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Abstract: Malaria, caused by Plasmodium parasites, is still one of the biggest global health challenges.
P. falciparum is the deadliest species to humans. In this review, we discuss how this parasite devel-
ops and adapts to the complex and heterogenous environments of its two hosts thanks to varied
chromatin-associated and epigenetic mechanisms. First, one small family of transcription factors,
the ApiAP2 proteins, functions as master regulators of spatio-temporal patterns of gene expression
through the parasite life cycle. In addition, chromatin plasticity determines variable parasite cell
phenotypes that link to parasite growth, virulence and transmission, enabling parasite adaptation
within host conditions. In recent years, epitranscriptomics is emerging as a new regulatory layer
of gene expression. We present evidence of the variety of tRNA and mRNA modifications that are
being characterized in Plasmodium spp., and the dynamic changes in their abundance during parasite
development and cell fate. We end up outlining that new biological systems, like the mosquito model,
to decipher the unknowns about epigenetic mechanisms in vivo; and novel methodologies, to study
the function of RNA modifications; are needed to discover the Achilles heel of the parasite. With this
new knowledge, future strategies manipulating the epigenetics and epitranscriptomic machinery of
the parasite have the potential of providing new weapons against malaria.

Keywords: chromatin structure; transcriptional regulation; Plasmodium falciparum; mosquito; cellu-
lar plasticity

1. Introduction

Despite being one of the first recorded illness in history [1], malaria is still one of the
main health burdens in the world, threatening half of the global population. The most
recent records show that the global pandemic of COVID-19 has aggravated the problem,
with more than 240 million cases and 600 thousand deaths worldwide [2]. Malaria is
endemic in 85 countries, being most prevalent in West and Sub-Saharan Africa. [2].

The disease is caused by Apicomplexan parasites of the genus Plasmodium that infect
different mammalian hosts. P. falciparum is the predominant human malaria species, causing
the most severe symptomatology and the highest mortality rate [2].

Once P. falciparum enters our bloodstream, by means of an infected female Anopheles
mosquito bite, the sporozoites invade liver hepatocytes where they multiply for two weeks.
Thousands of merozoites per liver cell are released, and then re-enter the blood stream
and invade the erythrocytes. Then, each parasite cell enters a continuous cycle called the
intraerythrocytic developmental cycle (IDC), developing into ring, trophozoite and the
schizont stage. After the formation of a mature schizont, several merozoites tear out the
erythrocyte and reinfect new red blood cells. Some of these cycling parasites, in response
to certain conditions within the host [3], differentiate into transmissible sexual forms: the
gametocytes. This blood cycle takes approximately 48 h.

The life cycle in the mosquito starts when a female Anopheles bites an infected human,
taking a blood meal with gametocytes that reaches the mosquito’s midgut, where they
become activated and form extracellular gametes induced by changes in temperature, pH
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and xanthurenic acid [4]. It is in the mosquito when the sexual reproduction of the parasite
take place: the macrogametes are fertilized by microgametes, forming diploid zygotes. The
zygote develops into a motile ookinete that traverses the midgut epithelium and becomes
an oocyst. Inside the oocyst, the parasite divides by mitosis forming multiple (hundreds)
transmissible forms called sporozoites that tear out the oocysts when mature. By day 14
approximately, the parasites migrate from the mosquito midgut to the salivary glands,
where they can be transmitted and infect another human host in another mosquito bite,
closing the parasite life cycle.

To survive in such a complex life cycle involving two hosts, intra- and extra-cellular life
forms and multiple host tissues, the parasite requires different sets of proteins and a very
tight control of cell cycle progression. For such, transcription is precisely regulated in space
and time by a relatively small repertoire of transcription factors called ApiAP2 proteins [5,6].
How about thirty proteins cooperate and, in some cases compete, to spatiotemporally
regulate thousands of parasite genes, is a subject of intense investigation. In addition,
changes in chromatin structure impact transcription, playing a key role in malaria parasites
developmental progression. Each life cycle stage has its unique chromatin signature,
that associates with state-specific transcriptional states and prime the parasite for the
next developmental transition [7–9]. Various chromatin-associated processes orchestrate
these changes: histone post-translational modifications and histone variants, nucleosome
landscape, 3D chromatin organization, as well as non-coding RNA (ncRNA).

Apart of a very complex life cycle, the most striking and deadly feature of the malaria
parasite is its ability to adapt rapidly and reversibly, without changing its genome, to the
variable environment of the host. This is achieved thanks to cell plasticity, the generation of
alternative phenotypes in the parasite population [10]. And this plasticity is what makes
Plasmodium epigenetics shine. Epigenetics is linked to almost every biological process of
P. falciparum, controlling a variety of survival strategies such as immune system evasion,
transmission and drug resistance.

