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Abstract

The role and outcome of the muscarinic M, acetylcholine receptor (M,R) signaling in healthy and diseased cardiomyocytes is
still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as
a switch in the muscarinic signaling, most likely of the M,R, in primary cardiomyocytes. High levels of RGS3L, as found in
heart failure, redirect the G;-mediated Rac1 activation into a G;-mediated RhoA/ROCK activation. Functionally, this switch
resulted in a reduced production of reactive oxygen species (—50%) in cardiomyocytes and an inotropic response (+18%) in
transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression
of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we
demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein pl90RhoGAP,
which balances the activity of RhoA and Racl by altering its substrate preference in cardiomyocytes. Enhancement of this
complex formation could open new possibilities in the regulation of the contractility of the diseased heart.
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Moreover, at least in the healthy rats, a chronic infusion of
the muscarinic acetylcholine receptor agonist carbachol sen-
sitizes the myocardium to cAMP-induced arrhythmia, most
likely by reducing the amount of pertussis toxin (PTX)-sen-
sitive G; proteins in cardiomyocytes [18, 63]. Interestingly,
however, activation of the M,R caused a Rho-associated
protein kinase (ROCK)-mediated inotropic response in an
experimental model in the rat based on coronary artery liga-
tion induced infarct and heart failure as well as in the neo-
natal rat heart [30, 40].

M,R signaling is under the control of various regulatory
proteins. Regulators of G Protein Signaling (RGS) belong
to a diverse family of GTPase-activating proteins (GAP),
capable of accelerating GTP hydrolysis of the Ga subunit
of heterotrimeric G proteins. Consequently, they are impor-
tant negative regulators of canonical GPCR signaling path-
ways. RGS proteins have emerged as potential therapeutic
targets due to their function in cardiovascular physiology
and pathology [89, 94]. RGS3, which belongs to the R4 RGS
protein subfamily, exists in several splice variants. RGS3L,
a long isoform of RGS3 (519 amino acids), has in addition
to the RGS domain an extended N-terminal segment, which
enables interactions with other proteins, such as Gfy-dimers.
Therefore, RGS3L acts not only as a GAP for the Ga pro-
teins, but is also able to regulate the Gpy-mediated signaling
by acting as a GPy scavenger [73]. Several RGS3 isoforms,
including RGS3L, are expressed in the human heart [56]
and RGS3L mRNA and protein levels were upregulated in
human heart failure [61]. Fibroblast growth factor 2 (FGF2),
a known cardioprotective stimulus, increases RGS3L expres-
sion in rat cardiomyocytes [96]. Our group has reported pre-
viously, that RGS3L, besides its GAP activity towards G;
protein, is able to switch the M,R signaling from Racl to
RhoA activation in the model of M,R expressing human
embryonic kidney (HEK) cells as well as neonatal rat car-
diomyocyte derived H10 cells [87]. However, the underlying
molecular mechanism causing this switch is still unclear and
the role of RGS3L in native cardiomyocytes has not been
studied.

Like heterotrimeric G-proteins, monomeric GTPases of
the Rho family, including Racl and RhoA, are active in the
GTP-bound conformation and inactive in the GDP-bound
state. Besides guanine nucleotide exchange factors (GEFs),
GAPs are similarly important regulators of monomeric
GTPases. GAPs largely accelerate the intrinsic GTPase
activity of the small G proteins, and as a result terminate
their signaling [86]. pI90RhoGAP, a 190 kDa GTPase-acti-
vating protein expressed in the heart [72], is a regulator that
balances Rac1 and RhoA activities in the cell [26, 71, 72,
90]. Although first described as a GAP specific for RhoA,
it became evident that pl90RhoGAP can also exhibit GAP
activity towards Racl and even switch its substrate prefer-
ence between RhoA and Racl [39, 41, 46].
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We there performed an explorative study, which will
provide evidence that the RGS3L expression level deter-
mines whether carbachol stimulation preferentially activates
Racl or RhoA in cardiomyocytes by inducing an RGS3L/
p190RhoGAP complex formation, which switches the GAP
activity towards Racl and thus increases the amount of
active RhoA. We will further demonstrate that this mech-
anism allows for the observed ROCK-mediated inotropic
response upon carbachol stimulation in the rat ventricle.

Materials and methods
Antibodies, reagents, and inhibitors

We used the following primary antibodies: mouse-anti-Racl
(BD Transd. Laboratories, 610650), mouse-anti-p190A (BD
Transd. Laboratories, 610149), mouse-anti-RhoA (26C4,
Santa Cruz, sc-418), mouse—anti-RGS3 (CC-Q7, Santa
Cruz, sc-100762), rabbit-anti-Tiam1 (C-16, Santa Cruz,
sc-872), rabbit—anti-Gp (T-20, Santa Cruz, sc-378), rab-
bit—anti-RGS3 (Abcam, ab2564), mouse—anti-c-myc (Klon
9E10, Oncogene), mouse—anti-B-actin (Sigma-Aldrich,
A2228), mouse—anti-RhoA-GTP (Biomol). The correspond-
ing horseradish peroxidase-conjugated secondary antibodies
were from Sigma-Aldrich (Saint Louis, MO, USA, A-9044,
A-9169), the fluorescent labelled secondary antibodies (anti-
mouse-Alexa Fluor® 568-antibody, anti-rabbit-Alexa Fluor®
633-antibody) were from Life Technologies. In this study,
the following reagents and inhibitors were used: FGF-2 (Pro-
mega), carbamoylcholine chloride (carbachol), 5-bromo-
2'-deoxyuridine (5-BrdU) (Sigma-Aldrich), PI3K-inhibitor
LY294002 (2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-
4-one hydrochloride; Alexis), pertussis toxin (PTX; Calbio-
chem), H1152P ((S)-(+)-2-Methyl-1-[(4-methyl-5-isoquin-
olinyl)sulfonyl]homopiperazine, 2HCI, Merck).

Animal experiments and cell isolation from animals

All the experiments were performed according to the EU
animal experiments guidelines and ethical approval by the
local German ethics committee (G237/12, Regierungspri-
sidium Karlsruhe).

Isolation and culture of neonatal rat cardiomyocytes
(NRCM)

NRCM were isolated from hearts of 1-3-day-old male and
female neonatal Wistar rats as described previously [92].
Briefly, hearts were minced and subjected to serial digestion
in a mixture of collagenase (0.5 mg/ml collagenase type II,
Cell systems) and pancreatin (0.6 mg/ml, Sigma-Aldrich) to
release single cells. The obtained cell suspension was placed
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on top of a Percoll gradient (GE Healthcare) to separate
cardiomyocytes from other cell types. The cardiomyocyte
fraction was seeded on collagen I-coated plates and cultured
in DMEM supplemented with 10% (w/v) fetal calf serum,
2 mM L-glutamine, 100 units/ml penicillin and 100 pg/
ml streptomycin in a humidified atmosphere of 5% CO, at
37 °C. 0.1 mM 5-BrdU was used to prevent overgrowth of
other, non-cardiomyocyte cell types. The cells were used for
experiments between 3 and 5 days after isolation. Serum-
reduced conditions (DMEM supplemented with 0.5% FCS)
were used for 48 h when indicated.

Cell culture and transfection

HEK-293 cells were grown in Dulbecco’s modified Eagle's
medium (DMEM, Invitrogen) supplemented with 10% (w/v)
fetal bovine serum, 2 mM L-glutamine, 100 units/ml peni-
cillin and 100 pg/ml streptomycin in a humidified atmos-
phere of 5% CO, at 37 °C. Transient overnight transfection
of the cells with p190RhoGAP, full length RGS3L-N460A,
RGS3L or truncated RGS3L constructs were performed
using Polyfect (Qiagen) transfection reagent according to
the manufacturer's instructions. Cells were incubated under
serum-reduced conditions and investigated 24—48 h after
transfection. The measurement the RacGAP and RhoGAP
activity of pl90RhoGAP was performed using a pulldown
assay described below.

The HEK-293 cells were from Agilent and routinely mon-
itored for possible mycoplasma contamination.

