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Abstract
Introduction: Orbitofrontal reality filtering (ORFi) is a memory mechanism that dis-
tinguishes whether a thought is relevant to present reality or not. In adults, it is me-
diated by the orbitofrontal cortex (OFC). This region is still not fully developed in 
preteenagers, but ORFi is already active from age 7. Here, we probe the neural cor-
relates of ORFi in early adolescents, hypothesizing that OFC mediates the sense of 
reality in this population.
Methods: Functional magnetic resonance images (fMRI) were acquired in 22 early 
adolescents during a task composed of two runs: run 1 measuring recognition capac-
ity; run 2 measuring ORFi; each containing two types of images (conditions): distrac-
tors (D: images seen for the first time in the current run) and targets (T: images seen 
for the second time in the current run). Group region of interest (ROI) analysis was 
performed in a flexible factorial design with two factors (run and condition) using 
SPM12.
Results: We found significant main effects for the experimental run and condi-
tion. The bilateral OFC activation was higher during ORFi than during the first run. 
Additionally, the OFC was more active while processing distractors than targets.
Conclusion: These results confirm, for the first time, the role of OFC in reality filter-
ing in early adolescents.
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1  | INTRODUC TION

Orbitofrontal reality filtering (ORFi) is a memory control mechanism 
that allows to filter upcoming memories and thoughts according to 
their relation with ongoing reality (Schnider, 2003, 2018). The first 
description of ORFi was based on the observation of patients with 
orbitofrontal lesions, suffering from behaviorally spontaneous con-
fabulations and disorientation. These patients typically act to cur-
rently inappropriate memories to guide their present actions or to 
shape their future plans, failing to verify the connexion of these 
memories with the “now.” In addition, they are disoriented in time 
and space (Schnider, 2018). For example, a retired psychiatrist hospi-
talized after rupture of an aneurysm of the anterior communicating 
artery, repeatedly tried to leave the hospital in the conviction that 
she had to meet her own patients (Schnider, Bonvallat, Emond, & 
Leemann, 2005).

Schnider and colleagues (Schnider, von Daniken, & Gutbrod, 
1996) developed an experimental paradigm to test ORFi and to 
reliably discriminate reality-confusing patients from healthy par-
ticipants. It consists of two runs of a continuous recognition task 
in which the same images are shown twice. Participants are asked 
to indicate picture recurrences only within the ongoing run. The 
first run assesses the ability to encode and recognize items, and 
familiarity alone is sufficient to correctly perform the task. In the 
second run all images are familiar, and thus familiarity alone is not 
enough to perform the task. In this second run, ORFi is needed, 
representing the ability to sense whether the memory of an item 
relates to the present (the currently ongoing run), or not (Schnider 
& Ptak, 1999).

Behaviorally, confabulating patients markedly and specifically 
increased their false positives in the second run (Nahum, Bouzerda-
Wahlen, Guggisberg, Ptak, & Schnider, 2012; Schnider & Ptak, 
1999). Lesion analysis on these patients revealed that the ORFi 
mechanism depends on the orbitofrontal cortex (OFC) or structures 
directly connected with it (Schnider, 2018; Schnider et al., 1996). 
Functional neuroimaging studies using positron emission tomogra-
phy further corroborated the dependence of ORFi on the intact OFC 
(Schnider, Treyer, & Buck, 2000; Treyer, Buck, & Schnider, 2003, 
2006). Electrophysiological studies revealed that ORFi is expressed 
by a frontal positivity at about 200–300 ms, before the content of a 
thought is recognized (Schnider, Valenza, Morand, & Michel, 2002).

Children are more vulnerable to memory distortions and more 
prone to errors than adults (Ceci & Bruck, 1993). Using a child-
adapted version of the continuous recognition task, we recently 
found that ORFi is present in 7-year-old children, improves from 7 to 
11 years in parallel with memory capacity, but does not attain adult 
efficacy at that age (Liverani et al., 2017).