In this review we will deepen into chromatin and epigenetic mechanisms of gene
regulation, mainly AP2 transcription factors, histone post-translational modifications and
nuclear organisations, that control P. falciparum cell fate and plasticity. In addition, we will
discuss new insights into the role of epitranscriptomics, also named “RNA epigenetics”,
as a new layer of gene regulation in parasite development and adaptation. We will end
up envisioning future strategies of manipulating the epigenetic and epitranscriptomic
machinery of the parasite for malaria eradication.

2. Chromatin Regulation of Parasite Development

Fundamental chromatin organization regulation is conserved in Plasmodium parasites,
sharing the main principles with their eukaryotic relatives, as well as the repertoire of
histone post translational modifications [11–13]. One distinctive feature of the P. falciparum
genome that impacts gene expression regulation is its elevated AT content. Indeed, it has
one of the highest in all eukaryotes with an average rate of 80%, that surpass the 90% in
introns and intergenic regions [14]. Long AT-rich segments have been suggested to impede
nucleosome formation [15]. However, the presence of species-specific histone variants like
PfH2B.Z and PfH2A.Z, which localise preferentially in AT-rich regions, have been proposed
as the mechanism that would favour chromatin compactness [15].

During parasite development, chromatin changes dynamically, shaping parasite cell
fate (Figure 1). Most of the parasite chromatin is in a stable euchromatin state which is
determined by the DNA sequence that is bound by specific regulatory proteins [16]. These
dynamic chromatin changes depend on a highly coordinated regulatory cascade [17,18].
Stage-specific transcription factors are required at different times and in different host
tissues and cells to activate or repress gene expression. However, P. falciparum is notable
for having one of the lowest ratios of predicted specific transcription factors versus total
number of genes in eukaryotes [19]. Different hypotheses may explain this apparent lack of
transcription factors. First, sequence redundancy of the parasite genome may allow the
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same TF to bind and regulate multiple promoters [6]. Another explanation is the temporal
dynamics of gene transcription which in Plasmodium follows a “just-in-time” pattern [17].
That is, developmental and cell-fate determining TFs are temporally expressed and activate
the expression of multiple stage-specific genes. Finally, the multiplicity of regulatory
feedback loops that can be positive, negative and autoregulatory, involving other TFs as
all well as long non-coding RNAs (lncRNAs) [7,20–23]. The only family of transcription
factors in Plasmodium: the ApiAP2 family of DNA-binding proteins, comprises 27 members
in P. falciparum. These AP2 transcription factors are specific of apicomplexan parasites
and analogous to the plant Apetela2/Ethylene Response Factor (AP2/ERF) DNA-binding
proteins [5,6]. Despite being so few, they act as master regulators controlling the expression
of hundreds of genes at specific life stages [24]. This is the case for an example of the master
regulators AP2-G and AP2-G2 in gametocytes [20,25], AP2-O in ookinetes [26], AP2-SP in
sporozoites [27] and AP2-L in liver stages [28]. These AP2 proteins have been shown to act
cooperatively activating transcription, although they are a few that act as repressors [7].
They are developmentally regulated, and their expression is usually under the control
of the previous stage-controlling AP2 and reinforced by positive feedback loops [20–22].
Therefore, each transcriptional state prepares the background for the development of the
next stage.
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Figure 1. P. falciparum life cycle diagram with the more studied life stages at epigenetic level. The
white boxes highlight the main epigenetic traits of the corresponding stage. Once the Anopheles
mosquito bites a human host, sporozoites are released to the bloodstream and migrate to the liver.
After hepatocyte invasion, P. falciparum invades the red blood cells and starts its Intraerythrocytic
Developmental Cycle (IDC). Current evidence shows that in each stage of the blood cycle, chromatin
structure is reshaped impacting transcription, and this is associated to differential accessibility, AP2
binding and histone modification patterns. In response to certain within-host factors, some parasite
cells exit the IDC and differentiate into the transmissible stage of the gametocyte. The gametogenesis
process is under the epigenetic control of the AP2-G regulatory cascade. Parasite transcriptional
regulation during development in the mosquito (sporogonic cycle) is little studied, epigenetic data
are only available for oocyst and sporozoite mosquito stages. Various AP2 TFs appear to act as master
regulators of mosquito-specific parasite genes.