Generation of recombinant adenoviruses

The coding sequences of RGS3L and RGS3L-N460A were
subcloned into the adenoviral shuttle vector pAdTrack-CMV
(a gift from Dr. B. Vogelstein, Baltimore, MD). The cDNA
oligonucleotide 5'-ATCCCGGAAGGAATCCTTTTCAGG
TTCAAGAGAACTGAAAAGGAT-TCCTTCCTTTTT
GGAAA-3' encoding the RGS3L-shRNA sequence was
subcloned into the BglII/HindIII sites of the pShuttle H1
vector (Stratagene). For knockdown of Tiam1 the cDNA
oligonucleotide SGATCCCGCGAGCTTTAAGAAGAAA
CTTCAAGAGAGTTTCTTCTTAA-AGCTCGCTTTT-
GGAAA-3' encoding Tiam1-shRNA was used. The com-
plete H1 promoter driven expression cassette was subcloned
into pAdTrack [12]. After recombination of the created shut-
tle vectors with pAdEasy-1, the Pac I linearized recombinant
adenoviral genome was transfected and amplified in HEK-
293 cells.

Generation of AAV-9 viruses

The cDNA sequences of the variant/mutant RGS3L-N460A
was cloned into a single-stranded AAV genome plasmid

(pSSV9-CMV-MLC1500-1uc) via Xbal restriction replacing
the luciferase (luc) gene. The correct fragment size and ori-
entation was controlled by agarose gel-electrophoresis and
sequencing resulting in pSSV9-CMV-MLC1500-RGS3L-
N460A. AAVY vectors were generated by double-trans-
fection of helper plasmid pDP9rs [79] and either pSSV9-
CMV-MLC1500-RGS3L-N460A or -luciferase (as control).
Vectors were then purified using iodixanol step gradient
ultracentrifugation followed by genomic titer determination
using quantitative real-time PCR as described previously
[31].

2D gel electrophoresis

Cell lysates (about 50 pg protein) were mixed with 70 pl
rehydration buffer and applied to 7 cm IPG gel strips (GE
Healthcare) containing a linear 3—10 pH gradient. Isoelectric
focusing was carried out using an Ettan IPGphor unit (GE
Healthcare). The subsequent SDS—PAGE was performed on
8% polyacrylamide gels.

Immunoblot analysis

For immunoblot analysis the protein samples were separated
by SDS-PAGE using 8-15% denaturating acrylamide gels
and transferred onto nitrocellulose membranes. Membranes
were blocked with Roti-Block (Carl Roth) for 1 h at room
temperature, and incubated with specific primary antibodies
(see above) overnight at 4 °C and according to the manufac-
turer’s recommendations. After incubation with appropri-
ate secondary antibodies for 1 h, proteins were visualized
by enhanced chemoluminescence using an imaging system
(Alpha Innotech). Image J Software was used for the analysis
of the blots.

Rac and RhoGTPase activation assay

The cellular Rac1-GTP and RhoA-GTP levels were meas-
ured with a pull-down assay using GST fusion proteins con-
taining the Rho-binding domain of rhotekin (GST-RBD)
or Rac-binding domain of p21-activated kinase (PAK1)
(GST-PBD). GST-RBD and GST-PBD were expressed
and purified from E. coli. NRCM were stimulated with
FGF?2 or transduced with adenoviruses and pretreated with
the different inhibitors described above. After activation of
the NRCM with carbachol (1 mM, 5 min), cells were lysed
in ice-cold GST-Fish buffer [11, 87] and pelleted by cen-
trifugation (12,000 rpm, 3 min at 4 °C). The GTP-bound
RhoGTPases contained in the supernatant was incubated
for 1 h at 4 °C with either GST-PBD bound to magnetic
glutathione—sepharose beads or GST-RBD bound to non-
magnetic glutathione—sepharose beads. The beads were
separated using a magnetic plate and centrifugation. After
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twice washing of the beads, bound proteins were eluted with
sample buffer and separated by SDS-PAGE. The amounts of
activated GTPases and total GTPases from lysates as load-
ing control were then determined by immunoblot analysis
as described above.

Measurement of reactive oxygen species (ROS)
in NRCM

NRCM were cultured on 96-well plates (Sarstedt). The cells
were transduced with ShEGFP, shTiam or RGS3L-N460A
encoding adenoviruses, and treated with FGF2 or PTX as
described above. Thereafter, the cells were stimulated with
1 mM carbachol or solvent for 5 min at 37 °C. Myocytes
were then loaded for 30 min with 5 uM 5(6)-carboxy-2',7'-
dichlorofluorescein (DCF-DA, Sigma-Aldrich) at 37 °C.
After washing the cells with HEPES buffered salt solution
(HBSS; 25 mM HEPES pH 7,4, 120 mM NaCl, 5,4 mM
KCl, 1,8 mM CaCl,, 25 mM NaHCO;, 15 mM Glucose),
DCF fluorescence was measured using the Envision 2102
Multilabel Reader with a set of FITC filters (excitation
485+ 10 nM and emission at 535 +20 nM, PerkinElmer).

MLC-2 phosphorylation

NRCM were transduced with EGFP (control) or
RGS3L-N460A encoding adenovirus for 24 h, treated with
100 nM H1152P for 1 h as indicated and stimulated with
1 mM carbachol or solvent for 90 s at 37 °C. Thereafter, the
cells were lysed in a buffer containing phosphatase inhibitor
PhosStop (Roche Applied Science). The lysates were cleared
by centrifugation and subjected to SDS-PAGE and immuno-
detection. Finally, densitometric band intensities of pMLC-2
were quantitated using total MLC-2a as control.

Immunoprecipitation

NRCM were transduced with RGS3L-N460A adenovirus
for 24 h and stimulated with 1 mM carbachol or solvent
for 5 min at 37 °C. Co-immunoprecipitation was performed
as described previously [5]. Briefly cells were lysed with
immunoprecipitation buffer (50 mM Tris—HCI, pH 7.4,
2 mM EDTA, 150 mM NaCl, 0.1% SDS, 1% Nonidet P-40,
10 mM NaF) containing 1 mM sodium orthovanadate, 1 mM
Pefablock, 10 pg/ml aprotinin, 10 pg/ml leupeptin). After
centrifugation the cleared lysates were incubated with the
indicated antibodies (2 pg) under agitation for 1 h at 4 °C.
After addition of 40 pl 1:1 (v/v) protein-A—sepharose-beads
(Amersham Biosciences), the mixture was gently shaken for
an additional 3—4 h at 4 °C. Beads were washed three times
with immunoprecipitation buffer and eluted in SDS-contain-
ing buffer for 5 min at 95 °C. After SDS-PAGE and transfer
to nitrocellulose membranes, immunoprecipitated proteins
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were detected by Western blot analysis using the indicated
antibodies according to standard protocols. Final detection
was done with an ECL system (Amersham), band intensity
was quantified with ImageJ-software.

Proximity ligation assay (PLA)

Proximity ligation assay was performed by following the
manufacturer’s protocol (Olink Bioscience, Uppsala, Swe-
den). Briefly, NRCM seeded on collagen-coated coverslips
in 12-well dishes were stimulated with or without carbachol
for 5 min, washed 3 times with PBS, fixed in 4% formalde-
hyde in PBS for 10 min, permeabilized in 0.02% Triton-
X-100 for 10 min, and blocked with Blocking Solution
(Olink) for 30 min in 37 °C. After incubation with the indi-
cated primary antibodies (mouse—anti-pl90RhoGAP, rab-
bit—anti-RGS3) over night at 4 °C, wells were washed with
Wash Buffer (Olink), incubated with PLA Probe anti-mouse
plus and PLA Probe anti-rabbit minus for 1 h at 37 °C. After
washing, a ligation and amplification step followed using the
manufacturer’s protocol and reagents. Cells were mounted
with Duolink In Situ Mounting Medium with DAPI, dried
in room temperature and visualized by confocal microscopy
(Leica, Germany). The LAS-X software was used for image
processing. Quantification of fluorescent signals was per-
formed using Image J software.

