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Abstract

Cell autonomous cancer dependencies are now routinely identified using CRISPR loss-of-

function viability screens. However, a bias exists that makes it difficult to assess the true

essentiality of genes located in amplicons, since the entire amplified region can exhibit lethal

scores. These false-positive hits can either be discarded from further analysis, which in can-

cer models can represent a significant number of hits, or methods can be developed to res-

cue the true-positives within amplified regions. We propose two methods to rescue true

positive hits in amplified regions by correcting for this copy number artefact. The Local Drop

Out (LDO) method uses the relative lethality scores within genomic regions to assess true

essentiality and does not require additional orthogonal data (e.g. copy number value). LDO

is meant to be used in screens covering a dense region of the genome (e.g. a whole chromo-

some or the whole genome). The General Additive Model (GAM) method models the

screening data as a function of the known copy number values and removes the systematic

effect from the measured lethality. GAM does not require the same density as LDO, but

does require prior knowledge of the copy number values. Both methods have been devel-

oped with single sample experiments in mind so that the correction can be applied even in

smaller screens. Here we demonstrate the efficacy of both methods at removing the copy

number effect and rescuing hits from some of the amplified regions. We estimate a 70–80%

decrease of false positive hits with either method in regions of high copy number compared

to no correction.

Author summary

Cancer vulnerabilities have been identified by systematically disrupting individual genes

in cancer cells and observing the resulting effect on cell proliferation. In recent years, a

new gene editing technique called CRISPR has made it easier and cheaper to disrupt

genes by precisely and completely suppressing the function of individual genes by cutting

through its DNA. However, an artefact of the approach yields false positives: using

CRISPR to target genes in regions of the genome which are abnormally repeated, called

copy number alterations (CNA), has been shown to kill the investigated cells irrespective
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of the true essentiality of the amplified genes. This artefact is a particular issue when

studying tumours, since CNAs are common in cancer. Additionally cancer-specific genes

are known to selectively drive amplification, making the ability to assess the essentiality of

genes in these regions even more important. Here we describe and provide the code to

computationally correct for this artefact and recover the true essentiality of CNA genes.

Introduction

CRISPR based loss-of-function screens have emerged as a powerful tool to interrogate multiple

species and models [1]. The technology has been quickly adopted to identify essential genes in

cancer, including several cancer cell line screens [2–4]. However, as reported in two studies

[5,6] and further discussed by others [7], genes in regions of copy number amplification dis-

play strong lethal phenotypes by CRISPR-Cas9 cutting (as opposed to CRISPRi [8]), regardless

of the true biological essentiality of the targeted gene. This results in a significant number of

false positive hits in samples with large copy number alterations as is often the case in cancer

models.

One way of mitigating this problem of false positives would be to simply discard any hits

found in amplified regions. This is a viable strategy when considering aggregate profiles [9],

but runs the risk of yielding many false negatives when looking at individual hits. Especially

when copy number events are an important oncogenic driver and identifying the essential

gene in the amplicon is of interest to target discovery [10]. Therefore, to fully leverage CRISPR

based screens, it is important to understand and correct for the observed copy number bias.

Here, we propose methods to correct for the copy number artefact, while rescuing the true

positives within the amplicons. The corresponding R scripts are also provided (https://doi.org/

10.6084/m9.figshare.5140057.v3). To the best of our knowledge two other methods have

recently been proposed in [11,12].

In this study wee used the data published by Munoz et al. [5], where the copy number arte-

fact has been observed (Fig 1A), i.e. a negative correlation of sensitivity (calculated as Log FC)

with copy number. To illustrate the methods, we focused on the astrocytoma cell line SF268

and the gastric cancer cell line MKN45, as these two cell lines have amplicons where the driver

has been well characterized, YAP1 and MET, respectively [13–16]. The sgRNA library used tar-

geted 2722 human genes with an average coverage of 20 reagents per gene. In addition, a sec-

ond screen performed on MKN45, using a different library of genes with a coverage of 10

reagents per gene, was used to evaluate the methods described herein. We then evaluated our

methods on the Avana dataset [11].