2.1. Chromatin Regulation during Intraerythocytic Development

Almost all we know about chromatin regulation in Plasmodium come from studies on
the Intraerythrocytic Developmental Cycle (IDC). It is well described that the transcriptome
and the epigenome of P. falciparum during the IDC in the human is highly dynamic. The
transcriptional start sites of stage-active genes are marked with a combination of histone
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H3 acetylations H3K18ac and H3K27ac, that associates with an enrichment of AP2-I and
bromodomain protein 1 (BDP1) reader protein in those loci [29]. The ring state is char-
acterized by its low transcriptional activity [17,18]. This might be due to the enrichment
of nucleosomes and the global compaction of the nucleus that have been shown in this
state [8,9,30]. In addition to the general condensation, the number and size of nuclear pores
is reduced [31]. The euchromatin in the ring stage is marked by the increased abundance of
histone H4 modifications H4K20me1 and H4K8ac [11,32]. When the parasite progresses to
trophozoite, it undergoes important morphological changes. In order to grow and form
the daughter merozoites, the transcription is globally activated [17,18], with a more open
chromatin, increasing the genome volume [8]. The promoter regions become depleted of
nucleosomes [9,30,33], and the histones in the promoters of active genes become enriched
in activation marks such as H3K9ac, H3K14ac and H3K4me3 [13,32]. On the other hand,
genes that are not transcribed at this stage, like sexual and mosquito stages genes, show
high nucleosome occupancy and heterochromatic marks like H3K9me3 [34–37]. In correla-
tion with the active state of transcription of the trophozoite, the nuclear pores increase in
number, especially in transcriptionally active domains in order to assist RNA export [31,38].
Finally, in the schizont stage the genome is condensed again, and in order to form the mero-
zoites, nucleosomes are repacked [8,9,30]. As a result, the transcription rate drops, and the
nuclear pores decrease in number [31]. The AP2-I transcription factor and PfBDP1 specially
control the schizont transcriptional program, activating invasion genes. The promoter
regions of these active genes are marked with acetylated histones [18,39–41]. The schizonts
have a particular histone post-translational modification (PTM) landscape, enriched in
unique activation marks such as H3K4me2, H3K4me3&ac, H3.3K9me1, H3K122ac and
H4K16a [13], contrasting with a more reduced global transcription.

Taken together, available evidence shows that the development of the malaria parasite
within the erythrocyte is highly regulated at the level of chromatin structure. Whether
these patterns and mechanisms are similar in other stages of parasite development, requires
further investigation.

2.2. The Knowns and the Unknowns about Chromatin Regulation in the Mosquito

Mosquito stages remain poorly investigated. This is in part due to technical limitations.
The bottleneck in the parasite population following transmission results in very low parasite
numbers in the invertebrate host, which makes it difficult to isolate the different mosquito
stages at sufficient purity and quantity. Moreover, multiple infections, consisting of multiple
strains and/or genotypes, often co-occur in the mosquito resulting in asynchronous and
heterogenous parasite populations that hinder bulk transcriptomic and epigenomic analysis.
As a consequence, the study chromatin regulation in this part of the parasite life cycle still
remains a challenge.

The few studies that analyse chromatin regulation in mosquito stages, point to dy-
namic changes in chromatin states that correlate with stage-specific transcriptional pro-
grams [22,42,43]. However, data is still scarce for most part of the sporogonic development.
That is, the chromatin landscape evolution from the gametocyte until the formation of the
oocysts, is largely unknown. Furthermore, the mosquito life cycle is epigenetically unique
because of the process of meiosis. It is known that an epigenetic reprograming during
meiosis is common in animals [44], however it has not been studied in Plasmodium. We
know that meiosis occurs in the diploid zygote stage and that the parasite possesses the
conserved enzymatic machinery (Dmc1 and Rad51) [45]. However, it is currently unknown
whether there is a global erase of epigenetic marks following recombination, or some type
of epigenetic memory is retained [46]. After meiotic division, the mature ookinete crosses
the midgut epithelium, evolving into an oocyte, a slightly more well-studied stage. At this
point, the transcription of genes involved in growth, metabolism, transcription and splicing
is activated, and this expression is linked to enrichment in H3K9ac and H3K27ac [22,43].
In addition, AP2-O act as a master regulator in oocysts where it has been shown to bind
in promoter regions of more than 500 genes [47]. Indeed, AP2-O and AP2-O2 have been
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shown to be essential for development in P. falciparum and rodent parasites [26,47–49]. In
sporozoites, once released from the oocysts, the heterochromatin domains are expanded
beyond subtelomeric regions, silencing invasion and virulence genes [50]. This heterochro-
matin is marked with the usually repressive H3K9me3 modification; however, some genes
appear in a bivalent state and continue being moderately expressed despite having this
mark [22]. On the other hand, activating cell traversal and hepatocyte invasion genes
display H3K9ac, H3K27ac and H3K4me3 and long-range interactions along the chromo-
somes [22,50–52]. Although the roles of ApiAP2 transcription factors in sporogony are not
fully understood, studies in rodent sporozoites show that AP2-SP is bound to sporozoite-
specific gene promotes, being indispensable for sporozoite development [27]. The ortholog
in P. falciparum, AP2-EXP (PF3D7_1466400) has its maximum expression in sporozoites, and
displays binding sites in the promoters of hundreds of sporozoite-specific genes, pointing
to be the master regulator of this stage of development [22]. In addition to AP2-SP, AP2-SP2
and AP2-SP3 seem to be essential in sporozoite development [48,49].

