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Abstract: Different extracts of Angelica dahuricae were available for whitening or treating vitiligo
clinically. They showed inhibitory or activating effects on tyrosinase, a rate-limiting enzyme of
melanogenesis. This study aimed to identify active compounds on tyrosinase in water extract
of Angelica dahurica Radix. We applied spectrum-effect relationship and component knock-out
methods to make it clear. HPLC was used to obtain the specific chromatograms. The effects on
tyrosinase activity were examined by measuring the oxidation rate of levodopa in vitro. Partial least
squares method was used to examine the spectrum-effect relationships. The knocked-out samples
were prepared by HPLC method, and the identification of knocked-out compounds was conducted
by the high performance liquid chromatography-four stage rod-electrostatic field orbit trap high
resolution mass spectrometry. Results showed that S6, S14, S18, S21, S35, S36, S37, S40, and S41 were
positively correlated to inhibitory activity of Angelica dahuricae on tyrosinase whereas S9, S11, S8,
S12, S22, and S30 were negatively correlated. When the concentration of each sample was 1 g·mL−1,
equal to the amount of raw medicinal herbs, oxypeucedanin hydrate, imperatorin, cnidilin, and
isoimperatorin had inhibitory effects on tyrosinase activity whereas byakangelicin and bergapten
had activating effects.

Keywords: Angelica dahuricae; tyrosinase; spectrum-effect relationship; component knock-out

1. Introduction

As a common ingredient in the Asia traditional medicine, Angelica dahurica Radix (AD) is the dried
root of Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. or A. dahurica (Fisch. ex Hoffm.) Benth. et
Hook. f. var. Formvsana (Boiss) Shan et Yuan. Especially in China, AD is one of the common traditional
Chinese medicines (TCM), which has been used for the treatment of wind-cold type of common cold,
headache, rhinitis, and toothache and has been officially listed in the Chinese Pharmacopoeia [1].

Coumarin is the main chemical components in AD [2–4]. The reported studies have shown
that a majority of coumarins in AD are photosensitive and can be used for the treatment of
hypopigmentation disease because of their photosensitization [5,6]. For instance, the compound
Angelica Tincture, which is widely used in the treatment of vitiligo clinically, is prepared by taking AD
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and Psoraleae Fructus as the principal ingredients and then dipping them in 70% ethanol after being
powdered [7].

Tyrosinase is the key rate-limiting enzyme in melanin biosynthesis pathway [8,9]. Interestingly,
photosensitive furocoumarin extracted from AD can enhance tyrosinase activity, thus increasing
the synthesis of melanin and achieving the treatment of vitiligo [7]. However, clinical practice and
research have shown that AD also has whitening effect. According to the traditional Chinese medical
science theory, the whitening TCMs can be used to treat skin disease caused by hyperpigmentation.
AD is one of the whitening TCMs and is selected to make up the famous classical prescription for
whitening named “Seven-White Ointment”, which was historically recorded as “Tai Ping Sheng Hui
Fang” in Song Dynasty, “Yu Yao Yuan Fang” in Yuan Dynasty, and medicine “Pu Ji Fang” in Ming
Dynasty). All of the water extracts of the TCMs in this prescription (except the egg white) had
the inhibitory effect on tyrosinase activity [10].

The bidirectional regulation of AD on melanogenesis is closely related to the extract fractions
and concentration [11–15]. There may be the components in AD with inhibitory and activating
effects on tyrosinase activity, respectively. In order to prepare the components with different
influences on tyrosinase activity in AD clear, the method of spectrum-effect relationship which
is considered to be a systematic approach to TCM research was adopted firstly [16]. We conducted
study on the spectrum-effect relationship of TCMs by establishing mathematical model to connect
the characteristic peaks with the pharmacodynamic value, and to explore the correlation between
them, so as to provide a reliable method for elucidating the material basis of TCMs. In this study,
we prepared the sample by water decoction method, which is commonly used for TCM clinically,
and then established the chromatographic fingerprint of AD and the evaluation model of effect
on tyrosinase activity in vitro, analyzed the relationship between the characteristic peaks with
the pharmacodynamic value with the established mathematical model, fitted the active components
related to inhibition on tyrosinase, so as to provide reference for the pharmacodynamic material basis
of AD. Secondly, we applied component knock-out method to find out active components of AD on
tyrosinase activity for a more comprehensive research. Pharmacodynamic material basis identification
model of TCM based on component knock-out suggest that the target component will be knocked out
from the complete sample and the changes in the efficacy of the samples before and after the target
component is knocked-out can reflect the contribution of the target component to the efficacy of
the TCM. By this way, the interactions between the target component and other components can
also be investigated. The continued study was guided by the result of spectrum effect relationship
research. High performance liquid chromatography (HPLC) method was used to “knock out” and
obtain the target components and negative samples. The effects of target components, negative
samples and water extracts of AD on tyrosinase activity were obtained by the evaluation model of
effect on tyrosinase in vitro and compared in parallel, so as to identify the components in AD related
to the activity and their interactive effects on tyrosinase activity.

Recent studies showed that a significant portion of small-molecule drugs act on enzymes. Because
enzymes are such important drug targets, it is not a surprise that constantly updated technologies and
ideas have been performed with enzymes. High throughput screening is one of the most frequently
used methods of enzyme analysis that can be defined as the implementation of assays in the wells
of microplates in combination with liquid handling robotics [17]. Our study drew on the idea of
high throughput screening but made with adjustments. It was performed with the spectrum effect
relationship research reoriented and the component knock-out method for verification, to achieve
the high-throughput enzyme analysis of different compounds in AD with more purposiveness.
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2. Results and Discussion

2.1. Spectrum-Effect Relationships

2.1.1. Determination of Quantitative Chromatographic Peaks

The previous “spectrum-effect relationship” researches were based on different fields, origins,
harvest time, processing method and batches of TCM etc. [18–23]. However, there have been great
changes that have taken place after a long-term regional difference on TCM. Then the types and
contents of trace elements and chemical components have also been changed. These changes may
lead to subtle changes in some pieces of information but may play a decisive role miss after common
peaks matched from HPLC specific chromatograms [24]. Our previous studies showed that the active
components were changed in the TCMs processed through the classical constant temperature method.
Therefore, this study used the classical constant temperature method to carry on the processing with
different methods to the same batch of AD, to eliminate the disturbance from the origin, the batch and
other factors, and to screen out more accurately the material basis of AD on tyrosinase activity.