Results

Local Drop Out (LDO) method

To account for the copy number artefact, we propose the Local Drop Out (LDO) method.

LDO aims to correct phenotype scores for each guide by taking into account guide scores tar-

geting the other genes in its direct genomic neighbourhood. It assumes that most genes display

little or no phenotype upon knock-out in such screens (~2 weeks or less) and does not rely on

copy number measurements. If multiple neighbouring genes show similarly strong drop out

values by exhibiting a significant reduction of viability score, it is assumed that the observed

phenotype is due to a copy number effect rather than a true dependence of the cell line. This

assumption is corroborated by observations made in large RNAi screens [17,18] where only a
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single or few genes are identified as drivers of focal copy number events. The density of the

screen influences the size of the copy number events that can be detected: the higher the den-

sity of the genes selected to be included in the screen, the more focal the detected copy number

events can be.

The LDO method uses a two-step process: 1. A list of potential hits is defined; 2. The

remaining “neutral” genes are used to estimate the copy number effect on viability and the

Fig 1. CN effect on CRISPR knock-out sensitivity and LDO correction. A) The sensitivity to CRISPR-mediated knock-out is dependent on the level of

amplification of the underlying genomic region. Above for MKN45, 84 out of 191 guides in amplified regions (CN of at least 4 (log2(CN) = 2)) score below -0.5, while

274 out of 397 guides score below -0.5 in SF268. B) Sensitivity, calculated as LogFC, conferred by each guide (black dots) within the YAP1 amplicon in the SF268 cell

line summarized by a boxplot for each gene in the amplicon. To ease the interpretation, the red line displays the inverted copy number value scaled to the data. The

left panel a) displays the uncorrected sensitivity scores, while the right panel b) shows the sensitivity scores after LDO correction. C) The sensitivity to CRISPR-

mediated knock-out after LDO correction is not dependent on the level of DNA amplification of the underlying genomic region anymore.

https://doi.org/10.1371/journal.pcbi.1006279.g001
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viability are corrected based on the estimate. In step one, a list of potential gene hits is defined

that minimizes false negatives, and in step two, allows the estimation of copy number effect on

viability to be based on “neutral” genes. The potential hit list can be defined in several ways.

Prior knowledge can be used, e.g. lists of pan-lethal genes available in the public domain, to

determine an initial list of essential guides for consideration. Alternatively, we propose to iden-

tify cell line specific genes that are either essential or growth enhancing by calculating each

guide’s vulnerability score compared to a weighted mean sensitivity of neighbouring guides

not in that gene, i.e. assessing the difference between the dependence score of one guide

against the average vulnerability observed in the guides targeting different genes on the same

locus. The weighted mean sensitivity is calculated as follows. Let g be a guide in the set G of all

guides in a specific chromosome or chromosomal arm, with gh
i the ith guide targeting gene h

and Gh be the set of guides targeting gene h. Let E1 be the set of guides targeting known essen-

tial genes. An exponential distribution with parameter ω = 100’000 bp is used. Additionally, let

the genomic position of guide g be xg and the viability score induced by guide g be Sg, then the

weighted mean sensitivity, excluding essential guides and guides targeting the same gene,

mSðghi Þ for guide gh
i can be written as:

mS gh
i

� �
¼

1

N

X

g2G∖fGh[E1g

Sge
� o x

ghi
� xgj j

With

N ¼
X

g2G∖fGh[E1g

e
� o x

ghi
� xgj j

For each guide, the first iteration of the corrected sensitivity S1 value is obtained from

subtracting the weighted mean sensitivity for that guide to the original sensitivity value

without correction (S1

ghi
¼ Sghi � mSðghi Þ). Using this measure, the guides with absolute

values above the μth percentile across the entire genome are considered as guides displaying

potential true phenotypes (hits) and are not used in the second iteration of the method (by

default μ = 85).

In this analysis, we have used a list of a priori essential genes compiled from [4] (see Mat &

Met for more details). Removing the known pan-essential genes is not a requirement of the

method, but can improve the accuracy of the resulting CN correction. In particular in the case

of successively located pan-essential genes which could otherwise be confused for a CN event.