Several studies have shown that most of the transcripts expressed in sporozoites are
not translated into proteins [42,53,54]. This translational regulation is manifested by two
pathways: overall inhibition of translation and transcript-specific silencing. The global
inhibition is achieved though phosphorylation of the translation initiation factor, eIF2α [55].
It is known that specific transcript-silencing operates in sporozoites, an example is UIS4,
one of the most abundant mRNA in this stage, but whose protein is not synthesized at this
stage [53,54]; nevertheless, the mechanisms behind this silencing are not known. As we
will see, gametocytes have a similar translational inhibition in which epitranscriptomic
mechanisms could be involved [56–58]. Maybe, epitranscriptomics could be playing a
sim6ilar role in the other transmissible stage, the sporozoite.

In sum, compared to IDC stages, data about chromatin accessibility, AP2 binding and
3D chromatin structure controlling mosquito stages developmental transitions is mostly
lacking. Deciphering the many unknowns in the development regulation in the mosquito
stages represents a vein with great potential for further studies.

3. Epigenetic Mechanisms Controlling Parasite Adaptation

Epigenetic regulation plays a crucial role in the cell plasticity of the malaria parasite.
This plasticity is a survival strategy shared by many pathogens that allows the parasite to
overcome the unpredictable and changing environments within the human and mosquito
hosts. In isogenic populations, different phenotypes can arise thanks to epigenetic reg-
ulation. The genes whose expression can change between different parasite cells of the
same genotype/clone are referred as Clonally Variant Genes (CVGs). These could be
found either in an active or repressed state in genetically indistinguishable parasites. These
epigenetic states can be inherited. Phenotypic variation can arise by two different processes.
Bet-hedging, where transcriptional variants arise a priori, and the new environments act as
selective sieve sorting; and adaptive plasticity, where the new phenotypic variants arise
as directed transcriptional responses to an environmental change [10]. Evidence of either
strategy exist in the blood cycle and in-vitro conditions [23,59–66], although the ability of
malaria parasites to actively react to fluctuating conditions was considered controversial a
few years ago [67,68].

Given that the CVG activation state does not depend on its primary DNA sequence,
the basic regulatory mechanisms that control Clonally Variant Gene Expression (CVGE) is
truly epigenetic and relies on facultative heterochromatin. This means that the trait is heri-
table, being passed through multiple rounds of replication [69]. It is also transitory so the
activation/repressive state can switch with low frequency [70,71], developing heterogeneity
in response to external signals or even in a uniform environment, in a stochastic manner.
The mechanisms of arbitrary switching are not well studied, but two molecular mecha-
nisms have been proposed: epigenetic regulator’s level changes and transmission errors
of the epigenetic memory [10]. The chromatin state of CVGs can be reshaped by different
epigenetic mechanisms. The state of H3K9 near the transcriptional start site is acetylated in
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active CVGs and tri-methylated in silenced CVGs [16,72–77]. The differences in expression
are also determined by the localization of the locus within the nucleus [76,78–81]. It is also
known that the H3K9me3 mark of silenced CVGs interact with Heterochromatin Protein 1
(HP1), that condensates the chromatin and arrest the area to the nuclear periphery, silencing
the locus [82,83]. As we shall see below, there are other mechanisms and enzymes that con-
trol specific CVGE families. Whether these are generalizable to other CVG families and/or
life-stages, has yet to be confirmed. In addition, there might be further regulatory proteins
and CVGs that remain to be discovered, for example in the less studied mosquito stages.