The neural correlates of this mechanism in children and adoles-
cents have never been investigated. While the implication of the OFC 
in ORFi has clearly been shown in adults (Treyer, Buck, & Schnider, 
2003, 2006), no such evidence exists in a younger population.

The aim of this study was to examine, with advanced func-
tional neuroimaging techniques, to which extent the ability of early 

adolescents to sense whether a memory or a thought refers to the 
present reality or not depends on the OFC, similar to what has been 
found in adults.

2  | METHODS

2.1 | Participants

Twenty-three healthy early adolescents from 10 to 13  years 
of age (10 females, mean age 12  ±  1.01  years) were recruited 
through advertisements. One participant was excluded due to 
strong signal distortions on fMRI images caused by the subject's 
dental braces. Twenty-two participants were finally included in 
the analysis.

Cognitive assessment at the time of the scan was performed 
using the French version of the Wechsler Intelligence Scale for 
Children—Fifth Edition (WISC—V, Wechsler, 2014). For one par-
ticipant, IQ score was evaluated using the Kaufman Assessment 
Battery for Children, Second Edition (KABC-II, Kaufman & Kaufman, 
2004). All participants scored within the normal range of intellectual 
functioning (mean = 117.04 ± 11–35). Parents were asked to fill a 
questionnaire assessing the presence of serious physical illness or 
neurological problems. None of the participants had major disabili-
ties, psychiatric, or neurological diseases.

The Ethics Committee of the Canton of Geneva approved the 
study, which was carried out in accordance with the Declaration 
of Helsinki. Caregivers and participants provided informed written 
consent. Participants received a gift voucher of 100 Swiss francs for 
their participation in the study.

2.2 | fMRI paradigm

Participants performed a child-adapted version of the continuous 
recognition task assessing recognition memory and orbitofron-
tal reality filtering (Figure 1; Liverani et al., 2017; Schnider, 2003, 
2013; Schnider et al., 1996), associated with an event-related fMRI 
paradigm.

The task was composed of two runs in which the same set of 
images was presented and repeated twice, with a break of around 
3 min between the two runs. In the first part, assessing recognition 
memory (item recognition, IR) participants were asked to indicate 
picture recurrence ("Have you already seen this picture in this 
task?”) by pressing the left button of an MRI-compatible mouse if 
the image was seen for the first time (distractors run 1, D1), and 
the right button if it was seen for the second time (targets run 1, 
T1). This run can be solved on the basis of familiarity alone. In the 
second run, the same set of pictures was presented in a different 
order and repeated twice. Participants were instructed to indicate 
whether each item was presented for the first or the second time 
in this ongoing run ("Is this the first or the second time that you see 
that image in this ongoing run?"), pressing the left button of the 
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mouse for images seen for the first time (distractors run 2, D2), and 
the right button for images presented for the second time (targets 
run 2, T2). In this run, all images have already been seen. Therefore, 
familiarity alone is not enough to correctly perform the task, and 
the ORFi mechanism is needed to process distractors (D2).

Pictures were a set of 30 cartoon drawings of animals and were 
presented for 5 s on the screen. In each run, 30 images were pre-
sented for the first time (distractors, D) and then repeated once 
(targets, T) after 6–9 intervening pictures, as already done in a pre-
vious study with children (Liverani et al., 2017). After each image, 
a fixation cross was presented during between 1,440 and 2,400 
milliseconds. Each run lasted approximately 7.5 min. Stimuli were 
displayed on a white screen at the head of the scanner via a 45° 
angled mirror fixed to the MRI head coil. Responses were given by 
pressing two buttons with the right index and middle finger, on an 
MRI-compatible mouse. Task programming, stimuli display, and re-
sponses logging were done using E-Prime 2 (Psychology Software 
Tools, Pittsburg, USA). All participants successfully completed a 
short training with a different set of images in the mock MRI scan-
ner before the MRI.