We have used μ = 85 since it represents a prior belief that we can expect about 15% of genes

(and therefore 15% of guides in our design) to display a true phenotype in the screen indepen-

dent of the copy number. The parameter can be modified, e.g. one might expect a larger per-

centage of genes displaying a phenotype in longer screens. This procedure is equivalent to

increasing the set of essential guides in set E2 which is then sample specific and contains the set

E1 and all the guides identified above the μth percentile.

In the second step of the LDO correction, all guides below the μth percentile are used to

fit a regression tree to estimate the copy number effect. These guides are highly enriched in

guides showing no phenotypes or “neutral” gene guides, i.e. the set of guides g 2 G\E2. Here,

a one dimensional regression tree is used to estimate the sensitivity of the guides as a func-

tion of the genomic location alone. The copy number effect identified by the regression is

then removed from the original sensitivity score Sg to obtain the LDO corrected sensitivity

score SLDO
g .
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Specifically, the regression tree T formulates the copy number induced sensitivity SCN at

position x as follows:

SCNðxjTÞ ¼ SCNðxjfSm;Rmg
M
1
Þ ¼

XM

m¼1

Sm1ðx 2 RmÞ

Where fRmg
M
1

are subregions of the genome, and x is a genomic position. Sm are the esti-

mated copy number induced sensitivity values in region Rm. Using only the guides g 2 G\E2,

we try to find the regression tree T which minimizes the error:

eðTÞ ¼
X

g2G∖E2

½Sg � STCNðxg jSm;RmÞ�
2

with respect to Sm and Rm. In practice, a regularization term is added to avoid overfitting.

Thus, the objective is to identify the tree T which minimizes the following term:

min
T2TðbÞ
½eðTÞ þ ajTj�

where |T| is the number of terminal nodes of the tree and the complexity parameter αmea-

sures the “cost” of adding another region Rm to the model. The higher the cost, the shallower

the tree. Also additional constraints can be set on the universe TðbÞ of potential trees T. In par-

ticular, one can consider the universe TðbÞ with a minimum number β of guides per region

Rm.

The regression is performed iteratively with increasing values of the cost parameter α and

constant value of β. By default the parameter α is initialised to 10−k with k = 3 and β is set to

twice the mean number of guides per gene. The value k is iteratively decreased in increments ik
set by default to 0.1. This process decreases the complexity of the regression tree until all

regions RF 2 fRmg
M
1

contain at least 3 genes. The last resulting tree TLDO is used to calculate

the LDO corrected sensitivity scores SLDO
g defined by:

SLDO
g ¼ Sg � SCNðxg jT

LDOÞ

In Fig 1B, the essentiality score before and after LDO correction is shown for the YAP1
amplicon in SF268. In Fig 1B (left), ANGPTL5, KIAA1377, C11orf70,BIRC3, BIRC2,

TMEM123, MMP7, and MMP20 display equivalently significant phenotypes believed to be

entirely due to the copy number artefact. On the other hand, YAP1 shows a stronger pheno-

type relative to its neighbouring genes.

In Fig 1B (right), the resulting corrected sensitivity scores are shown in the YAP1 amplicon

in SF268. The copy number effect has been successfully removed and YAP1 still scores as sig-

nificantly lethal, thereby being identified as the amplicon’s driver, as is expected from existing

shRNA screens and reported elsewhere [13,14].

Overall, LDO removes the copy number effect beyond the YAP1 amplicon in SF268 and in

MKN45 cell lines, as shown in Fig 1C. The number of guides with log2(CNA) larger than 2

and LogFC below -0.5 is decreased from 98 to 37 guides in MKN45 and 267 to 38 guides in

SF268. Finally, and although this is not the main motivation for the development of this

method, the LDO strategy can be used to predict copy number alterations in the screened sam-

ples (see S3 Fig).
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Library design and guide quality

Although the method applied in this screen was able to successfully recover the driver in the

YAP1 amplicon, this is not always the case as shown in Fig 2A.

From shRNA screens and other reports [15,16], MET is expected to be the driver of this

amplicon. Therefore, one could expect the MET guides to display a stronger relative drop out

compared to the rest of the genes in the amplicon. However this was not the case and thus

applying the LDO correction did not enable the recovery of MET as the driver of the amplicon.