Measurement of the GAP activity of p190RhoGAP
towards Rac1 and RhoA

Measurement of the functional RhoGAP activity of
p190RhoGAP was performed by a pulldown assay as
described previously [5, 58]. This assay is based on the
principle that the functional activation of p190RhoGAP is
indicated by an increased ability to associate with its sub-
strate, the active, GTP-bound form of monomeric GTPases.
The ability of pl90RhoGAP to act as a RhoAGAP was
detected using constitutively active RhoAQ63L-GST
coated beads. The more pl 90RhoGAP protein binds to the
beads, the higher is its RhoAGAP activity (corresponding
to a decreased level of RhoA-GTP in the cell [58]). Using
RacQ61L-GST-coated beads instead the Rac1 GAP-activity
of p190RhoGAP can be measured. Briefly, cells (NRCM or
HEK-293 cells) were washed carefully with PBS and lysed
in a buffer containing 50 mM Tris—HCl, pH 7.4, 10 mM
MgCl,, 150 mM NaCl, 1 mM DTT, 1% Triton X-100,
10 g/ml each of aprotinin and leupeptin, 1 mM Pefabloc
and 1 X Phosstop (Roche). After centrifugation for 3 min at
12,000xg, the supernatants were incubated for 60 min at
4 °C with glutathione—sepharose magnetic beads coated with
RhoQ63L or RacQ61L conjugated with GST and purified
previously from Rosetta E. coli bacteria. The beads were
separated using a magnetic plate. After three times washing
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of the beads, bound proteins were eluted with sample buffer
and separated by SDS—PAGE. p190RhoGAP was detected
by immunoblotting.

Immunocytochemistry

Subconfluent NRMC were cultured on 12 well plates
(Sarstedt), washed three times with PBS and fixed with 3%
paraformaldehyde/PBS for 15 min at room temperature.
After the cells were treated with 0.05% Triton-X-100 for
3 min at room temperature and 0.5% bovine serum albumine
(BSA) for 45 min at 4 °C, they were incubated with the
appropriate antibodies for 16 h at 4 °C. After washing with
PBS, the cells were incubated with the indicated secondary
antibodies for 1 h at room temperature. Images of the cells
mounted at room temperature in PBS were acquired using
fluorescence microscopy (Olympus IX 81).

Isolation and culture of adult mouse
ventricular cardiomyocytes (AMVCM)

Ventricular myocytes of adult mice were isolated by retro-
grade Langendorff perfusion using an enzyme composition
of collagenase type I and II, dispase (Liberase DH, Roche)
and trypsin. The protocol for the isolation of adult ventricular
cardiomyocytes was modified from Borner et al. [8]. The mice
(age of 10-20 weeks) were anesthetized with 2% isoflurane in
oxygen and sacrificed by cervical dislocation. After fixation
on a Styrofoam plate and disinfection with 70% ethanol, the
thorax was opened. The heart was isolated by cutting distal
from the heart, close to the aortic arch and was directly trans-
ferred into ice-cold perfusion buffer. The aorta was cannulated
with a buffer-filled modified 20G cannula. The heart was con-
nected to the pre-heated (37 °C) perfusion system with a flow
of 3.5 ml per min and washed for 30 s. After perfusion with
29.6 mL of digestion buffer, the ventricles were separated from
the atria, and cut into 1-2 mm? pieces in 2.5 ml digestion
buffer. Digestion was stopped with 2.5 ml stopping buffer 1
and the tissue was titrated with a wide opening syringe. Undi-
gested tissue was removed by sedimentation, and the isolated
cells were resuspended in 4.75 ml stopping buffer 2. Recalci-
fication was performed by in five steps until a final concentra-
tion of 960 uM CaCl, was reached. The cells were allowed
to sediment by gravity and were then resuspended in fresh
pre-warmed adult mouse cardiomyocyte medium. The car-
diomyocytes were plated in droplets on laminin-coated glass
cover slips (@ 18 mm) in a 12-well plate or seeded in uncoated
6-well plates and were incubated for 30 min at 37 °C and 5%
CO,. Unattached cells were removed, and fresh medium was
added. The attached cardiomyocytes were cultured for 24 to
48 h at 37 °C and 5% CO,. (Buffers and media: Stock perfu-
sion buffer 10xpH 7.4, 1.13 M NaCl, 47 mM KCI, 6 mM

KH,PO,, 6 mM Na,HPO, %2 H,0, 12 mM MgSO,x 7 H,0,
100 mM KHCO;, 100 mM HEPES; Perfusion buffer 1 x:10%
(v/v) Stock perfusion buffer 10 x, 23 mM NaHCO;, 30 mM
taurine, 5.5 mM glucose, 9.9 mM BDM; liberase solution:
0.4% (w/v) liberase DH in ddH,0O; Digestion buffer: 29.6 ml
Perfusion buffer 1 x, 3.75 ul CaCl, 100 mM, 450 pl liberase
solution, 200 pl Trypsin 2.5%; Stopping buffer stock solution:
1% (w/v) BSA 10 mL, Perfusion buffer 1 x; Stopping buffer
1: 2.25 ml Stopping buffer, 1.25 ul CaCl, 100 mM; Stopping
buffer 2: 4.75 ml Stopping buffer. 1.9 pl CaCl 100 mM; Cul-
ture medium AVMCM MEM, 0.25% (v/v) (—)-blebbistatin
(0.5 mM), 1% (w/v) BSA, 1% (v/v) PIS, 1% (v/v) L-glutamine
(200 mM), 1% (v/v) ITS-X, laminin solution: 0.01% (w/v) in
AMCM-medium).

Measurement of the RhoA activity in adult mouse
cardiomyocytes

Measurement of the RhoA-activity in AVMCM was
performed by immunofluorescence staining using anti-
RhoA-GTP-antibody, microscope image acquisition, and
quantification of fluorescence. Cells isolated from mouse
hearts were seeded on collagen-coated coverslips in 12-well
dishes in Modified Eagle Medium (MEM) supplemented
with 1% BSA, 100 units/ml penicillin and 100 pg/ml strep-
tomycin, 1% r-glutamine, 1% (—) blebbistatin, 1% ITS
(insulin—transferrin—selenium) in a humidified atmosphere
of 5% CO2 at 37 °C. Cells were transduced with Myc-tagged
RGS3L-N460A-adenovirus or control EGFP-adenovirus
for 48 h. After stimulation with or without 1 mM carbachol
for 5 min, cells were fixed in 4% formaldehyde in PBS for
10 min, permeabilized and blocked for 10 min in a blocking
buffer containing 10% FCS, 0.2% Triton-X 100 in Ca>*-
and Mg**-free PBS. Incubation with primary antibodies
(mouse—anti-RhoA-GTP-antibody 1:500, rabbit—anti-c-
myc-antibody 1:100) was performed in blocking buffer over
night at 4 °C. After washing with PBS, cells were incubated
with the corresponding fluorochrome-labeled secondary
antibodies (anti-mouse-Alexa Fluor 568-antibody 1:1000,
anti-rabbit-Alexa Fluor 633-antibody 1:1000) over night at
4 °C, and washed thereafter with PBS. DAPI (1:1000 in
PBS for 1 h) was used to detect nuclei. After washing with
PBS and mounting, coverslips were dried at room tempera-
ture. Cells were visualized by confocal microscopy (Leica,
Germany), software LAS-X was used for image processing.
Analysis of the fluorescence intensity of the Alexa Fluor 568
conjugate was performed using Image J (Version 1.47v).