Hereinafter, several examples of Plasmodium adaptation strategies involving CVGE
that are under epigenetic control are explained. Amongst these, the hallmark examples are
antigenic variation (bet-hedging strategy) and sexual differentiation (adaptation plasticity).
All what we describe occur linked to the blood cycle in the human and in vitro conditions
and have used P. falciparum laboratory reference strains.

3.1. Antigenic Variation and Immune Evasion

P. falciparum genome encodes different gene families of antigens like var, Pfmc-2TM,
rifin and stevor. Those families display CVGE, allowing the parasite to switch its antigen
during the infection and overcome the immune response. That explains the ability of
malaria parasites to maintain chronic infections for a long time [84]. The deeper studied
family of CVGs is var. This family of around 60 genes encodes for PfEMP1, a transmembrane
protein with a hypervariable domain that bind to endothelial surface receptors, determining
the parasite tropism [85]. In addition to CVGE, var genes present mutually exclusive
expression. This means that only one copy of the family is expressed in a single parasite
cell, the other copies remaining silenced [86,87].

The mutually exclusive expression implies a complex regulation of activating only
one member of the gene family while maintaining the other 59 genes silenced. There are
characteristic epigenetic features that accompany the active/silent state. For example, it
has been reported that silenced var copies are marked with H3K9me3, associated with HP1,
and H3K36me3 [76,88]. They appear clustered at the nuclear periphery if located in the
subtelomeric ends of the chromosomes, whereas the var genes that occupy central positions
in the chromosomes cluster via the formation of large chromatin loops [8,79,80,89–91]. On
the other hand, the active member of the var family is marked with H3K9ac and H3K4me3
and the histone variants H2A.Z, H2B.Z and H3.3 [72,89,92–94]. The histone variants H2A.Z
and H2B.Z are only present in the ring state when the gene is being transcribed. However,
in the subsequent trophozoite and schizont stages, the gene remains poised for reactivation
in the next cycle. In that case H2A.Z and H2B.Z are not present [15,92,93], but the gene is
still marked with the histone variant H3.3 in its promoter region [94].

The transmission of the active state for a particular var gene copy, is ensured by
H3K4me2, the histone mark responsible of the epigenetic memory in the malaria para-
site [95]. In addition to epigenetic marks, ncRNAs have been shown to play an important
role in var mutually exclusive expression. These are transcribed by the RNA pol II from
the conserved introns placed in the var genes [96]. An antisense RNA is produced from
the intron of the active copy, whereas a sense ncRNA is transcribed from both active and
inactive var genes. The ncRNA expression is essential for a normal var expression, however,
their precise mechanism of action is not known [88,97] Accumulating evidence point to
the ruf6 family of lncRNAs playing an important role in var mutually exclusive expres-
sion [36,98,99]. Comparing ATAC-seq data of two transcriptionally variant P. falciparum
clonal lines, a recent work revealed that only the ruf6 genes flanking the active var gene
appear accessible, whereas there were no differences in promoter or gene body accessibility
between active and silent var copies. This work proposed that chromatin looping mediated
by these ruf6-encoding long ncRNA and unknown proteins could participate in var gene
regulation [36]. Indeed, the RNA pol II itself has been proposed, through its C-terminal
domain, to be able to recruit chromatin remodelling factors that erase and rewrite the
chromatin state of the selected var gene [60,84].
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3.2. Sexual Differentiation Regulation

Gametocytes are the essential stage of the parasite in transmission of the malaria
disease. Becoming gametocytes represents a milestone in the parasite life cycle. A sub-
population of the asexually growing parasites commit to stop multiplication and exit
intraerythrocytic developmental cycle differentiating into a no-way-back dormant stage
until transmitted to the mosquito. This strong link with transmission makes sexual differ-
entiation and gametocytes an attractive target for research and disease control approaches.
In P. falciparum, usually less than 10% of the parasites produce gametocytes in each mul-
tiplication cycle [100]. However, conversion rates are variable between strains [84] due
to genetic and non-genetic factors. Indeed, due to the lack of selective pressures, it is
common that reference laboratory strains lose the ability to differentiate into sexual forms.
This phenotype has been associated to mutations in gametocyte development protein 1
coding gene (gdv1) or because deletions of entire chromosomes segments [101]. In nature,
however, sexual commitment rates also fluctuate in response to different external and
internal factors such as high parasitaemia, vector density (mosquito bites), fever, host
nutrition, antimalarial drugs, reticulocyte presence or nutrient restriction [65,102,103]. This
evidence suggests that the parasite would be able respond to the within host environment
facultatively, adjusting the phenotype, without changes in the genome, to maximize fitness.
However, the mechanisms that transduce these host signals to the parasite chromatin are
still unknown.