The degree of amplification does not appear to explain the lack of differential MET effect in

MKN45 considering that the amplification in SF268:YAP1 is equivalent to what is seen in

MKN45:MET.

One potential reason for this lack of relative drop out is the quality of the guides used. The

screen was rerun with different guide designs. The result for the MET amplicon in sample

MKN45 is shown in Fig 2B and in this case, MET does display a stronger phenotype than the

rest of the amplicon. This highlights the need for careful library design (S1 Fig).

Application of the LDO method on the Avana data set

To verify the generalizability of this method we applied LDO to the Avana data set of 342 cell

lines screened with a genome-wide CRISPR library [11]. We used the guide level dependency

scores as well as the CCLE [19] copy number provided by Meyers & al. The guide scores were

further scaled so that the mean guide scores targeting nonessential and essential genes are

equal to 0 and -1 respectively in each sample. The reference set of nonessential and essential

genes established in [20] was used for the scaling.

In Fig 3A we show that in the Avana data set LDO again markedly decreases the correlation

between gene dependency and copy number compared to the uncorrected data. To assess the

risk of over correction by LDO, we considered the recall of the guides targeting essential, non-

essential and CN amplified regions (i.e. regions with copy number > 5). A similar strategy was

used in [12]. In Fig 3B the recall curves for cell line DAN-G is presented before and after LDO

correction. We notice that the recall for the essential genes is barely affected by the correction,

Fig 2. MET Specific LDO correction in MKN45 in two different screens. A) Sensitivity conferred by each guide (black dots) within the MET

amplicon in MKN45 summarized by a boxplot for each gene in the amplicon. The red line displays the inverted copy number value scaled to the data.

B) Sensitivity conferred by each guide (black dots) within the MET amplicon in MKN45 summarized by a boxplot for each gene in the amplicon. The

red line displays the inverted copy number value scaled to the data.

https://doi.org/10.1371/journal.pcbi.1006279.g002
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indicating that the LDO method does not markedly impact the sensitivity to detect these

genes. The recall curve for the nonessential group of genes is also not strongly affected by the

correction as opposed to the recall of the amplified genes which is strongly reduced in

DAN-G. To assess these recall curves across the whole dataset the area under the recall curve

(AURC) was used. In Fig 3C the AURC before and after LDO correction is presented for all

Fig 3. LDO removes the copy number effect across samples and maintains sensitivity of essential genes. A) Boxplot of dependency scores across copy

number for uncorrected and LDO corrected data. B) The recall curve for essential, nonessential and amplified genes is shown before and after LDO copy

number correction in the cell line DAN-G. C) The area under the recall curve is shown across samples for the essential, nonessential and amplified genes.

https://doi.org/10.1371/journal.pcbi.1006279.g003
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samples. The AURC for the essential genes remains unaffected by the correction while the

AURC for the nonessential genes is slightly increased. The median AURC across samples is

shifted from 87.3 to 87.1 and from 41.8 to 44.6 for the essential and nonessential genes respec-

tively. This is in contrast to the shifts in median AURC observed for the amplified genes from

62.5 to 50.5 when using all samples or from 77.5 to 52.6 when considering only samples with at

least 25 genes in amplified regions.

Generalized Additive Model (GAM) method

In contrast to the LDO method, the GAM method is a supervised strategy requiring orthogo-

nal data, such as copy number for the correction. To do this, we used a generalized additive

model (GAM, [21]) framework and modelled the sensitivity to CRISPR-mediated gene knock-

out as a function of copy number to yield an adjusted CRISPR-mediated gene knock-out esti-

mate. In addition to its ability to leverage the copy number values when available, the potential

benefit of this framework compared to LDO is that it can be extended to consider any arbitrary

number of additional features (both linked to artefactual or true effects) potentially relevant

for the purpose of modelling the phenotype (e.g. gene expression, multi-alignment of guides,

etc.). In this analysis, only the copy number measurements were used. Once the model has

been fitted, the effect of the artefactual components of the sensitivity can be removed from the

observed phenotype in order to keep the “biologically-relevant” component (in this example

only the artefactual copy-number effect is considered and removed). Unlike the LDO method,

the GAM method is insensitive to the screen density and would be preferred should a sparse

coverage of the genome be considered in the screen. Additionally the GAM method does not

require a prior list of known essential genes to be performed.