Preparation of EHT and measurement
of the contractility of EHT

Neonatal rat engineered heart tissues (EHT) were generated
and analyzed as previously reported [24]. In brief, agarose
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casting molds were prepared in 24 well plates (NUNC) with
liquid agarose (2% (w/v), PBS) and polytetrafluorethylen
(PTFE) spacer. After agarose solidification PTFE spacer
were removed and polydimethylsiloxan (PDMS) were placed
on the 24 well plate so that pairs of flexible PDMS posts
reach into each agarose casting mold. Dissociated neonatal
rat heart cells were re-suspended in a fibrinogen solution
(5 mg/ml). 97 ul were mixed with 3 ul thrombin aliquot
(100 U/ml) and pipetted into a casting mold. This pipetting
step was repeated for each EHT. Fibrin polymerization took
place in an incubator (2 h) and PDMS racks with fibrin gels
attached to the PDMS posts were transferred to new 24 well
plates. EHT were cultivated in maintenance media (DMEM,
Horse serum 10% (v/v), insulin 10 pg/ml, aprotinin 33 pg/
ml) with media replacement on Mondays, Wednesdays and
Fridays. After development (days 25-30) EHT were trans-
ferred to modified Tyrode’s solution containing 0.1 mM
free Ca?* (120 mM NacCl, 22.6 mM NaHCO;, 5.4 mM KCl,
5 mM glucose, 1 mM MgCl,, 0.4 mM NaH,PO4, 0.1 mM
CaCl,, 0.05 mM Na,EDTA, 25 mM HEPES) and force
analysis was performed by video-optical recording of EHT
shortening as recently described [24].

Injection of the AAV9 virus and preparation of rat
ventricular muscle strips

The care and experimental use of all animals in this study
were in accordance with institutional guidelines and
approved by the local ethics committee (Regierungsprae-
sidium Karlsruhe).

We injected 6-week-old male Wistar rats with
AAVI9-CMV-MLC1500-RGS3L-N460A-virus or with
an AAV9-CMV-MLC1500-luc control virus (1012 vg/rat)
intravenously. After 2 months, the rats were anaesthetized
(2-3% isoflurane flow) and subsequently euthanized by cer-
vical dislocation. The hearts were harvested and mounted
on a Langendorff rig perfused with a relaxing solution
containing 118.3 mM NaCl, 3 mM KCl, 0.2 mM CaCl,,
4 mM MgSO,, 2.4 mM KH,PO,, 24.9 mM NaHCO;, 10 mM
glucose and 2.2 mM mannitol [77]. The left ventricle was
exposed and posterior left ventricular papillary muscles
and strips of left ventricles (approx. 1 mm diameter) were
excised and mounted in organ baths (Radnoti organ bath
System, ADInstruments) containing the relaxing solution
(32 °C) as described above and oxygenated (95% O,, 5%
CO,).

Measurement of the contractility of the isolated rat
papillary muscle strips

After mounting, the strips were stretched to ~3 mN diastolic

tension, allowed to relax ~5 min and then the relaxing solu-
tion was replaced with a solution of identical composition
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with the exception of 1.8 mM CaCl, and 1.2 mM MgSO,
concentrations. The muscle strips were field stimulated at a
frequency of 1 Hz with impulses of 5 ms duration and cur-
rent about 10-20 mA. The isometrically contracting mus-
cles were stretched to the maximum of their length—tension
curve. Contraction—relaxation cycles were recorded and ana-
lyzed as previously described [75, 76]. Basal contractility
was expressed as maximal developed force (F,,,, mN). The
descriptive parameters at the end of the equilibration period
were used as basal (control) values. Inotropic responses
were expressed as changes in the maximal development of
force ((dF/df),,,,).- The measurements were based on aver-
aging 10-20 contraction-relaxation cycles. Antagonists
of al-adrenoceptors (prazosin 1 pM) and (-adrenoceptors
(timolol 1 pM) were added 90 min before the muscarinic
agonist carbachol which was added to the organ bath as a
bolus (100 pM). The contractility measurements were con-
ducted at increasing extracellular Ca**-concentrations (rang-
ing from 1.8 to 3.0 mM).

Statistical analysis

Exploratory data analysis was performed using the Graph-
Pad Prism software (GraphPad Software, Version 6, La
Jolla). Data were expressed as mean + SD. If not otherwise,
indicated Student’s ¢ test or one-way-ANOVA with Tukey’s
multiple comparison test were performed. A p value <0.05
was considered statistically significant.

Results

The RGS3L expression level determines RhoGTPase
activation in NRCM upon stimulation with carbachol

FGF2 increases RGS3 expression in neonatal rat cardiomyo-
cytes (NRCM) [96] and the level of RGS3L determines the
M,R coupling to Racl or RhoA in H10 cells [87]. There-
fore, we analyzed RGS3 expression with and without FGF2
treatment and its effect on RhoGTPase activation in NRCM.
As established before [87], we used 2D gel electrophoresis
with subsequent immunoblotting to identify specific iso-
forms of RGS3. RGS3L was detected at the predicted iso-
electric point (pI) and molecular mass of 4.79 and 61 kDa,
respectively (Fig. 1A). In accordance with the published data
[91], a marked increase in the amount of RGS3L protein
was detected in NRCM treated with FGF2 for 24 h. Next,
we examined the activation of Racl and RhoA in FGF2-
treated NRCM in response to carbachol. Under control con-
dition carbachol caused a prominent Racl and a weak RhoA
activation, whereas in FGF2-treated cells the opposite was
found (Fig. 1B, C). Both the carbachol-induced Racl and
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Fig.1 Effect of the expression level of RGS3L on the carbachol-
induced RhoGTPase activation in NRCM. A Identification of the
specific RGS3 isoform expressed in NRCMs treated under serum-
free conditions with or without 50 ng/ml FGF?2 for 24 h, as indicated.
RGS3 in the cell lysates was analyzed by 2D gel electrophoresis
and immunoblot. G; was used as a loading control (B, C). Measure-
ment of the carbachol-induced RhoA (B) and Racl activation (C) in
NRCMs without or with FGF2 treatment stimulated without and with
1 mM carbachol for 5 min. Levels of Racl1-GTP and RhoA-GTP
were measured by Racl and RhoA activation assays. Quantification
of Racl (Rac—GTP/total Racl) and RhoA activity (RhoA—-GTP/total
RhoA) as well as a representative experiment are shown. The mean of

RhoA activations were reduced by treatment with PTX or
the phosphoinositide-3-kinase (PI3K) inhibitor LY294002
independent of FGF2 (Supplemental Fig S1A). These data
are in accordance with the G;- and PI3K-dependent RhoA
and Racl activation observed in carbachol-treated NRCM-
derived H10 cells and thus indicate the existence of a similar
signaling pathway in primary NRCM [87].

To verify the dependence between the expression level
of RGS3L and the coordinated activation of either RhoA or
Racl in NRCM, we altered RGS3L expression using differ-
ent experimental approaches. First, we transduced NRCM
with an adenovirus encoding the GAP-deficient RGS3L
mutant RGS3L-N460A, which mediated in M,R express-
ing cells a prolonged carbachol-induced RhoA activation
compared to wild-type RGS3L [87]. Increasing expres-
sion of RGS3L-N460A in NRCM induced a pronounced

Total-RhoA | SR Sl | S Sl S  Total-Ract

Ad-shEGFP Ad-shRGS3

Ad-shEGFP Ad-shRGS3

Racl-GTP or RhoA-GTP levels detected in unstimulated cells was
set to 1.0. Values are mean+ SD (n=_8/5 RhoA/Racl), *p<0.05. D,
E NRMCs were transduced with Ad-EGFP (Control, MOI 40) and
increasing amounts (MOI 10, 20, 30) of Ad-RGS3L-N460A for 48 h.
Levels of RhoA-GTP (D) and Rac1-GTP (E) were determined after
5 min stimulation without or with carbachol. Recombinant RGS3L
expression was monitored by immunoblot analysis using the anti-c-
myc antibody. F, G NRCMs were transduced with Ad-shEGFP [12]
and Ad-shRGS3L for 72 h. RGS3L expression was monitored by 2D
gel electrophoresis and immunoblot. GB was used as a loading con-
trol. F Cells were incubated for 5 min with or without carbachol. Lev-
els of RhoA-GTP and Rac1-GTP were determined

RhoA activation in the absence and presence of carba-
chol (Fig. 1D). In addition, the increasing expression of
RGS3L-N460A preferentially suppressed the carbachol-
stimulated Racl activation (Fig. 1E). Second, loss of func-
tion experiments were performed by transducing NRCM
with an adenovirus encoding a sShRNA directed specifically
against RGS3L (Ad-shRGS3L) [15]. As shown in Fig. 1F,
the expression of RGS3L was nearly abolished in the Ad-
shRGS3L-transduced NRCM compared to cells transduced
with a control adenovirus encoding for a shRNA against
EGFP. Gp, which served as a loading control, remained
unaffected. Most importantly, RGS3L depletion reduced
the carbachol-induced RhoA activation to control level
(Fig. 1G). This effect was dependent on the virus load used
for NRCM transduction (Supplemental Fig S1B). In contrast,
the carbachol-induced Racl activity remained unchanged. In
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summary, these data demonstrate that the expression level
of RGS3L dynamically regulates RhoA activation in NRCM
and determines whether Racl or RhoA activation prevails
after carbachol application.