2.3 | Behavioral data analysis

Reaction times and accuracy were recorded for each condition (D1, 
T1, D2, T2). A 2 × 2 repeated measures analysis of variance (ANOVA) 
was performed on accuracy and reaction time with the within-sub-
ject factors run (1, 2) and stimulus (distractor D, target T).

2.4 | Image acquisition

MRI data were acquired on a Siemens 3T Magnetom Prisma scan-
ner at Campus Biotech, Geneva, Switzerland. Structural T1-
weighted MP-RAGE (magnetization-prepared rapid gradient-echo) 
sequences were acquired using the following parameters: voxel 
size = 0.9 × 0.9 × 0.9 mm; repetition time (TR) = 2,300 ms; echo time 
(TE) = 2.32 ms; inversion time (TI) = 900 ms; flip angle (FA) = 8°; and 
field of view (Fov) = 240 mm. Functional images were T2*-weighted 
with a multislice gradient-echo-planar imaging (EPI) sequence of 64 
slices; voxel  size = 2 × 2 × 2 mm; TR = 720 ms; TE = 33 ms; and 
Fov  =  208 mm. Finally, a fieldmap was acquired each time a par-
ticipant entered the scanner, with TR  =  627  ms; TE1  =  5.19  ms; 
TE2 = 7.65 ms; and FA = 60°.

2.5 | MRI data preprocessing

Our data were preprocessed using SPM12 (Wellcome Department of 
Imaging Neuroscience, UCL, UK) in Matlab R2016a (The MathWorks, 
Inc., Natick, Massachusetts, United States). One particular challenge 
in studying frontal brain areas using fMRI is the considerable vulner-
ability of these regions to signal distortions caused by field inhomo-
geneities around the air-filled sinuses (Gorno-Tempini et al., 2002). 
To correct for the resulting geometrical distortions, a field map was 
calculated from an additional stock double-echo field map sequence 
included in our MRI protocol (Hutton et al., 2002). The fMRI images 
from each participant were then spatially realigned and unwarped, 

F I G U R E  1  Task design. The task was composed of 2 runs, separated by a break of 3 min. Distractors (D1 and D2) are images presented 
for the first time within a run; targets (T1 and T2), are images repeated within the same run
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respectively, to correct for motion artifacts and potential geometric 
distortions. Thanks to the distortion correction of vulnerable brain 
regions on the single-subject level, this additional unwarping step 
not only improves the coregistration between structural and func-
tional images, but it also reduces the distortion variability across 
subjects during spatial normalization to a common space (Hutton et 
al., 2002). This solution has been successfully used in several recent 
studies in adults including task (Daw, Gershman, Seymour, Dayan, & 
Dolan, 2011) and resting-state (Togo et al., 2017) experimental para-
digms, as well as in presurgical planning (Cardoso et al., 2018) and in 
children (Wozniak et al., 2011).

In general, total head motion was very low on our participants as 
measured by framewise displacement (FD; Power et al., 2014): for the 
first fMRI run the mean FD per frame was 0.16 mm with a standard 
deviation (SD) of ±0.04 mm; for the second run the mean FD was 
0.15 mm ± 0.05 mm. Therefore, no participant was excluded due to 
high motion. Functional images were then coregistered to structural 
images in subject space and smoothed with a Gaussian filter of full 
width at half maximum (FWHM) = 6 mm. To be able to perform a group 
level comparison, data were warped into MNI (Montreal Neurologic 
Institute) space via a study-specific DARTEL (Diffeomorphic Anatomical 
Registration using Exponentiated Lie algebra) template. Normalization 
methods such as these have been demonstrated to be robust to age 
differences in participants of 7 years and above (Ashburner & Friston, 
1998; Burgund et al., 2002). Additionally, the inclusion of the DARTEL 
template as an intermediate step is among the top ranked currently 
available deformation algorithms (Klein et al., 2009).