The quantitative chromatographic peaks were determined by the software < Chinese traditional
medicine chromatographic fingerprint similarity evaluation system 2004, 1.0 A Edition > Multi-point
correction of chromatographic peak position was performed based on chromatographic peaks, which
were found in each sample with good separation by reference to the chromatogram of crude AD water
extract. A contrast chromatogram was generated by average method. The matching chromatograms
and peak areas were shown in Figure 1 and Tables 1–4.
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Figure 1. The matching HPLC characteristic chromatograms of different treatments of AD.Figure 1. The matching HPLC characteristic chromatograms of different treatments of AD.
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Table 1. The relative retention times and characteristic peak areas of each AD sample measured by HPLC (1).

No. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Retention Time (min) 3.874 4.519 5.909 6.845 7.675 9.514 10.339 10.985 12.728 15.923 17.119
Crude AD 201,878.5 49,559.7 75,566.7 1,014,104.0 40,144.2 72,540.4 167,879.1 20,747.8 51,836.1 23,787.2 14,466.6
50 ◦C-54 h 274,089.3 56,977.1 64,845.9 957,502.3 58,791.6 90,087.7 215,341.9 45,344.2 36,395.6 18,453.7 9901.8

50 ◦C-108 h 275,990.4 58,567.0 90,904.9 808,495.5 63,025.6 83,106.0 157,906.0 30,656.5 46,009.1 28,631.2 17,705.7
50 ◦C-162 h 315,305.3 78,057.7 82,778.1 1,114,690.0 80,869.4 105,522.1 215,100.8 41,739.9 51,701.6 31,061.0 26,491.5
50 ◦C-216 h 569,766.3 99,325.5 86,362.1 845,400.6 76,197.3 88,951.8 207,954.8 39,857.7 46,537.6 33,452.0 39,865.6
60 ◦C-18 h 279,296.5 46,939.6 49,067.1 903,763.3 41,834.4 41,336.5 141,072.6 22,864.6 49,040.2 16,533.9 13,715.0
60 ◦C-36 h 723,661.0 137,559.2 102,940.2 872,277.4 107,887.7 79,926.5 168,150.4 60,781.2 53,707.9 53,804.3 97,659.1
60 ◦C-54 h 345,492.1 79,299.1 39,820.8 909,679.3 72,393.7 21,835.1 167,554.0 65,991.4 57,238.7 54,571.2 35,946.3
60 ◦C-72 h 396,511.4 142,827.3 99,984.9 1171,416.0 100,843.1 83,110.8 311,748.7 63,046.6 76,277.5 54,851.7 108,015.9
70 ◦C-6 h 392,682.2 102,503.9 94,050.1 2021,756.0 83,523.6 82,903.6 276,489.5 46,788.4 48,141.3 71,767.5 30,586.5

70 ◦C-12 h 494,000.1 127,125.0 101,291.9 2029,405.0 127,627.5 118,232.6 304,100.3 75,638.7 136,086.9 47,603.2 75,526.9
70 ◦C-18 h 363,133.8 73,847.2 61,975.7 1106,638.0 30,377.1 42,254.1 211,790.0 47,271.6 46,679.7 33,697.5 35,465.3
70 ◦C-24 h 564,168.3 165,168.1 91,993.4 986,123.8 98,968.4 71,584.8 178,889.0 39,096.1 58,733.2 33,077.2 152,302.8
80 ◦C-2 h 299,940.1 66,582.1 95,923.0 1429,665.0 82,019.9 77,984.3 215,108.4 51,005.9 47,656.2 19,141.8 17,243.9
80 ◦C-4 h 385,776.7 64,901.7 48,255.2 1081,342.0 33,958.3 44,403.4 206,816.9 27,049.2 54,018.4 19,506.1 30,079.6
80 ◦C-6 h 454,612.6 105,026.1 53,240.2 962,914.4 32,132.5 37,786.3 170,128.9 27,904.2 49,049.1 35,179.2 81,775.9
80 ◦C-8 h 604,272.4 148,565.6 95,748.7 1205,098.0 94,460.4 68,905.1 180,280.8 41,765.0 42,885.2 30,561.8 99,850.3
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Table 2. The relative retention times and characteristic peak areas of each AD sample measured by HPLC (2).

No. S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

Retention Time (min) 18.197 18.641 19.735 20.928 22.336 22.782 24.863 26.320 27.796 29.026 29.570
Crude AD 84,836.8 14,171.4 37,971.0 407,385.4 33,890.2 150,108.6 103,350.4 1,429,522.0 20,957.4 77,836.5 10,647.0
50 ◦C-54 h 44,530.6 16,748.4 52,476.8 241,101.3 27,439.4 26,477.9 50,068.4 1,097,831.0 8068.8 48,917.6 8829.5