RGS3L increases carbachol-evoked MLC-2
phosphorylation in a ROCK-dependent manner

In the neonatal rat heart as well as in an experimental heart
failure model, the M,R-induced inotropic response was sen-
sitive to ROCK inhibition and accompanied by increased
MLC-2 phosphorylation [30, 40]. In NRCM, both the ven-
tricular isoform MLC-2v and the atrial isoform MLC-2a are
present and both localize along the myofilaments (Fig. 2A).
To study the influence of RGS3L-N460A on the carbachol-
induced MLC-2 phosphorylation, we used a polyclonal
antibody against MLC-2a-P, which recognizes mono- and
diphosphorylated (Ser22 and/orSer23) MLC-2a. Treat-
ment with carbachol in control-transduced NRCM slightly
increased MLC-2 phosphorylation, which was, however,
enhanced by the expression of RGS3L-N460A (Fig. 2B).
The quantification of the carbachol-induced MLC-2 phos-
phorylation revealed a 33% increase in the presence of
RGS3L-N460A compared to the non-stimulated cells
(Fig. 2C). Treatment of the cells with the selective ROCK
inhibitor H1152P completely blocked the carbachol-induced
MLC-2 phosphorylation in the presence of RGS3L-N460A
(Fig. 2B, C).

To study whether the increase in ROCK-mediated MLC
phosphorylation is associated with an increase in contrac-
tility, rat engineered heart tissues (EHT) were prepared
from neonatal rat heart cells. A shown in Fig. 2D, the EHT
express detectable levels of RGS3L. In contractility meas-
urements a moderate but statistically significant increase in
contractile force was observed after carbachol stimulation
(Fig. 2E). This inotropic response was blunted by adding
the ROCK inhibitor H1152P (Fig. 2E), which is in accord-
ance with the described carbachol-induced inotropy of the
neonatal rat heart [40].

RGS3L increases the carbachol-induced RhoA
activation at the sarcolemma of adult ventricular
cardiomyocytes and the contractility in isolated
ventricular muscle strips

NRCMs are a widely used model to study cardiomyocyte
signaling, nevertheless, they largely differ from fully dif-
ferentiated adult cardiomyocytes with regard to myofilament
and subcellular organization. Therefore, we studied whether
RGS3L-N460A overexpression could also evoke RhoA
activation in isolated adult mouse ventricular cardiomyo-
cytes (AMVCM) in which RhoA activation was visualized
by confocal microscopy using a specific anti-RhoA-GTP
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antibody. In addition, the expression of RGS3L-N460A was
monitored by immunofluorescence (Fig. 3A, B). Interest-
ingly, we observed that RhoA-GTP and RGS3L-N460A
co-localized at the sarcolemma of AMVCM. Moreover,
carbachol treatment did not alter the RhoA—GTP level in
control transduced AMVCM, but significantly increased
it in RGS3L-N460A expressing AMVCM (Fig. 3C, D).
These data demonstrate that higher RGS3L expression lev-
els allow for a M,R-induced RhoA activation also in adult
cardiomyocytes.

We, therefore, aimed to verify that high expression
levels of RGS3L in cardiomyocytes allow for a carba-
chol-induced inotropic response in the healthy ventricu-
lar tissue. We injected 6-week-old male Wistar rats either
with AAVO-CMV-MLC1500-RGS3L-N460A virus
(AAV-RGS3L-N460A) or AAV9-ssCMV-MLC1500-
luc control virus (AAV-luc). The animals were housed for
a further 2 months prior to experimentation. They did not
show any signs of distress and none died. After sacrifice, the
hearts were explanted and cardiac contractility was meas-
ured ex vivo in ventricular muscle strips (Fig. 4). In line with
the data reported before from failing rat hearts [30], carba-
chol initially decreased the contractility of control as well
as RGS3L-N460A expressing muscle strips in a transient
manner (Fig. 4C, D). In the RGS3L-N460A-expressing ven-
tricular muscle strips, the return to baseline was accelerated,
followed by an inotropic response significantly exceeding
the baseline (Fig. 4D). This inotropy was more prominent at
higher Ca?* concentrations and later timepoints (Fig. 4D-F).
Plotting of the expression level of RGS3L-N460A vs. the
measured force of contraction of the individual muscle
strip revealed a statistically significant positive correlation
between both parameters (Fig. 4G). These results suggest
that the expression of RGS3L is indeed linked to the con-
tractile response.

The RGS3L mediated switch from carbachol-induced
Rac1 to RhoA activation requires a complex
formation of RGS3L with p190RhoGAP

RGS3L displays no GAP activity towards monomeric
GTPases and thus likely influences the activity of RhoGT-
Pases by interacting with either GEFs or GAPs. However,
it was shown that its interference with G;-mediated Racl
activation depends on its capacity to bind Gy dimers [87].
Previous studies reported that in NRCM the G;By/PI3K-
induced activation of Racl via G;-protein-coupled recep-
tors is mediated by the guanine nucleotide exchange fac-
tor Tiam1 [21, 85]. To investigate the role of Tiam1 in the
carbachol-induced Racl as well as RhoA activation, we
transduced NRCM with an adenovirus encoding a Tiam1-
specific sShRNA and studied the activation of RhoA and
Racl. As shown in Fig. 5, the expression of Tiaml was
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Fig. 2 Effect of RGS3L-N460A expression on the carbachol-induced
MLC-2 phosphorylation in NRCM and measurement of contractility
in rat engineered heart tissue (EHT). A Detection of the ventricu-
lar isoform MLC-2v and the atrial isoform MLC-2a in NRCMs by
immunocytochemistry. B NRCMs were transduced with Ad-RGS3L—-
N460A or Ad-EGFP and stimulated with or without carbachol for
5 min. The phosphorylation status of MLC-2 was analyzed by immu-
noblot using a polyclonal antibody against MLC-2a-P, which recog-
nizes both, mono- and diphosphorylated (Ser22 and/or Ser23) MLC-
2a. MLC-2a was used as a loading control. For ROCK-inhibition,
cells were pretreated with 100 nM H1152P for 1 h. C Quantification

largely reduced compared to cells transduced with a con-
trol shRNA encoding virus. The downregulation of Tiam1
abolished the carbachol-induced Racl activation (Fig. 5B)
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N460A in NRCM was used as a positive control. E EHT were stimu-
lated with 50 uM carbachol with and without treatment with 100 nM
H1152P which was added 40 min before stimulation with carbachol.
The analysis of the contraction force was performed by video-optical
recording of EHT shortening. Statistical analysis was performed by
repeated measures ANOVA with Sidak's multiple comparisons test.
Values are mean+SD (n=31), *p<0.05

as well as the carbachol-induced ROS production (Fig. 5C),
which likely originates from the Racl-dependent activa-
tion of NADPH oxidase in NRCM [1]. Consistent with this
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Fig.3 Effect of RGS3L-N460A expression on the M,R-mediated
RhoA activation in AMVCM. Cells were transduced with Ad-
RGS3L-N460A or Ad-EGFP for 48 h. Cells were stimulated with or
without carbachol for 5 min. RhoA-GTP was detected with mouse—
anti-RhoA—GTP-antibody and secondary anti-mouse-Alexa Fluor®
568-antibody, RGS3L-N460A was detected using rabbit—anti-c-myc
antibody and a secondary anti-rabbit-Alexa Fluor® 633-antibody.
DAPI was used to detect nuclei. Sarcomeric proteins are visualized
by a non-specific incorporation of EGFP. Cells were visualized by

interpretation, the carbachol-induced production of ROS was
sensitive to PTX treatment, RGS3L-N460 overexpression,
and FGF?2, all suppressing the carbachol-induced Racl acti-
vation (Fig. 5D). In line with these data, the phenylephrine
(PE)-induced protein synthesis, which requires a Gify- and
PI3K-dependent, Tiam1-mediated Racl activation [85],
was suppressed by the overexpression of RGS3L-N460A
(Fig. 5E). These data suggest that RGS3L could addition-
ally protect the heart not only by reducing the Racl activ-
ity induced by carbachol, but also by interfering with other
Racl-dependent pathways involved in the development of
cardiac hypertrophy. This interpretation is further supported
by data showing that the hypertrophy induced by the inflam-
matory stimulus PGE2 through a Tiam1/Rac1-dependent
activation of the transcription factor MEF2 could also be