2.6 | Region of Interest (ROI) analysis

Statistical analyses were performed using SPM12 scripts implemented 
in Matlab R2016a in a two-step process, so that both intra- and inter-
subject variances were taken into account (Friston, Frith, Frackowiak, 
& Turner, 1995). First-level (subject level) analyses were assessed on a 
voxelwise basis using a General Linear Model (GLM). Within each con-
dition, trials responded correctly and incorrectly were pooled together 
to generate the corresponding regressors. This was motivated by two 
main reasons: (a) This would ensure a similar number of trials per con-
dition, and (b) our participants had consistently high rates of correct 
responses, which characterizes a ceiling effect as discussed later. The 
condition regressors were produced by convolving SPM12's canonical 
hemodynamic response function (HRF) with the onsets of each trial in 
an event-related design and included as regressors of interest in the 
individual design matrix. To further account for potential individual 
movement effects, we included in our model covariates of no inter-
est calculated in the following fashion: First, we computed the 24-pa-
rameter Volterra expansion (VE) of the 6 motion parameters stored 
during the realignment step of the preprocessing pipeline. Secondly, 
we extracted the top 6 components (or those that explained 95% of 
the variance in the VE) via singular value decomposition (SVD). Then, 
we included these components as nuisance regressors in the subject-
level design matrix. This approach has been successfully used on our 

previous analyses of child data (see Adam-Darque et al., 2018 for an 
example). Finally, we employed the scan-nulling strategy (Lemieux, 
Salek-Haddadi, Lund, Laufs, & Carmichael, 2007) to ignore informa-
tion contained in fMRI images in which FD > 0.5 mm, by adding extra 
regressors of no interest for each of these time points.

The first-level results from all participants were then used in a sec-
ond-level (group level) analysis in a factorial design with two factors 
(run and condition) with two levels each (2 runs and 2 types of stimuli, 
namely distractor and target). This design provides the flexibility to an-
alyze main effects as well as a possible interaction effects between the 
factors. Given the a priori hypothesis of the involvement of the OFC in 
the reality filtering task based on neuropsychological data, lesion stud-
ies, and PET imaging studies (Schnider et al., 1996; Schnider & Ptak, 
1999; Treyer, Buck, & Schnider, 2003), we performed an ROI analysis 
based on this brain region. Our ROI mask was defined as follows: First, 
we downloaded a z-scored mask from NeuroSynth (Wager, 2011), 
which was calculated as a meta-analysis of 665 independent stud-
ies for the term “orbitofrontal cortex.” This initial mask (nMask) was 
thresholded at z-value > 3, which is equivalent to a p-value < .001, and 
the largest continuous cluster was maintained. The nMask covered the 
entire bilateral OFC and can be seen highlighted in yellow in Figure 2. 
Last, to ensure an equal contribution of all subjects to the analysis, we 
created a final mask (iMask) calculated as the intersection of all voxels 
within nMask that were present in the gray matter of every subject 
in our dataset. This can be seen as the blue highlight in Figure 2. The 

F I G U R E  2  The shaded areas show the Orbitofrontal Cortex 
ROI. The region highlighted in yellow indicates the initial mask 
calculated from 665 independent studies using NeuroSynth. The 
area highlighted in blue corresponds to the intersection of gray 
matter voxels available for all participants within the initial mask. 
The latter was the final ROI used for this study. Brain images follow 
the neurological convention (left side shown on the left; right side 
shown on the right)
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contrast values for voxels within the ROI iMask from each subject were 
then averaged, and the resulting value entered in a 2-way analysis of 
variance (ANOVA). This strategy has two main advantages: It increases 
the signal to noise ratio, which improves the power of detecting true 
signals, and avoids the problem of multiple testing inherent in mas-
sive univariate approaches (Benjamini & Heller, 2007; Meskaldji et al., 
2015). Although the ANOVA allows us to identify main, as well as in-
teraction effects, it does not describe the effect's direction—for exam-
ple, it may tell us that the means between conditions are different, but 
not which one is greater. Thus, we performed additional t tests within 
factors to clarify the direction of the effects found with the ANOVA 
and report the corresponding p-values, Bonferroni corrected for the 
number of effects that we find. Furthermore, in order to provide an 
estimate of each voxel's contribution to the effects detected by these 
tests, we calculated the voxelwise t-values within the ROI.