50 ◦C-108 h 55,860.6 19,398.1 15,753.1 122,532.9 16,906.7 34,073.7 12,089.2 1,174,544.0 2854.0 72,153.2 10,267.8
50 ◦C-162 h 69,561.6 14,348.0 45,258.2 197,855.1 29,180.7 32,922.1 66,647.6 951,701.6 3915.4 59,577.7 12,331.5
50 ◦C-216 h 43,309.0 13,456.2 32,938.5 160,425.6 31,763.4 19,361.4 286697 1,674,816.0 5508.3 52,839.8 12,526.4
60 ◦C-18 h 41,529.1 16,835.2 27,048.8 161,306.3 31,481.4 17,533.0 18,218.8 1,436,913.0 3830. 6 57,297.2 12,285.0
60 ◦C-36 h 73,923.6 23,251.7 25,035.6 125,539.7 31,413.2 24,008.3 22,679.9 1,338,823.0 5622.1 84,396.5 11,089.1
60 ◦C-54 h 62,818.0 23,929.9 35,879.0 175,633.9 28,180.5 17,745.6 19,747.9 1,016,496.0 4065.7 29,684.9 5563.8
60 ◦C-72 h 60,445.5 23,235.9 51,672.0 223,536 40,161.5 33,963.0 71,677.2 1,618,591.0 6809.8 61,019.8 13,842.3
70 ◦C-6 h 135,239.5 28,898.6 25,611.1 306,813.5 58,857.5 52,820.4 55,165.4 1,228,933.0 9936.0 67,869.8 15,144.1

70 ◦C-12 h 75,048.3 27,507.4 44,123.1 221,788.8 33,937.4 50,262.3 71,447.7 1,057,936.0 8441.7 55,721.9 5693.6
70 ◦C-18 h 66,896.9 29,243.2 38,535.4 204,178.3 33,451.5 21,284.0 22,426.9 1,324,433.0 4951.6 32,892.6 15,636.2
70 ◦C-24 h 50,777.0 18,936.5 22,319.5 146,009.3 28,044.3 18,706.5 24,005.6 1,092,613.0 4536.4 55,650.2 15,300.7
80 ◦C-2 h 82,418.9 21,879.2 42,242.3 273,006.3 25,581.8 72,237.3 55,817.4 942,006.6 8847.9 59,259.5 13,583.2
80 ◦C-4 h 56,773.6 24,274.1 36,762.0 284,134.4 28,171.6 31,174.8 19,970.9 939,136.9 9285.0 54,445.8 11,868.9
80 ◦C-6 h 47,258.2 22,064.1 36,628.4 134,380.3 31,220.1 17,921.7 20,012.3 1,131,498.0 3128.4 51,519.4 6042.0
80 ◦C-8 h 58,657.9 30,184.4 30,647.1 176,191.1 32,031.2 27,191.7 26,631.3 1,259,809.0 4381.8 45,670.7 14,184.0
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Table 3. The relative retention times and characteristic peak areas of each AD sample measured by HPLC (3).

No. S23 S24 S25 S26 S27 S28 S29 S30 S31 S32

Retention Time (min) 31.563 32.423 34.010 34.539 38.207 40.534 44.779 46.637 48.727 49.215
Crude AD 560,224.6 972,543.3 324,065.4 12,375.4 15,736.7 79,450.6 38,132.1 221,740.0 74,890.7 53,851.1
50 ◦C-54 h 592,867.9 952,622.1 359,651.1 9959.8 12,801.1 50,618.0 15,379.2 194,528.8 76,754.9 55,754.0

50 ◦C-108 h 523,442.3 671,940.9 206,552.5 6730.8 12,304.7 32,556.7 7312.1 125,685.2 38,401.4 35,661.4
50 ◦C-162 h 547,212.2 798,756.6 297,107.3 12,310.5 10,733.5 50,606.9 7524.8 147,790.4 61,352.6 49,594.6
50 ◦C-216 h 698,967.6 791,620.5 237,683.6 6392.9 15,180.0 41,922.0 4493.3 138,720.0 53,250.9 36,872.8
60 ◦C-18 h 598,011.3 817,165.9 226,284.2 4002.6 16,522.4 43,831.0 5371.3 146,085.0 53,376.8 35,968.6
60 ◦C-36 h 671,001.0 1,559,512.0 517,576.6 7811.5 15,443.2 49,068.4 14,457.4 252,143.1 154,725.1 76,879.2
60 ◦C-54 h 550,049.8 696,035.7 191,708.6 8854.8 9577.9 59,635.0 4772.7 117,058.2 49,246.5 30,484.4
60 ◦C-72 h 684,153.5 1,022,686.0 319,185.7 8,420.6 16,577.5 96,335.4 8999.1 185,007.3 87,662.8 51,117.9
70 ◦C-6 h 888,239.6 1,149,116.0 356,770.1 45,253.0 14,881.3 59,347.8 20,490.8 254,956.0 103,836.8 53,336.2

70 ◦C-12 h 515,345.2 1,038,435.0 324,011.2 3870.5 12,361.4 70,781.8 7478.0 143,041.9 76,715.8 45,315.0
70 ◦C-18 h 515,812.7 855,437.6 226,695.7 12,388.8 13,938.8 63,813.1 7266.0 142,116.2 55,039.4 33,938.2
70 ◦C-24 h 528,147.1 717,764.8 242,327.2 7423.3 10,147.6 52,933.8 7588.3 129,583.3 50,142.5 38,381.5
80 ◦C-2 h 529,400.1 1,081,962.0 331,856.6 16,461.1 16,206.7 79,560.9 8972.2 235,615.9 81,353.9 45,462.3
80 ◦C-4 h 481,003.8 715,983.4 211,356.3 4006.6 10,224.1 70,918.2 8020.7 118,561.2 37,647.7 31,555.4
80 ◦C-6 h 493,469.0 959,465.1 289,452.9 7777.3 10,934.7 55,410.2 9575.2 134,500.4 68,113.8 45,316.9
80 ◦C-8 h 514,575.9 714,618.2 174,512.4 8516.8 12,392.8 57,624.0 6510.2 109,653.8 54,442.2 28,237.6
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Table 4. The relative retention times and characteristic peak areas of each AD sample measured by HPLC (4).