The GAM structure can be written as follows:

EðSgÞ ¼ aþ s1ðx
g
1Þ þ � � � þ spðx

g
pÞ

Where E(Sg) is the expected sensitivity of guide g; xg
1; . . . ; xg

p are the predictor variables for g
and s1ðx

g
1Þ; . . . ; spðxg

pÞ denote the smoothing functions estimated by non-parametric means

from the data. Finally, α is the intercept. Note the lack of a linker function in the above equa-

tion compared to the canonical GAM framework, since we consistently use the identity func-

tion. For the purpose of fitting the GAM to the data, we use the R implementation from the

mgcv package [22] with default parameters, so that penalized thin plate regression spline mod-

els are used for the smoothing.

This framework enables us to take into account an arbitrary number of predictor variables

to model both linear and non-linear dependencies of the data. The aim is to remove from the

measured sensitivity Sg the components of the model, which are deemed to come from artefac-

tual predictor variables (e.g. copy number) but keep those coming from variables which are

considered true predictors of biological sensitivity (e.g. gene expression). Instead of xg
1; . . . ; xg

p

let us further differentiate the predictor variables into the artefactual variables x̂g
1; . . . ; x̂g

l and

the explanatory variables xg
lþ1; . . . ; xg

p so that the GAM corrected sensitivity can be written as

SGAMg ¼ Sg �
Xl

i¼1

siðx̂
g
i Þ

In this presentation a single artefactual predictor x̂1 is used which represents the copy

number value at the position of guide g. The GAM corrected sensitivity score SGAMg can then

be used in lieu of the original sensitivity score with the same hit-defining thresholds and

interpretation.

Correction of copy number induced false positives in CRISPR screens
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The correction of the copy number artefact in SF268 and MKN45 using GAM is shown in

S2 Fig.

Discussion

The use of high-throughput CRISPR screens to identify cell autonomous cancer dependencies

has become routine. However, as shown in previous studies, these screens display high rates of

false positive hits in regions of high copy number amplifications. In this report, we describe

two methods, Local Drop Out (LDO) and General Additive Model (GAM), to correct for this

copy number bias, thereby enabling the identification of true positive hits while reducing false

positives substantially. In both cases the methods were developed with experimental setups in

mind utilizing only a few number of cell lines, including single model experiments. Thus, mak-

ing these methods appropriate for a broad range of experiments. As a result the CN artefact

corrections proposed are performed at the level of single samples. We applied both methods to

previously published screening data of 2722 genes performed in the SF268 and MKN45 cell

lines. The utility of the methods were shown by way of two examples: first, the YAP1 depen-

dency in SF268 was recovered, while removing 8 false positive genes from the hit list

(ANGPTL5, KIAA1377, C11orf70,BIRC3, BIRC2, TMEM123, MMP7, and MMP20); second,

the MET dependency in MKN45 was recovered in one of the two screens, while removing 3

false positive hits (CAV1, ST7, and ING3). Overall, the number of guides with log2(CNA)

larger than 2 and LogFC below -0.5 is decreased from 98 to 37 guides in MKN45 and 267 to 38

guides in SF268 when using LDO; with GAM the number of guides are reduced to 28 and 37

guides for MKN45 and SF268 respectively.

Additionally the LDO method was applied to an external data set of 342 viability screens.

There the method again markedly lowered the copy number effect on cell viability while

retaining the sensitivity to known essential genes thus demonstrating the generalizability of

the method to a larger data set.