3  | RESULTS

3.1 | Behavioral results

Behavioral descriptive results on accuracy and reaction times are sum-
marized in Table 1. Overall, a ceiling effect was found for the task accu-
racy, since participants had a very high rate of correct responses. The 
2 × 2 repeated measures ANOVA on reaction times revealed a signifi-
cant main effect of the factor run (F(1,21) = 12.14, p < .005, �

2

p
 = 0.366), 

with faster responses for the first compared to the second run. No sig-
nificant difference was found between Distractors and Targets reac-
tion time (F(1,21) = 0.001, p = .977, �

2

p
 = 0.000). The interaction between 

the factor run and the factor Condition was not significant.
Accuracy analysis revealed no difference between the two 

runs (F(1,21) = 1.36, p =  .257, �
2

p
 = 0.061), as well as no difference 

between Distractors and Targets (F(1,21) = 3.14, p = .91, �
2

p
 = 0.13). 

The interaction between the factor run and the factor Condition 
was not significant. Violin plots in Figures 3 and 4 show the distri-
bution of correct responses and reaction times for each condition, 
respectively.

3.2 | ROI task-related activity

To investigate whether there were main effects of run or condition, 
or an interaction between the two in the OFC, we first ran a 2-way 
ANOVA test (see Table 2). We found a significant main effect for the ex-
perimental “run” (F(1,21) = 556.65, p = .027). Additionally, we found a sig-
nificant main effect of the factor “condition” (F(1,21) = 1,014.64, p = .02). 
The interaction effect between run and condition was nonsignificant.

We next sought to clarify the direction of the effects found from 
the ANOVA test. To this end, we first carried out a t test comparing 
run 2 and run 1 (see Table 3). As we hypothesized that the mean ac-
tivation of the OFC during run 2 would be higher than during run 1, 
we first performed a one-tailed test. Indeed, we found that the overall 
bilateral OFC activation was higher during the run 2, which specifically 
assess the reality filtering mechanism, than during run 1 (T(21) = 2.12, 
p(bonf) =  .04). Secondly, we performed a one-tailed t test to compare 
the condition levels, with the hypothesis that the OFC would present a 
higher activity while processing distractors (D) than targets (T) all run 1 
and run 2 together. This effect was also highly significant (T(21) = 3.70, 
p(bonf) = .0006). The comparison between D2 and T2 (distractors and 
targets from the second run, respectively) showed that their means 

TA B L E  1   Descriptive statistics of behavioral results on the 
Reality Filtering task

Stimulus type
Correct responses, % 
(SD)

Reaction 
times, ms (SD)

Distractor, run 1 96.06 (4.78) 1,454 (406)

Target, run 1 90.30 (16.93) 1,454 (369)

Distractor, run 2 93.63 (6.24) 1,579 (339)

Target, run 2 89.39 (13.97) 1,577 (413)

Note: Distractor, run 1 and Distractors, run 2 are images seen for the 
first time in the first and in the second run, respectively. Target, run 1 
and Target, run 2 are images seen for the second time in the first and in 
the second run, respectively.

F I G U R E  3  Violin plot showing accuracy distribution per 
stimulus in the population

F I G U R E  4  Violin plot showing reaction time distribution per 
stimulus in the population
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were also significantly different in the same direction (T(21)  =  2.41, 
p = .01). Figure 5 shows the voxelwise contribution to these results.

4  | DISCUSSION

With this study, we assessed for the first time in a young population 
and using fMRI, the neural correlates of ORFi, a memory control mech-
anism crucial to maintain thoughts and behavior in phase with reality.