No. S33 S34 S35 S36 S37 S38 S39 S40 S41 S42

Retention Time (min) 52.975 57.024 57.712 59.902 61.564 63.915 69.301 73.914 80.610 86.761
Crude AD 50,927.6 104,182.2 98,552.5 15,237.1 223,590.3 129,231.9 39,349.3 233,160.5 163,906.4 80,309.9
50 ◦C-54 h 61,884.9 121,212.5 77,736.0 15,603.0 173,632.8 108,427.6 28,718.7 169,335.6 171,291.8 68,429.0

50 ◦C-108 h 50,695.9 77,357.7 81,845.5 6325.0 196,267.5 95,585.5 29,278.7 150,975.6 107,235.6 39,845.1
50 ◦C-162 h 57,769.9 99,849.1 69,414.0 11,536.5 163,271.2 95,884.5 26,292.0 125,074.5 127,355.6 45,658.7
50 ◦C-216 h 52,017.2 86,033.1 81,737.7 6161.6 196,815.6 79,059.4 23,188.8 102,873.3 79,174.49 23,643.8
60 ◦C-18 h 55,377.1 76,850.4 106,775.5 13,403.5 249,757.4 120,852.6 35,528.9 147,422.0 113,002.2 32,847.6
60 ◦C-36 h 46,064.2 168,804.0 66,507.5 20,226.8 158,937.3 110,019.5 31,767.1 126,495.3 103,918.3 66,471.0
60 ◦C-54 h 66,850.1 66,097.1 96,060.6 8898.1 210,225.6 104,151.9 29,404.0 137,078.3 142,889.0 38,094.2
60 ◦C-72 h 64,494.1 116,323.1 104,203.6 5167.0 237,645.0 103,592.8 29,812.4 167,396.3 128,140.2 45,190.8
70 ◦C-6 h 94,353.5 126,491.1 76,047.4 20,075.6 157,759.3 99,033.5 25,914.1 158,990.7 212,661.6 68,108.6

70 ◦C-12 h 54,847.3 97,420.0 71,124.9 9211.7 149,427.0 104,972.3 28,759.3 127,258.2 121,153.1 60,246.6
70 ◦C-18 h 69,949.1 80,301.0 122,020.0 8565.0 265,616.2 126,703.1 37,832.2 217,166.1 166,001.8 52,442.1
70 ◦C-24 h 46,707.2 81,846.3 65,079.2 8844.5 152,320.3 82,649.1 22,604.9 99,800.0 82,473.0 36,173.8
80 ◦C-2 h 60,933.6 100,513.7 74,468.1 21,270.0 155,195.0 111,084.7 30,547.7 142,233.2 142,818.2 52,632.0
80 ◦C-4 h 60,916.4 67,297.8 84,519.6 10,242.4 172,952.2 97,036.15 26,573.2 145,393.5 139,343.8 41,105.5
80 ◦C-6 h 56,125.2 94,188.2 90,992.7 9866.5 205,797.5 125,516.2 36,502.4 160,414.3 127,849.3 51,528.5
80 ◦C-8 h 58,813.7 72,510.2 108,250.4 17,090.3 241,306.9 99,497.3 30,808.6 178,600.2 138,638.6 41,439.8
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2.1.2. Determination of Inhibitory Effects of AD Water Extract on Tyrosinase in Vitro

Effect of each sample on tyrosinase activity is shown in Table 5. When the sample concentration
was 1 g·mL−1, equal to the amount of raw medicinal herbs, each sample showed inhibitory effect on
tyrosinase activity, and inhibitory effect on the tyrosinase activity of the samples prepared from
heated AD were significantly lower than that of the crude AD (p ≤ 0.001). With the decrease
in sample concentration, samples of crude AD, 50 ◦C-54 h, 50 ◦C-162 h, 60 ◦C-18 h, and 60 ◦C-54 h
showed inhibitory effects, which was decreased at first and then increased. Samples of 50 ◦C-216 h,
60 ◦C-72 h, 70 ◦C-6 h, 70 ◦C-24 h, 80 ◦C-4 h, and 80 ◦C-6 h exhibited inhibitory effects at the highest
concentration, but showed activation in the intermediate concentration, and showed inhibitory effect
at low concentration. Samples of 60 ◦C-36 h, 70 ◦C-12 h, 70 ◦C-18 h and 80 ◦C-2 h showed inhibition
in the high concentration, but became activation when the concentration was decreased. It can be
inferred according to this result that different heating conditions had different effects on components
in AD, which had either inhibition or activation effect on tyrosinase activity, and thus led the different
samples to show different effects on tyrosinase activity. Moreover, the effect of compounds in AD
on tyrosinase activity displayed various dose-response relationship, when the sample concentration
was changed, part of sample showed bidirectional regulation on tyrosinase activity.

Table 5. Effect of different temperatures and heat treatment times on AD on tyrosinase activity.

Sample
Concentration of Water Extract (Equal to the Amount of Raw Medicinal Herbs)

1 g·mL−1 0.5 g·mL−1 0.25 g·mL−1 0.125 g·mL−1 0.0625 g·mL−1

Crude AD 27.07 ± 0.47 13.42 ± 0.98 9.14 ± 0.83 12.31 ± 1.16 17.29 ± 1.47
50 ◦C-54 h 20.84 ± 0.65 *** 12.60 ± 0.83 11.85 ± 0.41 13.53 ± 0.90 15.83 ± 0.55