@ Springer

confocal microscopy (Leica, Germany) and fluorescence at the sar-
colemma was analyzed using ImagelJ-software. A, B Localization
of RhoA-GTP and RGS3L-N460A in AMVCM transduced with
RGS3L-N460A adenovirus and stimulated with carbachol. Visuali-
zation of RhoA—-GTP in representative cells (C) and analysis of the
fluorescence intensity of the Alexa Fluor® 568 conjugate (which cor-
responds to the RhoA—GTP-amount) at the sarcolemma in 5 transduc-
tions obtained from 3 independent AMVCM preparations (D). Values
are mean + SD, *p <0.05

suppressed by RGS3L [83]. Interestingly, the depletion of
Tiam1 also abolished the carbachol-induced RhoA activa-
tion in the presence of RGS3L-N460A (Fig. 5B), indicat-
ing that Tiaml is also essential in this pathway. Neverthe-
less, Tiaml is a bona fide RacGEF. An exchange activity
against RhoA has never been reported in a cellular context
but it is a well-known protein—protein interaction partner
integrating a variety of signaling proteins [7, 50]. As GAPs
are as important for Racl and RhoA signaling as GEFs, we
postulated that pl90RhoGAP, which was reported to alter
its substrate specificity from RhoA to Racl under certain
conditions [39, 41, 46], is part of a putative complex and
might be responsible for the observed changes in the pres-
ence of RGS3L. We, therefore, performed reciprocal co-
immunoprecipitation experiments in NRCM transduced
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Fig.4 Effect of RGS3L-N460A expression on contractility of
rat ventricular muscle strips. A, B RGS3L-Expression in rat ven-
tricular muscle strips. Male Wistar rats were injected either with an
AAV9-CMV-MLC1500-virus encoding RGS3L-N460A or AAV9-
ssCMV-MLC1500-luc control virus. The expression of RGS3L in
the muscle strips was analyzed after 2 months. A representative blot
(A) and quantification (B) of the relative amount of RGS3L protein
compared to the control are shown of n=16/16 muscle strips from
4/4 animals, values are mean+ SD, *p <0.0001, +, lysate of NRCM
overexpressing RGS3-N460A. C Representative recordings of the
inotropic effects of carbachol (100 uM) observed in control trans-
duced and muscle strips overexpressing RGS3L-N460A measured
in a Radnoti organ bath System (ADInstrument). D Time course
(1.5 min, 3 min, 6 min) showing the development of the carbachol-

with the RGS3L-N460A encoding adenovirus. In line with
our hypothesis, pl90RhoGAP could be co-immunoprecip-
itated from NRCM lysates with an anti-RGS3 antibody.

induced inotropic response at different Ca>*-concentrations (1 mM,
1.8 mM, 3 mM). Data are shown as the percentage change of (dF/
dt),,, relative to basal. Values are mean of n=14-29 muscle strips
from 4 to 8 animals+SD, *p <0.01. E Relative increase in the maxi-
mal development of force ((dF/df),,,,) analyzed between the 0.5 and
6 min timepoints measured in a buffer containing 1.8 mM CaZ*.
Values are mean of n=34/38 muscle strips form 7/8 animals+ SD,
*p<0.01. F Relative increase in the maximal development of force
((dF/dr),,,,) analyzed between the 0.5 and 6 min timepoints measured
in a buffer containing 3 mM Ca?*. Values are mean of n=234/37 mus-
cle strips+SD, *p <0.05. G Correlation of the maximal contractility
(dF/dt),,,,, 6 min after carbachol-stimulation) and the RGS3L expres-
sion of the muscle strips normalized as percentage of a positive con-
trol. Values are means of n=16/15 muscle strips from 4/4 animals

Similarly, RGS3L-N460A was co-immunoprecipitated with
the anti-p190RhoGAP antibody. Treatment of the NRCM
with carbachol before cell lysis increased the amount of
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Fig.5 Effect of Tiaml-downregulation and RGS3L-N460A over-
expression on carbachol-induced Racl-activation and Racl-effec-
tor functions NRCMs. Cells were transduced with or without Ad-
shEGFP or Ad-shTiam1 for 72 h. A Tiam1 expression was monitored
by 2D gel electrophoresis and immunoblot. Gf was used as a load-
ing control. B Cells were transduced with Ad-shEGFP, Ad-shTiaml
and Ad-RGS3L-N460A for 72 h as indicated. Levels of RhoA-GTP
and Rac1-GTP were determined after 5 min stimulation with or with-
out carbachol. C, D Quantification of ROS-production in NRCMs
by DCF fluorescence. C NRCMs were transduced with Ad-shEGFP
or Ad-shTiaml for 72 h. D Cells were transduced with Ad-EGFP or

the co-precipitated interaction partner by two-to-threefold
(Fig. 6A-D). As a weak carbachol-induced RhoA activa-
tion also occurred in NRCM in a RGS3L sensitive manner
(see Fig. 1E), we studied the p190RhoGAP/RGS3L inter-
action also in non-transduced NRCM. As these conditions
are below the detection level of the co-immunoprecipitation
assay, we performed a more sensitive proximity ligation
assay (PLA) in NRCM. Thereby, we detected a complex
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Ad-RGS3L-N460A for 24 h and additionally treated with 100 ng/ml
PTX or 50 ng/ml FGF2 for 24 h as indicated. Thereafter, the cells
were stimulated with carbachol or solvent for 5 min at 37 °C. Values
are mean+ SD (n=6-10), *p <0.05. E Effect of the RGS3L-N460A-
Expression on the Phenylephrine (PE) induced cellular hypertro-
phy. One pCi/ml [*H]-leucine was added into the culture medium
shortly after stimulation. After 24 h cellular protein was collected
and [°H]-content was determined. Measurements were performed in
3 replicates. Values are mean+SD (n=3/6 (EGFP/RGS3L-N460A),
*p<0.05

formation already under basal conditions. In accordance
with the co-immunoprecipitation assays, carbachol sig-
nificantly increased the interaction between both proteins,
indicating that the carbachol-induced p190RhoGAP/RGS3L
complex formation occurs also in native conditions (Fig. 6E,
F).