At the transcription level, the main effector in this process has been analysed in
several studies, validating the role of AP2-G as the master regulator of sexual differ-
entiation [20,77,104]. This ApiAP2 transcription factor targets a GNGTAC motif that is
found in the promoter region of several early gametocyte genes, including its own pro-
moter [21,77]. The ap2-g gene is epigenetically silenced by H3K9me3 and HP1 in cycling
parasites [23,37,105], while the gametocyte development protein coding gene, gdv1, is
inhibited by its own antisense RNA [23]. By unknown mechanisms, the gdv1 gene re-
leases from its antisense RNA and is expressed in stress conditions. Then, GDV1 removes
HP1 from ap2-g promoter, activating a first wave of its expression [23,106]. Once AP2-G
reaches a transcripts peak, its transcription is reduced temporally, stabilizing its expression.
However due to its own auto-induction a second expression wave is observed. In this
moment, PF3D7_1222400, an adjacent ApiAP2 factor, shows increased levels [21]. The
developmental stage in which this AP2-G stabilization occurs determines which of the
two possible pathways takes the parasite to sexually differentiate; if it happens in early
ring stage, Same Cycle Conversion (SCC) can be taken, starting the differentiation di-
rectly [107]. On the contrary, the classical Next Cycle Conversion (NCC) route is taken,
where parasites continue its blood development committed until schizogony and reinva-
sion, starting the differentiation always in the early ring stage. About the environmental
signal, it has been proposed that the host-derived lipid lysophosphatidylcholine (LysoPC)
induces sexual differentiation through metabolic changes. Its absence would reduce the
S-adenosylmethionine (SAM) pool available for epigenetic methylation in order to enhance
phosphatidylcholine production, impairing ap2-g epigenetic repression [3].

Linked to the sexual differentiation pathway and morphological changes, chromatin or-
ganization changes drastically in gametogenesis. An enrichment of H4K20me3, H3K27me3
and H3K36me2 is shown in early gametocytes, indicating a general gene silencing process,
while euchromatic marks increase in the late gametocyte stage pointing to a slightly more
open chromatin state [9,13] However, HP1 occupancy is higher in all gametocyte stages
compared with asexual stages [108]. In late gametocytes, ap2-g goes back to the repressive
cluster [109]. AP2-G5 binds and silences ap2-g as well as early gametocyte genes, being
necessary for gametocyte maturation [7]. However, asexual proliferation is not restabilised
thanks to AP2-G2, which represses asexual replication genes, being also indispensable for
gametocyte maturation [25,110]. Motility genes are the most transcribed in gametocytes,
while the less transcribed are genes involved in pathogenesis and invasion. It has been
suggested that most of these transcripts, although they are stable, do not translate into
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proteins and accumulate in gametocytes [56]. This suggests the existence of a transcrip-
tional repression that poise the gene expression [57] in order to prime the gametocyte for
mosquito infection.

3.3. Erythrocyte Invasion

Different gene families encode for invasion genes allowing alternative pathways
for merozoite invasion involving different and specific parasite ligands and erythrocyte
receptors. Two of these families, Pfrh and eba, are formed by mostly nonessential and
functionally redundant genes [111–114]. Those families show Clonally Variant Gene Ex-
pression [16,71,73,113,115]. PfRh4 is a member of the PfRh family which is needed for
the invasion pathway independent of sialic acid. Its activation allows to change from
sialic acid–dependent to a sialic acid–independent invasion pathway [116,117]. This gene
is mostly silent but can become active following an epigenetic switch [111,118]. That is,
PfRh4 is usually enriched in H3K9me3 and HP1, but when activated, its promoter becomes
more accessible, and this is accompanied by a loss of H3K9me3 and a movement of the
locus to a nuclear activation site [78,118]. Its expression can be induced when the para-
sites are with sialic acid-depleted erythrocytes or the main sialic acid–dependent invasion
pathway is impaired [111,118,119]. Indeed, the PfRh4 promoter contains putative ApiAP2
motifs [6]. However, the specific transcription factor and its role in opening and activating
transcription of the PfRh4 promoters, has to be validated.