50 ◦C-108 h 18.43 ± 0.26 *** 11.86 ± 0.68 14.94 ± 1.23 16.00 ± 0.48 4.82 ± 0.40
50 ◦C-162 h 15.49 ± 0.38 *** 10.09 ± 0.86 14.73 ± 0.66 15.25 ± 0.17 16.80 ± 1.52
50 ◦C-216 h 14.48 ± 0.46 *** 0.86 ± 0.04 −6.16 ± 0.33 4.91 ± 0.24 10.05 ± 0.22
60 ◦C-18 h 13.49 ± 0.46 *** 7.97 ± 0.51 4.67 ± 0.18 7.35 ± 0.53 12.44 ± 0.11
60 ◦C-36 h 9.43 ± 0.42 *** −3.72 ± 0.27 −8.36 ± 0.28 −8.33 ± 0.36 −5.17 ± 0.51
60 ◦C-54 h 11.50 ± 0.44 *** 5.29 ± 0.48 7.03 ± 0.68 10.88 ± 0.37 15.16 ± 0.42
60 ◦C-72 h 7.40 ± 0.44 *** −6.21 ± 0.16 −7.38 ± 0.17 −7.32 ± 0.33 7.50 ± 0.43
70 ◦C-6 h 7.12 ± 0.44 *** −2.82 ± 0.14 −4.33 ± 0.42 −0.28 ± 0.01 4.56 ± 0.32
70 ◦C-12 h 4.90 ± 0.45 *** −5.34 ± 0.30 −7.46 ± 0.28 −3.86 ± 0.29 −8.56 ± 0.32
70 ◦C-18 h 0.60 ± 0.06 *** −5.48 ± 0.53 −3.53 ± 0.32 −3.24 ± 0.21 −0.12 ± 0.01
70 ◦C-24 h 0.55 ± 0.05 *** −5.30 ± 0.28 3.82 ± 0.14 7.53 ± 0.60 5.70 ± 0.30
80 ◦C-2 h 6.73 ± 0.43 *** −3.26 ± 0.30 −7.23 ± 0.43 −9.05 ± 0.32 −3.10 ± 0.03
80 ◦C-4 h 8.88 ± 0.50 *** −4.78 ± 0.18 −1.12 ± 0.06 −0.68 ± 0.03 4.47 ± 0.28
80 ◦C-6 h 11.38 ± 0.44 *** −4.96 ± 0.23 0.74 ± 0.04 1.39 ± 0.10 12.11 ± 0.43
80 ◦C-8 h 15.43 ± 0.47 *** 5.47 ± 0.18 4.38 ± 0.32 10.81 ± 0.76 2.67 ± 0.08

Note: compare with crude AD, * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

2.1.3. The Regression Equation of Partial Least Squares Analysis

Partial least squares regression analysis is a multivariate regression model co-inhering of
multivariate data fusion and principal component analysis. This kind of analysis method has
advantages, such as low computational complexity and high prediction accuracy, without excluding
samples, easy to qualitatively explain. Furthermore, it also can maximize the use of limited data
with high predictability [25]. In our study, the quantitative chromatographic peaks area was set as
the independent variable (X), inhibition rate of tyrosinase activity (at the concentration of 1 g·mL−1) as
the dependent variable (Y). The regression equation was expressed as follows:

Y = 0.009474 X1 − 0.039034 X2 + 0.045899 X3 − 0.062253 X4 + 0.070846 X5 + 0.144735 X6 -
0.038385 X7 − 0.186504 X8 − 0.216749 X9 + 0.009362 X10 − 0.133367 X11 − 0.109319 X12 -
0.007779 X13 + 0.142509 X14 + 0.051088 X15 + 0.019396 X16 + 0.053583 X17 + 0.101717 X18 +
0.046538 X19 − 0.003983 X20 + 0.335489 X21 − 0.358561 X22 + 0.060104 X23 − 0.077885 X24 −
0.080212 X25 − 0.084729 X26 − 0.031941 X27 − 0.022003 X28 + 0.066404 X29 − 0.124915 X30 +
0.011693 X31 + 0.016945 X32 + 0.003708 X33 + 0.032733 X34 + 0.107463 X35 + 0.249803 X36 +
0.139539 X37 − 0.088576 X38 + 0.004961 X39 + 0.120817 X40 + 0.120802 X41 − 0.036626 X42

(1)
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The regression coefficients of partial least squares regression equation were shown in Figure 2.
Chromatographic peaks S6, S14, S18, S21, S35, S36, S37, S40, and S41 were positively correlated
to inhibitory effects on tyrosinase activity and the correlation coefficient is higher, meaning that
when the contents of compounds are increased, the areas of these representative peaks are increased,
the inhibitory effects of samples on tyrosinase ability will become stronger. Chromatographic peaks
S8, S9, S11, S12, S22, and S30 were negatively correlated to inhibitory effects on tyrosinase activity,
and the absolute value of correlation coefficient were higher. Meanwhile, when the content of these
compounds were increased, the areas of representative peaks were increased, inhibition capability of
the samples on tyrosinase activity would be weaker.

Dear Editor: 

Thank you for your efficient work that our manuscript can be published. But the PDF 

file published online has errors in Fig. 2 and 16. The ordinates of Figure 2 and Figure 

16 were in wrong format for the letters’ faulty orientation. Please replace with the 

following figures. 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Chromatographic Peak

 

Figure 2. Standardization regression coefficient of PLSR equations of AD. 

Figure 2. Standardization regression coefficient of PLSR equations of AD.

2.2. Component Knock-Out Methods

2.2.1. HPLC Chromatogram of Knock-Out Components and Negative Samples

The chromatogram knock-out method is commonly used for its simple operation [26], rapid
preparation and high precision. It is very suitable for polar and weak polar and non-polar compounds
based on liquid-liquid partition chromatography. However, its separation effect is limited because of
its dependence on device. In order to obtain more precise separation, the analytical HPLC was chosen.
We obtained a small amount of target component and negative sample last, owing to the limited
quantity of the injected sample.

HPLC chromatogram of the water extract of crude AD, knock-out components and negative
samples was shown in Figure 3. The purity of these target knocked-out components was high and
they could not be found in the negative samples on the whole.
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S25 was Byakangelicin. 
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peak knocked-out component (Sx+) and negative sample (Sx−).