The specificity of a GAP can be monitored by binding to
constitutively active monomeric GTPases [58]. Therefore,
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Fig.6 Visualization of the interaction of pl90RhoGAP with RGS3L
in NRCM. For co-immunoprecipitation experiments cells were trans-
duced with the Ad-EGFP or Ad-RGS3L-N460A and 48 h later, cells
were stimulated without and with carbachol for 5 min. Immunopre-
cipitations were performed using either anti-pl90RhoGAP or anti-
RGS3 antibodies. Western blots were probed with the corresponding
secondary antibodies. Total amount of pl90RhoGAP or RGS3L in
the cell lysate was used as loading control. Representative experi-
ments (A, B) and quantification of the relative amount of bound pro-
teins compared to the non-stimulated control (C, D) are shown of

we studied whether RGS3L expression can alter the sub-
strate specificity of overexpressed pl90RhoGAP in HEK
cells, the system in which the RGS3L-dependent switch
from Racl to RhoA was originally characterized [87]. Co-
transfection of RGS3L-N460A with pl90RhoGAP reduced
the binding of p190RhoGAP to the constitutively active
RhoAQG63L mutant (Fig. 7A, B) and reciprocally increased
the binding to the constitutively active Rac1Q61L mutant
(Fig. 7C, D), supporting our hypothesis of a substrate switch
of pI90RhoGAP. Like the RGS3L-N460A mutant, wild-
type RGS3L, but not the N-terminally truncated isoform
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n=11 (C) or n=8 (D) experiments. Values are mean+ SD, *p <0.05.
E Visualization and quantification of the RGS3L-p190RhoGAP
interaction using proximity ligation assay, NRCMs were plated on
coverslips were stimulated without and with carbachol for 5 min.
Phase contrast pictures, DAPI staining and proximity ligation (PLA)
were performed. For negative control no primary antibodies were
used F Quantification of the positive PLA-reactions. The number of
the green fluorescent dots per cell was determined for 92 cells from
three experiments. Values are mean+ SD, *p <0.05

RGS3S is able to confer RhoA activation [87]. To test
whether the switch in GAP activity of pl90RhoGAP fol-
lows a similar pattern, we co-transfected HEK-293 cells
with pl90RhoGAP together with RGS3—-N460A or RGS3S
encoding constructs (Fig. 7E). In accordance with its ability
to confer RhoA activation, the change in the GAP activ-
ity of p190RhoGAP was only observed in the presence of
wild-type RGS3L and its N460A mutant, but not when
RGS3S was expressed. This clearly demonstrates that the
extended N-terminus of RGS3L is not only required for the
Gy binding [87], but is also a requisite for the regulation of
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«Fig.7 Measurement of the RhoAGAP and RaclGAP activity
of pl90RhoGAP in HEK-293 cells and NRCM. A-F Measure-
ment of the pl90RhoGAP-activity in HEK-293 cells express-
ing pl90RhoGAP with or without RGS3L. Functionally active
p190RhoGAP was precipitated from the cell lysates with constitutive
active RhoAQ63L-GST (A, B) or constitutive active RaclQ61L—
GST (C, D) coated beads. Immunostaining with anti-pl190RhoGAP-
antibody was used to detect pl90RhoGAP in the precipitates (active
p190RhoGAP) and in total lysates (loading control). Representative
immunoblots of experiments performed in duplicate (A, C) as well as
quantification of pixel density of n=35 experiments (B, D) are shown.
p190RhoGAP bound to RhoAQ63L or Rac1Q61L was normalized to
the loading control. Values are mean+SD, *p <0.05. E Molecular
structure of the used RGS3 isoforms. F Measurement of the RacGAP
activity of pl90RhoGAP in HEK-293 cells expressing the indicated
RGS3 isoforms. Values are mean+SD, n=35, *p<0.05. G-J Meas-
urement of the RhoAGAP- and RaclGAP-activity of pl90RhoGAP
in NRCM. After 48 h transduction with Ad-RGS3L-N460A or Ad-
EGFP, cells were incubated with or without carbachol for 5 min. Rel-
ative RhoAGAP/Rac1GAP activity of pl90RhoGAP was determined
by the amount of bound p190RhoGAP to RhoAQ63L- or Rac1Q61L-
coated beads normalized to the total amount of pl90RhoGAP in cell
lysates. Representative experiments (G, I) as well as quantification of
the pl90RhoGAP activities (H, J) are shown. The control value was
set to 1.0 in each individual experiment. The other values are shown
as mean+SD of n=9 (H) or n="7 (J) independent experiments. One-
way ANOVA with Tukey’s multiple comparison was performed for
these values, *p <0.05

the GAP activity of p190RhoGAP (Fig. 7F). Next, we deter-
mined whether carbachol could change the substrate speci-
ficity of endogenously expressed pl190RhoGAP for RhoA
and Racl in the presence of RGS3L in NRCM. Without
RGS3L-N460A expression, pl 90RhoGAP bound predomi-
nantly to constitutively active RhoA (Fig. 7G). In contrast,
when RGS3L-N460A was expressed, carbachol reduced the
binding of pl90RhoGAP to RhoAQ63L and increased the
binding to Rac1Q61L (Fig. 7G- - J). The switch was detect-
able after 3 min and more prominent at 5 min (Supplemen-
tal Fig S2). Taken together these data clearly indicate that
the interaction of RGS3L and pl190RhoGAP is essential for
re-balancing the activity of Racl and RhoA in response to
carbachol in cardiomyocytes.

Discussion

There is increasing evidence that cholinergic signaling could
play a protective role in heart failure [36, 38] as the stimula-
tion of the nervus vagus could protect the heart from remod-
eling and improved survival in animal heart failure models.
However, whether such an approach is feasible in humans
is a matter of debate. The first clinical trials investigating
this promising therapeutic approach for human heart failure
were not as beneficial as expected [44, 45, 60, 70]. During
ischemia/reperfusion after myocardial infarction, however,
vagal stimulation improved the outcome in a small cohort
study [27, 93]. Nevertheless, muscarinic receptors play an

important role in the control of cardiac and vascular func-
tions. The M,R is the dominant cholinergic receptor subtype
in the heart. However, surprisingly, it is also expressed in
ventricular cardiomyocytes lacking parasympathetic inner-
vation [14, 55]. M,Rs and G; proteins are upregulated in
heart failure [13, 84, 91] and exhibit a protective role in
cardiac ventricular function and against the occurrence of
cardiac arrhythmias [23, 37, 95]. On the other hand, chronic
carbachol infusion sensitized the myocardium to cAMP-
induced arrhythmia, most likely by reducing the content
of PTX-sensitive G; proteins in cardiomyocytes [18, 63].
Interestingly, it was recently shown that in addition to the
parasympathetic regulation, acetylcholine (ACh) is secreted
directly from cardiomyocytes [62, 66]. This non-neuronal
ACh plays an important protective role in the regulation of
myocardial function in both basal as well as in pathologic
conditions and might be a possible therapeutic target in car-
diovascular diseases [32, 38, 43, 52, 66, 69]. Cardiac ACh
protected the heart from remodeling and mice lacking this
non-neuronal source of ACh showed increased oxidative
stress, remodeling, and hypertrophy [51, 65]. In addition, in
heart failure a cholinergic trans-differentiation of the cardiac
sympathetic nerves via cytokines secreted from the failing
myocardium occurs [19, 33, 59], which might represent
another source of ventricular ACh. Therefore, in addition
to the correction of the sympathovagal balance in the heart,
the so far not fully understood cholinergic signaling through
M,Rs in ventricular cardiomyocytes might be beneficial in
the failing heart, possibly providing a new target for treat-
ment of cardiovascular diseases [32].

Based on data obtained from a model of experimental
heart failure in rats, which showed a ROCK-mediated ino-
tropic response to M,R activation only in failing hearts [30]
and a RhoA/ROCK-mediated, carbachol-induced inotropy
in neonatal rat hearts upon M,R activation [40], we pro-
pose that the carbachol-induced RhoA/ROCK-mediated
responses are elicited by this receptor subtype. This inter-
pretation is supported by the sensitivity of the carbachol-
induced RhoA activation to PTX treatment. In contrast to
the G,/;,-mediated RhoA activation elicited by the M;R
[47], which might contribute to the regulation of cardiac
contractility [35], the M,R-induced, G;,-mediated RhoA
activation in the presence of RGS3L is PTX sensitive [87].
We, therefore, studied the role of RGS3L in mediating a
carbachol-induced RhoA activation in cardiomyocytes
(NRCM, AMVM). We obtained evidence that the amount
of expressed RGS3L regulates whether a carbachol-induced
RhoA activation occurs or not. Whereas the depletion of
RGS3L completely abolished the carbachol-induced RhoA
activation, increasing its expression level, either by FGF2
treatment or adenoviral expression, strongly enhanced the
ability of carbachol to activate RhoA. In accordance with the
previously described pathway mediating the M,R-induced