3.4. Cellular Transport, Nutrients and Drug Resistance

P. falciparum can adapt its nutrients uptake and metabolism though epigenetic variation
and CVGE. The best described case is the clag family. Clag3.1 and Clag3.2 form the
plasmodial surface anion channel, which mediates the transport of several nutrients across
the erythrocyte membrane [120,121]. Clag3 family have CVGE, and especially clag3.1 and
clag3.2 show mutually exclusive expression [16,36,75]. Both genes are localised head-to-tail
in the same locus, being one of them accessible and active (marked with H3K9Ac) and
the other silenced by heterochromatin (marked with H3K9me3), switching with a low
frequency [16,36,59,75,122]. It has been proposed that the alternative clag3 expression
leads to differential nutrient transport, allowing the parasite to adapt to the nutrient
environment [61,84,123]. Furthermore, culturing the parasite with the drug blasticidin S
results in several changes in the transcriptional state of clag3.2 and clag3.1, pointing to the
role of clag3 and epigenetic factors in controlling nutrient uptake and toxic barring [61,123].

Similarly, members of the fatty acyl-CoA synthases family PfACS can change its
expression within the asexual cycle [59] adapting to different nutritional environments [124].
Indeed, the rodent parasite P. berghei is able to detect nutrient restriction using the AMPKα

homologous kinase KIN and respond through a transcriptional change leading to lower
multiplication rates [66]. Similar mechanisms may act in this metabolic adaptation; however,
further studies should deepen in it.

3.5. Heat Shock Response to Febrile Temperatures

In each intraerythrocytic developmental cycle, following the red blood cell lysis and
the release of the merozoites, one of the key symptoms of malaria is fever. As so, Plas-
modium parasites have evolved mechanisms to adapt and respond quickly to this increase
in the host temperature [125]. It has been shown that heat shock affects parasite viability,
specially to late stages, and can produce cell cycle arrest [126,127] and gametocyte pro-
duction [128,129]. As a result of high temperatures, the gene expression profiles change,
increasing protein folding genes and stress responsive genes [128,130]. A recent study
identified a new ApiAP2 transcription factor as the master regulator of heat shock re-
sponse: PfAP2-HS [126]. In response to heat, this transcription factor targets the sequence
(A/G)NGGGG(C/A) [6], activating the chaperones hsp70-1 and hsp90 and an uncharac-
terized gene PF3D7_1421800 [126]. Hsp70-1 and hsp-90 are evolutionary conserved heat
response proteins [131,132]. Indeed, a ChIP analysis show some binding of the AP2-HS
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domain to hsp70-1 [6]. Previous results also point to a relation between these chaperones
and histone deacetylases (HDACs) [133,134]. Two of these epigenetic writers, PfSir2A and
PfSir2B, have been shown to be downregulated by Hsp90 in ring stages. This chaperone
would recruit H3K9me3 to the promoter regions of PfSir2A and PfSir2B [133], although
previous studies show an increment of sir2 in the same conditions with asynchronized par-
asite cultures [130]. Despite these exciting results and the potential involvement of AP2-HS
in P. falciparum adaptive plasticity, the epigenetic basis of AP2-HS mediated heat shock
response, the precise mechanism of regulation, and their target genes remain unknown.

4. Epitranscriptomics a New Layer in the Malaria Parasite Gene Expression Regulation

Epitranscriptomics is the term that encompasses the different RNA modifications
that affect gene expression without changing the primary nucleotide sequence [135]. This
ribonucleotide modifications have been proved to play different roles in cell fate and
identity in other eukaryotes [136,137]. However, we are just starting to understand the
relevance of these new regulatory mechanisms in malaria parasites.

Various tRNA and mRNA epitranscriptomic marks have been identified in Plasmod-
ium [58,135,138,139]. A total of 28 of these modifications are associated to tRNA and are de-
velopmentally regulated (Figure 2). Most of them reach their peak of abundance in the late
stages of the intraerythrocytic developmental cycle and is in those stages where the expres-
sion of the proteins displays a codon bias. Some codons are associated to highly expressed
genes, while their synonym codons are down represented and overrepresented in the low
expressed genes, and vice versa. The codons that are enriched in the upregulated proteins
are translated with epitranscriptomally marked tRNAs that are also enriched in late stages,
including tRNAArg(mcm5UCU), tRNAGly(mcm5UCC), tRNAGlu(mcm5s2UUC), tRNAPro(ncm5UGG),
tRNASer(ncm5UGA), tRNAVal(IAC), tRNALeu(ncm5UmAA), tRNAAla(IGC), and tRNAIle(IAU). As
a result, the translation efficiency (protein/transcript rate) of the upregulated proteins
increases. This effect appears linked to the epitranscriptomic marks in the tRNA anticodon
that enhance the recognition of the enriched codons [138]. However, to validate this model
individual characterization of each of these modifications would be required.