These methods, however, do have limitations. We observed that rescuing true positives

within amplicons is only possible if the driver mutation in the amplicon of interest is display-

ing a stronger drop out relative to the neighbouring genes. Depending on the guides used, this

is not always the case as demonstrated with MET in MKN45 in our first screen. Despite this

caveat, both methods are still able to remove false-positives, although the true positive is not

rescued in this case. We would argue that in a typical screening effort, the loss of a few true

positives is preferred to a large amount of false positives, as would be the case if one does not

correct for the copy number effect. Indeed, a lot of effort and resources can be spent chasing

an elusive false positive. The second obvious alternative is to remove any amplified region

from the subsequent analysis, which means a large amount of false negative hits, since those

would not even be considered for further analysis, but also relies on prior available copy num-

ber measurements which is not always the case.

Another limitation is that these methods are highly dependent on guide scores obtained in

the screen which can be variable. In our MKN45: MET example, it is unclear what the reason

for the difference in drop out of the driver is. Guide design could be an explanation, however if

CRISPR genome editing does indeed generate two cellular responses in cancer cells as sug-

gested in [6]: an early anti-proliferative DNA damage response and a later gene dependant

effect, the number of doublings before harvesting could also be an explanation. Whereby cell

lines with long doubling times would only undergo enough doublings to sustain the DNA

damage response but not enough to signal a differential effect from the driver genes. This

hypothesis however does not seem to fit with the doubling times of 29h and 44h for MKN45

and SF268 respectively as reported in the Cancer Cell Line Encyclopedia (CCLE) [19].

Correction of copy number induced false positives in CRISPR screens
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Outside of these limitations, each of the two methods presented offer different advantages

to the correction for the copy number induced false positives in loss-of-function CRISPR

screens. The LDO method can correct for the copy number artefact even when copy number

is not known beforehand as long as the density of the CRISPR screen is high enough to capture

the copy number events with confidence. As opposed to LDO which is unsupervised, the

GAM correction is a supervised method requiring copy number measurements. It is however

not dependent on high density screens and can additionally incorporate an arbitrary number

of predictor variables in its model. As a supervised method GAM remains the appropriate

method should the copy number information be available. The fact that LDO does not need

any copy number information also enables the user to infer copy number alterations based on

CRISPR screens by exploring the magnitude of the correction that was applied to the different

genomic regions (S3 Fig).

Methods

Essential genes

To collect an initial list of essential genes the results from [23] was used. In particular the

essentiality of each gene was established in [23] using a genome-wide single guide CRISPR

screen in 4 cancer cell lines. The strength of the essentiality is reported as an adjusted p-value

in the accompanying data. Here, the genes with a maximum adjusted p-value of 0.05 across all

4 cell lines are used as de facto essential genes if and only if the accompanying CRISPR score is

also smaller than -1. This results in a list of 814 potential essential genes (S1 Table).

LDO

The choice of the exponential decay function in the weighted mean calculation is arbitrary

(and any weighing function can easily be used instead in the provided scripts). Any monoto-

nously decreasing function could be used, or, for example, a simple sliding window. The size

of the window, or the value picked for ω in the exponential decay case, should be chosen so as

to borrow the information from as many genes as possible while still remaining within the

bounds of the expected copy number event sizes that are expected to be observed. The expo-

nential decay function has the advantage of putting more weight to the genes in the direct

neighbourhood of the gene of interest and thus even if the size of the window considered is rel-

atively large the estimate remains relatively robust.

Similarly the values for α1, β1, the minimum number of three genes per short CN event and

the choice of only considering events with correction values larger than the 1.5 times the

median average deviation of the background noise were chosen arbitrarily based on a priori

expectation of the effects we wish to correct for.

Supporting information

S1 Fig. Library design. Sensitivity conferred by each MET targeting guides (dots) in MKN45

along the MET gene in the first vs the second screen.

(TIF)

S2 Fig. Global GAM correction. The sensitivity to CRISPR-mediated knock-out after GAM

correction is not dependent on the level of DNA amplification of the underlying genomic

region anymore.

(TIFF)
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S3 Fig. Using LDO for CN inference. The observed underlying CN for each guide against the

sensitivity score correction inferred by the LDO correction. The sgRNAs in red represent

guides targeting pan lethal clusters while those in orange are targeting focal amplifications

with less than three genes.

(TIFF)

S1 Table. Essential genes. List of 814 essential genes.

(CSV)
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