Behaviorally, participants performed the test without difficulties 
and no differences in the accuracy were found, neither between the 
two types of stimuli (Distractors and Targets) nor between the two 
runs (1, 2). Moreover, the majority of participants performed well, 
making very few errors. This is similar to healthy adults, who had 
no difficulties to correctly perform the task even when runs were 
separated by only 1 min (Schnider & Ptak, 1999; Wahlen, Nahum, 
Gabriel, & Schnider, 2011). Our results corroborate the idea that at 
this age ORFi is already an intuitive and efficacious cognitive pro-
cess, corresponding to the storage capacity at that age (Liverani et 
al., 2017). Regarding reaction times, responses were slower in the 
second run of the task compared to the first run, reflecting the main 
challenge of the task, which is consistent with previous studies 
(Bouzerda-Wahlen, Nahum, Liverani, Guggisberg, & Schnider, 2015; 
Liverani, Manuel, Guggisberg, Nahum, & Schnider, 2016; Liverani et 
al., 2017). It appears that distinguishing between memories that are 
pertinent with the ongoing reality or not is more time consuming and 
takes more cognitive effort than simply recognizing previously seen 
images. Our previous study assessing orbitofrontal reality filtering in 
children highlighted a significant difference between distracters and 
targets both for accuracy and reaction times (Liverani et al., 2017). In 
the current, study participants were older, and they managed to dis-
tinguish almost perfectly between images seen in the current or in 
the previous run, performing at ceiling effect. Therefore, this could 
explain why no differences in accuracy and reaction time have been 
found between the two conditions.

Orbitofrontal cortex activation was significantly stronger during the 
second run, which tests ORFi. Thus, our neuroimaging data in early ad-
olescents were in line with lesion and imaging studies in adults, indicat-
ing that in this younger population, like in adults, the ORFi mechanism 
is needed to accomplish the second run of the task, and it is associated 
with specific OFC activation. Moreover, compared to Targets, OFC ac-
tivation significantly increases in response to Distractors, stimuli that 
specifically require ORFi. Thus, using fMRI to explore ORFi for the first 
time, we confirmed previous findings showing that the ability to select 
information pertaining to the ongoing reality and to suppress irrelevant 
memory traces is associated with the activation of the OFC.

Another added value of our study is that it extends these find-
ings to a younger population: early adolescents aged between 10 
and 13. Adolescence is a critical period in the development of the 
prefrontal cortex. There is a general consensus that the OFC—
and the whole PFC—reaches complete maturity only at 20 years 
of age or more (Diamond, 2002; Galvan et al., 2006; Gogtay et 
al., 2004). Gray matter volume in the prefrontal cortex attains 
its maximal volume between 11 and 12 years old and then starts 
to decrease (Giedd et al., 1999), with a parallel improvement in 
cognitive functions such as source memory (Sowell, Delis, Stiles, 
& Jernigan, 2001). Given the late development of these pre-
frontal regions, one might speculate that the neural substrates 
of certain cognitive functions differ from early adolescence to 
adulthood. Nevertheless, our findings showing OFC activation 

TA B L E  2  2-way ANOVA with factors "run" and "condition" for 
brain activations in the OFC

Factors Mean squared F p-value

run 1.3219 556.65 .027

condition 2.4095 1,014.64 .02

run * condition 0.0024 0 .9455

Note: run = run 1 and run 2; condition = Distractors and Targets.

TA B L E  3   Post hoc t tests on activation in the OFC

Comparison t-value p-value

run 2 > run 1 2.1172 .04

D > T 3.7002 .0006

D2 > T2 2.41 .01

Note: D = Distractors, T = Targets, D2 = Distractors of run 2, 
T2 = Targets of run 2.

F I G U R E  5  Contribution of OFC voxels to each effect. Brighter 
colors indicate a stronger contribution
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while performing the reality filtering task in early adolescents 
of 10–13 years old indicate that this brain structure has matured 
enough to assume this function.