2.2.2. Component Identification

The high performance liquid chromatography four stage rod-electrostatic field orbit trap high
resolution mass spectrometry analysis results of S24 knocked-out component were shown in Figure 4.
The retention time was 5.23 min with m/z 304 and formula C16H16O6. MS/MS spectrum showed that
there were ion fragments 304/201. According to the fragmentation pathway (Figure 5), the knocked-out
component of S24 was Oxypeucedanin hydrate, presumably.
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Figure 4. The high resolution mass spectra of Peak 24 knocked-out component.

The high resolution mass spectrum analysis results of S25 knocked-out component were shown
in Figure 6 with m/z 304 and formula C17H18O7. MS/MS spectrum showed that there were ion fragments
with large abundance 231. According to the fragmentation pathway (Figure 7), the knocked-out
component of S25 was Byakangelicin.
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Figure 7. The proposed fragmentation pathway of Byakangelicin.

The high resolution mass spectrum analysis results of S30 knocked-out component were shown
in Figure 8 with m/z 216 and formula C12H8O4. MS/MS spectrum showed that there were ion
fragments 216/201. According to the fragmentation pathway (Figure 9), the knocked-out component
of S25 was Bergapten.

The high resolution mass spectrum analysis results of S40 knocked-out component were shown
in Figure 10 with m/z 270 and formula C16H14O4; MS/MS spectrum showed that there were ion
fragments 270/240/201. According to the fragmentation pathway (Figure 11), the knocked-out
component of S25 was Imperatorin.
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Figure 11. The proposed fragmentation pathway of Imperatorin.

The high resolution mass spectrum analysis results of S41 knocked-out component were shown
in Figure 12 with m/z 300 and formula C17H16O5; MS/MS spectrum showed that there were ion
fragments 300/231. According to the fragmentation pathway (Figure 13), the knocked-out component
of S25 was Cnidilin.
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Figure 13. The proposed fragmentation pathway of Cnidilin.

The high resolution mass spectrum analysis results of S42 knocked-out component were shown
in Figure 14 with m/z 270 and formula C16H14O4. MS/MS spectrum showed that there were ion
fragments 270/201. According to the fragmentation pathway (Figure 15), the knocked-out component
of S25 was Isoimperatorin.
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2.2.3. Effect of Knocked-out Components and Negative Samples on Tyrosinase Activity in Vitro 

As shown in Table 6, when the concentration of each sample was 1 g·mL−1 equal to the amount of raw 
medicinal herbs, the target components of S23, S24, S28, S34-35, S37, S40, S41 and S42 displayed the 
inhibitory effect on tyrosinase activity whereas the target components of S19, S21, S25, S30, S31-32, S33, S38 
and S39 possessed the activation effect on tyrosinase activity. 

Table 6. Inhibitory effects of the water extract of AD knocked-out components and negative samples on 
tyrosinase in vitro. 

Peak No. 
Inhibitory Rate (%) on Tyrosinase Activity
Crude AD Sx+ Sx−

S19 17.50 ± 0.37 −5.73 ± 0.13 25.42 ± 0.31 
S21 17.50 ± 0.37 −2.72 ± 0.26 23.44 ± 0.42 
S23 17.50 ± 0.37 4.28 ± 0.25 20.52 ± 1.35 
S24 17.50 ± 0.37 11.32 ± 0.67 20.28 ± 0.88 
S25 17.50 ± 0.37 −1.40 ± 0.30 -8.01 ± 0.41 
S28 17.50 ± 0.37 5.73 ± 0.37 2.45 ± 0.19 

Figure 14. The high resolution mass spectra of Peak 42 knocked-out component.
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Figure 15. The proposed fragmentation pathway of Isoimperatorin.

2.2.3. Effect of Knocked-out Components and Negative Samples on Tyrosinase Activity in Vitro

As shown in Table 6, when the concentration of each sample was 1 g·mL−1 equal to the amount
of raw medicinal herbs, the target components of S23, S24, S28, S34-35, S37, S40, S41 and S42 displayed
the inhibitory effect on tyrosinase activity whereas the target components of S19, S21, S25, S30, S31-32,
S33, S38 and S39 possessed the activation effect on tyrosinase activity.

Table 6. Inhibitory effects of the water extract of AD knocked-out components and negative samples
on tyrosinase in vitro.

Peak No.
Inhibitory Rate (%) on Tyrosinase Activity

Crude AD Sx+ Sx−
S19 17.50 ± 0.37 −5.73 ± 0.13 25.42 ± 0.31
S21 17.50 ± 0.37 −2.72 ± 0.26 23.44 ± 0.42
S23 17.50 ± 0.37 4.28 ± 0.25 20.52 ± 1.35
S24 17.50 ± 0.37 11.32 ± 0.67 20.28 ± 0.88
S25 17.50 ± 0.37 −1.40 ± 0.30 -8.01 ± 0.41
S28 17.50 ± 0.37 5.73 ± 0.37 2.45 ± 0.19
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Table 6. Cont.