@ Springer



8 Page 16 of 21

Basic Research in Cardiology (2022) 117:8

RhoA activation in HEK cells [87], the carbachol-induced
RhoA activation in NRCM was inhibited by PTX and
LY294002 treatment, indicating the involvement G;,, pro-
teins and the Gpy-dependent activation of PI3K (Fig. 8).
Similar to observations in the artificial M,R-expressing
HEK cell system, the increased carbachol-induced RhoA
activation was accompanied by a decrease in carbachol-
induced Racl activation. G;,,-coupled GPCRs, including
M,Rs, are known to activate Racl in a variety of cell types
[64]. In cardiomyocytes, the G;,,-dependent Racl activa-
tion is mediated by Gpy dimers and involves the activation
of PI3K and the Rac-GEF Tiam1 [85]. Racl activity has
essential functions in the heart and is also involved in the
development of cardiovascular diseases, e.g., it is involved
in the hypertrophic response in cardiomyocytes [10, 68,
85]. Moreover, Racl is an essential co-factor of certain
NADPH oxidases, which induce through increased oxida-
tive stress cardiac dysfunction and injury [17, 48, 49, 57].
Thus, mice expressing constitutively active Racl developed
cardiomyopathy and exhibited a post-ischemic contractile
dysfunction [80, 81]. Therefore, inhibition of Rac1 signaling
by enhanced RGS3L expression is a potential cardioprotec-
tive therapeutic strategy in cardiac hypertrophy, fibrosis,

Carbachol
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Fig.8 Schematic overview of the RGS3L-mediated switch in M,R
signaling from Racl to RhoA activation and its functional conse-
quences in cardiomyocytes
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arrhythmias, and heart failure [3, 20]. In line with this
interpretation, upregulation or overexpression of RGS3L in
NRCM suppressed the carbachol-induced ROS production,
the phenylephrine-induced hypertrophic protein synthesis in
NRCM, and hypertrophy induced by the inflammatory stim-
ulus PGE2 [83]. In addition, the RGS3L upregulation likely
interferes with the detrimental G;By-mediated, muscarinic
receptor induced activation of p38 mitogen-activated protein
kinases, acting upstream of ROS production [28, 53, 73].
Interestingly, the signaling pathway used by M,Rs to
increase RhoA activity in the presence of RGS3L (see
Fig. 8 and [87]) is similar or even identical to that used to
activate Racl in the absence of RGS3L. This interpreta-
tion is supported by the data obtained by PTX treatment,
PI3K inhibition, and Tiam1 depletion, which similarly
abolished, both carbachol-induced RhoA and Racl activ-
ity observed with and without RGS3L-N460A expression,
respectively. As mentioned before, Tiam1 does not induce
an activation of other monomeric GTPases than Racl in
living cells [21, 85]. Therefore, it is likely that the switch
from Racl to RhoA activation in the presence of RGS3L
is regulated by another molecule, most likely attracted to
the same signaling complex by binding to GBy/RGS3L. A
potential candidate was pl90RhoGAP as it is expressed
in cardiomyocytes and most importantly can switch its
substrate preference from RhoA to Racl [39, 41, 46]. In
general, the regulation of the GAP activity can occur by
several ways, such as autoregulation, lipid-binding, pro-
tein-binding, phosphorylation, or changing the subcellular
localization [4, 16, 41, 46, 54, 74]. Moreover, by a recent
meta-analysis, which aimed to evaluate sequence—struc-
ture—function relationship of different RhoGAPs and Rho
proteins, it was suggested that the RhoGAP domain itself
is rather nonselective and under cell-free conditions it can
be even inefficient [2]. Instead, other domains of RhoGAPs
can determinate the substrate specificity and fine-tune the
catalytic efficiency of the GAP domain in the cell. In accord-
ance with that notion, we obtained evidence that RGS3L is
able to form a complex with pl90RhoGAP and thereby its
substrate preference switched from RhoA to Racl. In line
with this hypothesis, the downregulation of the endogenous
RGS3L expression increased the basal activity of Racl
(see Fig. 1G). Most importantly, the complex formation in
cardiomyocytes is regulated by muscarinic receptors, thus
likely accounting for the loss in carbachol-induced Racl
activity and simultaneously increasing RhoA—GTP levels
(Fig. 8). Taken together, our data demonstrate an interesting
new mechanism involving an M,R-induced switch which
regulates the Rac1-RhoA balance in cardiomyocytes, and
could account for the M,R-induced increased cardiac con-
tractility seen in experimental heart failure and neonatal rat
hearts [30, 40]. In line with this hypothesis, we observed
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an enhanced carbachol-induced phosphorylation of MLC-2
upon expression of RGS3L-N460A which was sensitive to
ROCK inhibition.

The ex vivo contractility measurements of ventricu-
lar muscle strips from rats in which RGS3L-N460A was
expressed by a cardiotrophic AAV construct [6] revealed a
positive correlation between the RGS3L-N460A expression
level and an increase in contractility and allowed for car-
bachol-induced inotropy in a Ca’>*-dependent manner. This
Ca**-dependency fits well to the effects known of increased
RhoA and ROCK activation in cardiomyocytes, which
allows for an increased phosphorylation of MLC through
inhibition of MLC-phosphatase at higher Ca** concentra-
tions within the cell [78].

As this muscarinic inotropic mechanism bona fide
bypasses cAMP signaling it might be part of the beneficial
effects of non-neuronal ACh in heart failure together with
the afore discussed decrease in Racl-dependent ROS pro-
duction and cardiomyocyte hypertrophy. Therefore, it will
be interesting to determine if there is therapeutic potential of
AAV-mediated RGS3L-N460A expression in experimental
heart failure models.

Conclusions, study limitations and further
perspectives

In this study we combined several in vitro models, NRCM,
AMVCM, and HEK-293 cells, to clarify the mechanism how
G;/,-coupled muscarinic receptors, which are based on our
previous work most likely of the M, subtype ([30, 40, 87],
can induce RhoA activation dependent on the expression of
RGS3L. Our data demonstrate a Gj,,-dependent complex for-
mation of RGS3L with pl90RhoGAP, which likely depends
on the known interaction of RGS3L with Gy dimers [73,
87], that switches the GAP activity of p190RhoGAP from
RhoA to Racl. As a consequence, the agonist-induced Racl
activity is decreased, whereas the RhoA activity is increased.
NRCM and AMVCM are from different species and
largely differ regarding their differentiation, compartmen-
talization, and fetal vs. mature gene expression. HEK-293
cells are even regarded as an artificial cellular model. Thus,
the finding that the G;,,/JRGS3L dependent signaling can
be observed in different species and developmental stages
indicate a rather common signaling pathway, which gener-
ally regulates the activation of RhoGTPases, e.g., by M,Rs,
dependent on the expression level of RGS3L in cardiomyo-
cytes and is already present in early developmental stages.
In line with this interpretation an increase in RhoA activ-
ity caused by carbachol stimulation was, as far as studied,
always accompanied by a reduction in Rac1 activation.
The M,R-induced, RhoA/ROCK-mediated increase in
cardiac contractility was first described in left ventricular

strips isolated from adult rat hearts developing heart failure
after myocardial infarction [30], To test the hypothesis, that
the RGS3L expression level is crucial to carbachol induced
inotropy, we choose a model in which a cardiomyocyte spe-
cific RGS3L overexpression can be achieved in vivo and the
effect of this overexpression could be studied under similar
experimental conditions as described before [30]. Although,
an RGS3L-dependent, carbachol-induced increase in con-
tractility could be demonstrated, this model has limitations
in its significance. For example, it cannot predict whether
RGS3L overexpression has a realistic chance to be devel-
oped into a therapeutic intervention for the treatment of
heart failure. To study this, the RGS3L overexpression strat-
egy has to be tested for example in mouse or rat heart failure
models and analyzed in vivo, e.g., by echocardiography to
assess its influence on cardiac contractility. In addition, the
second likely beneficial effect of the RGS3L overexpres-
sion, the inhibition of the detrimental activation of Racl-
dependendent signaling, which herein was only preliminary
characterized in NRCM, can be analyzed in such models in
more detail. We are, therefore, pursuing such a strategy in
our laboratory.
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