The filtering of current irrelevant memories—that is, ORFi—bears 
conceptual resemblance with inhibitory control, defined as the ability 
to deliberately inhibit dominant, automatic, or prepotent responses 
that are currently irrelevant (Harnishfeger, 1995; St Clair-Thompson 
& Gathercole, 2006). According to Schnider (2018), ORFi does not 
effectively “inhibit” memories that are not pertinent with the ongo-
ing reality, but it adapts their format, labelling, and differentiating 
them as “fantasy” or “reality.” This process allows healthy individuals 
to then act differently and adequately according to fantasies or day-
dreams (Nahum, Ptak, Leemann, & Schnider, 2009; Schnider, 2018). 
Behavioral and neuroimaging data support this dissociation between 
ORFi and inhibitory control. Firstly, the ability to reject memories 
that are irrelevant to the present moment is already effective at the 
age of 7 (Liverani et al., 2017) and does not correlate with behavioral 
inhibition measures, which is one of the last high-order functions 
to develop, continuing to consistently improve during adolescence 
(Luna, Padmanabhan, & O'Hearn, 2010). Secondly, the present study 
confirms that the neural basis of ORFi resides in the OFC already in 
10 years old early adolescents. This finding corroborates the ana-
tomical dissociation between the two mechanisms, since inhibition 
of unwanted memories has been associated with the activation of 
other prefrontal regions, such as dorsolateral prefrontal cortex, infe-
rior frontal gyrus, and medio-temporal lobe (Anderson et al., 2004; 
Luna et al., 2010).

In addition to being separate from inhibition processes, ORFi 
also needs to be differentiated from another memory-monitoring 
ability, called source monitoring. Source monitoring is defined as 
the ability to accurately verify under which circumstances a mem-
ory has been acquired, and if it was self-generated or not (Mitchell 
& Johnson, 2009). Previous studies demonstrated a behavioral and 
electrophysiological dissociation between the two mechanisms 
(Bouzerda-Wahlen et al., 2015). Behaviorally, the retrieval of the 
source of a memory is a more demanding process compared to 
ORFi, as indicated by slower reaction times and higher error rates. 
Electrophysiologically, ORFi is characterized by a frontal positivity at 
200–300 ms, while source monitoring is associated with a prolonged 
positivity from 400 ms on (Bouzerda-Wahlen et al., 2015). Unlike 
ORFi, the developmental trajectory of source monitoring is unclear: 
Young children may be more prone than adult to confuse memories 
from different sources (Lindsay, Johnson, & Kwon, 1991), but the 
debate is still open. Anatomically, different brain areas participate 
in source monitoring, including the precuneus (Lundstrom, Ingvar, & 
Petersson, 2005), the medial temporal lobe (Ross & Slotnick, 2008), 
and the prefrontal cortex (Mitchell & Johnson, 2009; Mitchell, 
Johnson, Raye, & Greene, 2004) but not the OFC, specifically. Even 
if more whole-brain exploratory analyses would be needed, our re-
sults indicate a distinct activation pattern between ORFi and source 
monitoring. This corroborates the idea of the existence of two sep-
arate memory-monitoring mechanisms that dissociate at the behav-
ioral, anatomical, and electrophysiological level.

Given the crucial importance of ORFi for the correct adaptation 
of behavioral demands in everyday life, it is of major interest to better 
investigate what is the impact of a deficit in this mechanism in other 
clinical populations characterized by lesions or atypical development 
in the OFC region. One promising field of research concerns schizo-
phrenia, a psychiatric condition associated with loss of gray matter 
in this region. Indeed, recent studies showed that an abnormal ORFi 
can be an early biomarker of schizophrenia spectrum disorder (Theze 
et al., 2019). Another population characterized by specific alteration 
in the OFC region is premature children (Gimenez et al., 2006). Up to 
now, no studies assessing the function of the OFC in the context of 
preterm birth have been done. Future research should address this 
point, using the paradigm assessing ORFi as a reliable task to explore 
OFC functions in premature children and adolescents.

5  | CONCLUSION

This research investigated for the first time using fMRI technique 
the neural correlates of orbitofrontal reality filtering in early adoles-
cents. Results showed that, as in adults, the orbitofrontal cortex is 
the region responsible to filter memories and thoughts according to 
their relevance to the now in this young population.
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