A tRNA modification in the Cytosine 38 that have been partially characterized is the
m5C of the tRNAAsp(GTC). This modification is placed by the methyltransferase PfDNMT2.
The PfDNMT2 knockout represses 199 GAC codon biased proteins, and the resulting
phenotype displays altered cellular metabolism, protein synthesis and folding. In addition,
PfDNMT2 KO parasites are more sensible to nutritional stresses, enhancing the gametocyte
production. Without m5C, tRNAAsp(GTC) is degraded under metabolic stress, reducing the
expression of the proteins with the GAC codon. However, the RNA nuclease that cleavage
m5C-less tRNAAsp(GTC) is not known [135].

On the other hand, mRNA modifications are less studied in Plasmodium. Only m7G,
pseudouridine (Ψ), m5C, and m6A have been identified in P. falciparum [58,139]. Among
these, m6A is linked to reduced mRNA stability and low translation efficiency. PfMT-
A70 is the methyltransferase responsible of writing this modification. The m6A levels
change through the asexual cycle, increasing the modified adenosines in blood late stages
(Figure 2). This modification is associated to the motif GGACA and is found surrounding
and along the coding sequence [139]. This contrasts with what has been described in
other apicomplexan parasites, like Toxoplasma gondii, in which the m6A modification is
in the 3′ end of the mRNA. In that parasite, this modification has been linked to mRNA
maturation and 3′ end polyadenylation [140,141]. Another modification, the mC5 has been
associated to transcript stabilisation in gametocytes. This modification is catalysed by
NSUN2. Knocking out this protein in the rodent parasite, P. yoelii has been shown to impair
the gametocytogenesis [58].
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All the above epitranscriptomic studies focus on the human blood stages of the parasite
and in vitro conditions. It is now fundamental to expand the repertoire of modifications
studied, validate their function, and apply the methodology to mosquito stages and in vivo
conditions.

5. Future Perspectives

Given the importance of epiregulation in the malaria parasite, those mechanisms can
be exploited in order to design innovative strategies against the disease. Some advances
have been made in this area. Apicidin, a histone deacetylase inhibitor, impairs deeply
the transcriptional regulation of the intraerythrocytic developmental cycle via HDAC
inhibition. It produces the hyperacetylation of H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4)
and demethylation of H3K4me3 in P. falciparum [142]. In addition, several histone lysine
methyltransferases have been identified. Among them, BIX-01294 and TM2-115 reduce
H3K4me3 levels leading to parasite death in asexual stages and gametocytes, their effects
have been already tested in mouse models [143,144].

The effect of the epidrugs in gametocytes is key for new malaria strategies that target
transmission as this stage is highly resistant to most current malaria treatments [145]. The
main problem is that some catalytic domains of the epigenetic writers are well conserved
among eukaryotes, opening the possibility to a toxicity in humans [14]. One alternative
could be to focus on the differences between the parasite and humans. For example, of the
28 tRNA epitranscriptomic modifications, 3 are present in P. falciparum but not in humans
(m4Cm, ms2t6A, m3U) [138], so these represent promising targets for future therapies.
Another alternative could be to test the epidrugs in the mosquito vector, as it has been
already tested with traditional antimalarial drugs [146]. But this possibility has not been
assayed yet.

Indeed, the mosquito stages are still one of the greatest unknowns in malaria transcrip-
tional regulation. Most of the studies are conducted in the blood in vitro stages, however,
the mosquito host represents an ideal in vivo biological model to analyse gene regulation
in the context of host–parasite interactions. Very strong selective forces act in this part of
the parasite life cycle, promoting phenotypic variation and plasticity [147,148]. Taking this



Genes 2022, 13, 1734 11 of 17

into account, we assert that the epigenetic and epitranscriptomic regulation of mosquito
stages suppose a great seam to unveil the mechanisms of parasite rapid adaptation that
might provide new targets for malaria eradication strategies [149].

To conclude, epigenetics represents a fundamental process in P. falciparum allowing
the malaria parasite to transition and adapt swiftly to the variable and unpredictable
environments of its two hosts. The field is now moving towards characterising these
regulatory networks in less studied parts of the parasite life cycle, like the mosquito, which
are critical to transmission and malaria eradication. On the other hand, the emerging field
of epitranscriptomics is revealing the significance of RNA modifications for parasite biology
and has the potential to unveil new layers of gene regulation in Plasmodium development
and adaptation. New weapons against malaria that exploit this new knowledge, like
epidrugs that target DNA or RNA modifications, should now be developed.
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