted that eight cell lines were basal and two cell lines were
classical. Interestingly, these two cell lines had a relatively high
classical score in the Moffit et al. study [58], suggesting that accu-
rate subtype prediction could be achieved by identifying samples
with ambiguous subtypes based on cross-classification between
primary tumor and model system.

In addition to the strategies to enhance understanding of cur-
rent systems, a recently advanced new system has simulated more
closely patient tumor tissues (Fig. 3F). The novel model system,
termed ‘assembloid’, has emerged to improve organoids by adding
stromal components such as CAF, endothelial cell, immune cell,
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and muscle layer [74]. The TME-enhanced assembloid was able
to complement the limitations of current organoids in which sub-
types were shifted depending on the culture conditions. The blad-
der tumor assembloid prohibited shifting to the basal subtype and
maintained the parental tumor subtype during in vitro culture.
Therefore, PDAC assembloid construction is expected to prevent
shifting to the dominant classical subtype in the organoid.
6. Summary and outlook

In recent years, various model systems for PDAC have emerged
to provide experimental platforms for studying and treating the
devastating disease. Since the model system represents the
patient’s tumor tissue and is used as a preclinical tool, an accurate
understanding of the model system is necessary for the develop-
ment of cancer therapies. In this review, we have described the dif-
ferences between the primary tumor and the model system. First,
the heterogeneity and cellularity of PDAC amplify the differences
in genetic alteration such as SV, mutation, and CNV. The genetic
discrepancies are accumulating during tumor progression and sub-
clone selection due to clonal evolution. Second, the molecular sub-
types are imperfectly matched between the primary tumor and the
model system. The PDAC model system does not perfectly mimic
the TME of the patient’s tumor tissue. As a result, the model sys-
tems preferentially include cancerous subtypes, and the culture
conditions convert the subtypes during culture. The unstable and
inconsistent subtypes of the model systems could lead to biased
results of drug response tests on PDAC due to subtype-specific drug
sensitivities. Therefore, these genomic and transcriptomic differ-
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ences should be carefully considered and interpreted when the
model system is used as a preclinical tool.

This review has described challenges and strategies to over-
come the issues associated with the genomic analysis of PDAC
tumor tissue and model systems. To alleviate the low tumor cellu-
larity issue in PDAC analysis, we recommend microdissection and
an increase in NGS depth. Additionally, we have discussed the
computational and experimental approaches to accurately under-
stand the model system along with the patient’s tumor tissue. Dis-
criminating mouse data from human data in silico can reduce
cross-contamination in the PDX model, and scRNA-seq can
increase the resolution to investigate clonal evolution and subtype
transition. Finally, the development of a novel model system such
as an assembloid will be required to mimic patient tumor tissue as
closely as possible.

Although large-scale genomic studies have been conducted on
PDAC, model system studies are still insufficient and the interpre-
tation of the results is controversial. Since there is still no targeted
therapy for PDAC, the development of an accurate drug testing sys-
tem is an urgent need to identify effective drug candidates. Finally,
taking clonal evolution and TME transition into account, unbiased
genomic analysis of the model system will enable us to move a
step forward in conquering deadly cancer.
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