Peak No.
Inhibitory Rate (%) on Tyrosinase Activity

Crude AD Sx+ Sx−
S30 17.50 ± 0.37 −2.31 ± 0.19 29.83 ± 1.48

S31-32 17.50 ± 0.37 −1.83 ± 0.15 17.59 ± 0.68
S33 17.50 ± 0.37 −4.95 ± 0.38 19.54 ± 1.56

S34-35 17.50 ± 0.37 6.44 ± 0.18 21.26 ± 0.57
S37 17.50 ± 0.37 6.15 ± 0.24 32.37 ± 2.83
S38 17.50 ± 0.37 −13.70 ± 0.39 12.86 ± 0.55
S39 17.50 ± 0.37 −1.36 ± 0.18 24.61 ± 1.69
S40 17.50 ± 0.37 5.76 ± 0.26 34.43 ± 0.36
S41 17.50 ± 0.37 10.93 ± 1.02 −2.37 ± 0.12
S42 17.50 ± 0.37 16.71 ± 0.49 22.84 ± 0.97

As shown in Figure 16a, the target components and negative samples of S23, S24, S34-35,
S37, S40 and S42 both had an inhibitory effect on tyrosinase activity, which were consistent with
the effect of crude AD. The sum of the inhibition rate of the target component and negative sample on
tyrosinase activity were higher than that of the crude AD, meaning that there may exist antagonistic
effect between the target components and components in negative samples on tyrosinase activity.
The target components of S24, S40, S42 components were oxypeucedanin hydrate, imperatorin and
isoimperatorin, respectively.

As shown in Figure 16b, target components of S31-32, S33, and S38 had activation effect on
tyrosinase activity, while the negative samples had inhibitory effect, and sum of inhibition rates
of target components and negative samples were lower than the of the crude AD, suggesting that
there may exist antagonistic effect on tyrosinase activation effect between the target components and
components in negative samples. Both the target component and negative sample of S25 had activation
effect on tyrosinase activity, contrary to the crude AD, meaning that there may be strong antagonistic
effect on tyrosinase activation effect between the target components and components in negative
samples, thus causing the components with inhibitory effects to play the primary role in conferring
the effect on tyrosinase activity. Among them, the target component of S25 was byakangelicin.

As shown in Figure 16c, both the target component and negative sample of S28 possessed
inhibitory effect on tyrosinase activity, and the sum of inhibition rates of target components and
negative samples were lower than that of the crude AD. It can be inferred that there may be synergetic
inhibitory effect between the target components and components in negative samples on tyrosinase
activity. The target components of S19, S21, S30 and S39 had activation effect on tyrosinase, but
the negative samples had inhibitory effect on tyrosinase and the sum of inhibition rates of target
components and negative samples were greater than that of the crude AD, meaning that there
may exist synergetic activation effect on tyrosinase activity between the target components and
components in negative samples. The target component of S41 had inhibitory effect on tyrosinase
activity, but the negative sample showed activation effect on tyrosinase activity. It can be inferred that
the target component of S41 makes a greater contribution to the inhibition on tyrosinase activity, and
had synergetic inhibitory effect with the components on tyrosinase activity in the negative samples.
The target components of S30 and S41 were bergapten and cnidilin, respectively.
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Figure 16. Effect between knocked-out components and negative samples of the water extract of AD:
(a) Antagonistic effect on tyrosinase inhibition effect; (b) Antagonistic effect on tyrosinase activation
effect; (c) Synergetic effect.
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Tyrosinase, a vital enzyme, plays an important role in melanin synthesis and neuromelanin
formation. Proper content of melanin is important, but excess production of melanin lead to
hyperpigmentation. Therefore, tyrosinase inhibitors have been used to prevent hyperpigmentation
disorders. Also, tyrosinase is involved in the process to maintain the appearance and nutritional
value of many fresh-cut products. Tyrosinase inhibitors are very important in medicine, cosmetics
and agriculture. Phenolic compounds, especially polyphenols, flavonols have been revealed to
be the strongest inhibitors of tyrosinase [27]. 9-hydroxy-4-methoxypsoralen, a tyrosinase inhibitor,
was isolated from AD [28]. In this paper, we identified components in A. dahurica that can inhibit
or active tyrosinase activity, furthermore, it provided basis for the pertinence of AD to targete to
the whitening effect or treatment of vitiligo.

3. Materials and Methods

3.1. Materials

Acetonitrile was chromatographic grade. Glacial acetic acid was analytical grade. The pure
water was purchased from Hangzhou Wahaha Baili Food Co., Ltd., (Hangzhou, Zhejiang, China).
(L-3-(3,4-Dihydroxyphenyl) alanine was obtained from Alfa Aesar (Shanghai, China); Tyrosinase
was from Worthington Biochemical Corporation (Lakewood, NJ, USA).

3.2. Plant Materials

Angelicae dahuricae Radix, identified by Professor Changqin Li of College of Pharmacy,
Henan University (Kaifeng, Henan), were purchased in October 2014 in Yuzhou, Henan Province.

3.3. Classical Constant Temperature Method

AD was uniformly packed and weighted, then placed in 4 constant temperature drying box.
The heating temperature and time were set (Table 7). For each heating time point, 3 parallels were used.
When heating process ended, the samples were cooled to room temperature and weighed.

Table 7. Settings of the time and temperature of Classic Isothermal Acceleration.

50 ◦C 60 ◦C 70 ◦C 80 ◦C

0 h 0 h 0 h 0 h
54 h 18 h 6 h 2 h

108 h 36 h 12 h 4 h
162 h 54 h 18 h 6 h
216 h 72 h 24 h 8 h

3.4. Extraction

Fragments of each sample (about 2 g) was put in a test tube after being weighted precisely,
10 times amount (w:v) of distilled water was added in it. After being soaked for 30 min, the solution
was heated to boiling and kept faint boiling for 30 min by water bath, then 4 layers of gauze was used
to remove filter residue. 6 times the amount of distilled water (w:v) was added into residue and process
was repeated. The filtrates from two times filtration were combined, dried, and then prepared to
solution, which was equivalent to the amount of raw medicinal herbs at the concentration of 1 g·mL−1

by 50% methanol solution.

3.5. HPLC Analysis

A LC-20AT HPLC system was obtained from Shimadzu (Kyoto, Japan), and equipped with
a degasser, a quaternary gradient low pressure pump, the CTO-20A column oven, a SPD-M20A
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UV-detector and a SIL-20A automatic sampler. All of the solutions were filtered through the 0.22 µm
microporous membrane before they were injected into HPLC system.

Chromatography was performed with an InertSustain RP-C18 column (4.6 mm × 150 mm, 5 µm)
at a column temperature of 30 ◦C The mobile phase was a mixture of acetonitrile (A)-0.1% glacial acetic
acid-water (B). The gradient elution steps were set as shown in Table 8 and the flow rate was set at
1.0 mL·min−1. The UV detection wavelength was set at 312 nm with the sample volume of 30 µL.

Table 8. The time program of gradient elution.

t/min A/% B/%

0 11 89
20 22 78
40 34 66
44 38 62
60 39 61
65 42 58
75 43 57
85 45 55

108 65 35

3.6. Tyrosinase Inhibition Assay In Vitro

Water extracts of AD were dissolved in 50% methanol solution, and stored at 4 ◦C in refrigerator.
Tyrosinase inhibition assay was performed in a 96-well microplate format using Multiskan MK3

microplate reader (Thermo Electron) according to the method reported by Zhang [29]. The compounds
were screened for the inhibitory effects on tyrosinase activity using levodopa (LOP) as substrate.
45 µL of K-phosphate buffer (pH 6.8), and 25 µL of mushroom tyrosinase (TYR, 0.2 U·mL−1)
were incubated with 5 µL of sample at 30 ◦C for 10 min in water-jacket thermostatic incubator
(Sumsung GRP-9270). Then LOP (0.5 mmol·L−1) was added to the reaction mixture and incubated
at 30 ◦C for 5 min. The enzymatic reaction was monitored by measuring the change in absorbanceat
492 nm (A492) (at 30 ◦C) due to the formation of the dihydroxyphenylalanine (DOPA) chrome for
5 min. The percentage of inhibition of the enzymatic activity was calculated as follows: tyrosinase
activation activity was expressed as activation rate under a certain concentration. The inhibition rates
(%) were calculated according to the formula as follows:

Inhibition rate (%) = [(ASample + LOP + TYR − ASample + LOP)/(A50%Me + LOP + TYR − A50%Me + LOP)
− 1] × 100%

3.7. Partial Least Squares Analysis

The software < Chinese traditional medicine chromatographic fingerprint similarity evaluation
system 2004, 1.0 A Edition > that Chinese Pharmacopoeia Commission recommended was used to
correct the retention times of each peak, and the peak area was processed by equalization. Then
the quantitative data were obtained. The partial least squares regression equation was established
with the analysis software DPS 7.05, and the peak area was set as the independent variable (X),
tyrosinase inhibition rate was taken as the dependent variable (Y). Chromatographic peaks, which
were significantly correlated with inhibitory effects on tyrosinase ability, were determined, respectively.

3.8. Knock-Out Method

Under the optimized chromatography conditions described in section “HPLC analysis”, the water
extract of AD was prepared as 1 g·mL−1 equivalent to raw medicinal herbs. Injection volume was 50 µL
every time. The chromatogram of 312 nm was recorded. According to the peak retention time from
the spectrum effect relationship analysis, the eluent solution containing the target component and
the other eluent solution namely negative solution were collected, respectively. Each component
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was prepared and eluted in 10-fold series. The solution containing target component and negative
solution were combined respectively, dissolved with 0.5 mL of 50% methanol water solution and
filtered through the 0.22 µm microporous membrane, which was a sample containing target component
(denoted as Sx+) and the corresponding negative sample (denoted as Sx−).

3.9. The High Performance Liquid Chromatography four Stage Rod-Electrostatic Field Orbit Trap High
Resolution Mass Spectrometry

The compounds were detected using QExactive four stage rod-orbit trap LC-MS/MS system,
containing Thermo Ultimate 3000 UHPLC system and QExactive (Thermo Fisher Scientific, Waltham,
MA, USA). Separation was performed with a Waters BEH C18 column (2.1 mm × 50 mm, 1.7 µm;
Waters, Milford, MA, USA). The mobile phase was a mixture of acetonitrile (C) and 0.1% formic
acid-water (D), with an optimized linear gradient elution as follows: 0–2 min: 10–30% C; 2–10 min:
30–60% C; 10–18 min: 60–100% C; 18–25 min: 100% C; 25–26 min: 100–10% C; and 26–30 min: 10% C.
The flow rate was 0.3 mL·min−1. The injection volume was 0.2 µL. The column temperature was set at
25 ◦C.

Compounds were analyzed with the full scan data in positive ion modes to provide
complementary information for structural identification under the following mass spectrometry
conditions: sheath gas flow rate, 35 arb; auxiliary gas flow rate, 10 arb; spray voltage, 3.5 kV; capillary
temperature, 320 ◦C, a scan range, m/z 0–800 and a resolving power, 70,000. The automatic gain control
(AGC) was set at 3e6 and the maximum injection time was set to 100 ms.

In addition to the full scan acquisition method, for confirmatory purpose, a targeted MS/MS
analysis was also performed using the mass inclusion list and expected retention times of the target
analytes, with a resolving power of 17,500. The AGC target was set to 1e5, with the maximum injection
time of 50 ms. The isolation window was set at 4.0 m/z. Collision energy was optimized at 30 eV.

4. Conclusions

In this study, we investigated the components of AD that had inhibitory or activating effects
on tyrosinase activity by using the spectrum-effect relationship and component knock-out method.
The results showed that AD samples contained the activated and inhibitory components on tyrosinase
activity simultaneously. The correlations of these components to inhibitory effects on tyrosinase activity
were different, and there were either synergetic or antagonistic effects among these components.
When the concentration of each sample was 1 g·mL−1 equal to the amount of raw medicinal herbs,
oxypeucedanin hydrate, imperatorin, cnidilin, and isoimperatorin had inhibitory effects on tyrosinase
activity whereas byakangelicin and bergapten had the activation effect on tyrosinase activity.
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