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1) Single-cell profiling of clinical samples of 12 human colorectal cancer patients.
2) Tumormutational burden states of humanCRC contribute to distinct immune
profile patterns.
3) Single-cell analysis in humanCRC identified phenotypic and functional diver-
sity of tumor-associated macrophages and T cells.



Received: 11 December 2020 Revised: 26 April 2021 Accepted: 1 May 2021 Published online: 5 June 2021

DOI: 10.1002/ctm2.422

RESEARCH ARTICLE

Single-cell analyses reveal suppressive tumor
microenvironment of human colorectal cancer

YanMei1,2 Weiwei Xiao3 Hao Hu4 Guanming Lu5 Lingdan Chen1

Zhun Sun1 Mengdie Lü1 Wenhui Ma6 Ting Jiang3,7 YuanHong Gao3,7

LiRen Li7,8 Gong Chen7,8 ZifengWang7 Hanjie Li9 Duojiao Wu10

Pinghong Zhou4 Qibin Leng1 Guangshuai Jia1

1 Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
2 Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
3 Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
4 Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
5 Department of Breast and Thyroid Surgery, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
6 Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
7 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center,
Guangzhou, China
8 Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
9 Center for Synthetic Immunology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China
10 Institute of Clinical Science, Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University, Shanghai, China

Correspondence
Guangshuai Jia andQibinLeng,Affil-
iatedCancerHospital and Institute of
GuangzhouMedicalUniversity, State
KeyLaboratory ofRespiratoryDisease,
Guangzhou 510170,China.
Email: guangshuai.jia@gzhmu.edu.cn;
qbleng@gzhmu.edu.cn
DuojiaoWu, Institute ofClinical Science,
ZhongshanHospital, Shanghai Institute of
Clinical Bioinformatics, FudanUniversity,
Shanghai 200032,China.
Email:wuduojiao@126.com
PinghongZhou,EndoscopyCenter,
ZhongshanHospital, FudanUniversity,
Shanghai 200032,China.
Email: zhou.pinghong@zs-hospital.sh.cn

YanMei,WeiweiXiao,HaoHu,Guanming
Lu, andLingdanChen contributed equally.

Guangshuai Jia is the lead contact.

Abstract
Profiling heterologous cell types within tumors is essential to decipher tumor
microenvironment that shapes tumor progress and determines the outcome of
therapeutic response. Here, we comprehensively characterized transcriptomes
of 34,037 single cells obtained from 12 treatment-naïve patients with colorectal
cancer. Our comprehensive evaluation revealed attenuated B-cell antigen pre-
sentation, distinct regulatory T-cell clusters with different origin and novel poly-
functional tumor associated macrophages associated with CRC. Moreover, we
identified expandedXCL1+ T-cell clusters associatedwith tumormutational bur-
den high status. We further explored the underlying molecular mechanisms by
profiling epigenetic landscape and inferring transcription factor motifs using
single-cell ATAC-seq. Our dataset and analysis approaches herein provide a
rich resource for further study of the impact of immune cells and translational
research for human colorectal cancer.
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1 INTRODUCTION

Tumor microenvironment (TME) influences both tumor
progress and response to immunotherapy.1,2 Single-cell
RNA sequencing (scRNA-seq) provides unprecedented
detailed characterization of transcriptomes of cell diversity
and heterogeneity thereby allowing comprehensive assess-
ment of the complexity of tumor microenvironment.3
Numerous single-cell RNA-seq studies have been car-
ried out in human colorectal cancer (CRC) focusing on
organoid, non-immune cells, T cells, myeloid cells and
multimodal omics analysis,4–9 however, the TME hetero-
geneity and the crosstalkwith non-immune cells in human
CRC remains to be elucidated.
CRC occurs globally with high mortality as the third

most common cancer.10 Accumulated genetic alterations
in oncogenes and tumor suppressor genes (e.g., APC,
KRAS, PIK3CA, etc.) drive CRC tumorigenesis.11 In addi-
tion, dysfunction of DNA mismatch repair genes (MMR)
that lead to instability of the microsatellite pathway (MSI)
and genetic hypermutability is also associated with spo-
radic CRC tumorigenesis.11 As a result of the complexity
of CRC tumorigenesis and clinical status, a combination of
surgery, chemotherapy, radiation as well as immunother-
apy has been applied to treat CRC patients. Actually, MSI
is a good prognostic marker for CRC patients who bene-
fit from targeting immune checkpoint by PD-1 inhibitors.12
In addition, the higher tumor mutational burden (TMB)
rates also predict the better efficacy of immune-checkpoint
inhibitors.13,10,14 Despite of these clinical successes, only
a minority of CRC patients respond to PD-1 blockade, of
which the underlying mechanisms are not fully under-
stood, highlighting the need for a better understanding of
the tumor microenvironment of CRC.
In this study, we performed scRNA-seq analysis in

12 treatment-naïve CRC patients at cancer stages I–IV
harboring distinct driver mutations and tumor muta-
tional burden determined by whole exome sequencing
(WES). We focused on immune populations and found
tumor mutational burden states of human CRC con-
tribute to distinct immune profile patterns. Further, we
comprehensively profiled T-, B-, and myeloid-cell sub-
populations and their crosstalk with non-immune cells.
Akin to scRNA-seq, single-cell ATAC-sequence (assay
for transposase-accessible chromatin using sequencing)
enables high-resolution profiling of cellular composition
and heterogeneity and can generate additional infor-
mation about chromatin accessibility landscape. We
corroborated our findings by scATAC-seq analysis in
human CRC and inferred transcription factors that govern
gene regulatory networks. Altogether, our datasets provide
a resource for using defined clusters and states of immune

cell subpopulations for both diagnostic and therapeutic
research purpose for human colorectal cancer.

2 RESULTS

2.1 Profiling single-cell transcriptomes
and chromatin accessibility landscape of
human CRC

To elucidate the cellular landscape of microenvironment
of human colorectal tumors, we analyzed a total of 34,037
CRC single cells generated by droplet-based single-cell
RNA sequencing (Figure 1A,B). The cells were obtained
from paired adjacent normal, precancerous and primary
tumor tissues of 12 treatment-naïve patients at cancer
stages I–IV that were confirmed by pathological exami-
nation of paired biopsies (Table S1). In addition, we per-
formed WES on tumor tissues of seven patients that were
accessible, and identified the cohort harbored most of the
canonical mutations detected in CRC, such as PIK3CA,
MLH1, ROS1, KRAS, APC, TP53, PIK3CG, JMJD1C, ASXL1,
CHD4, and JAK2 mutations (Figure 1C). Of these seven
subjects, patient numbers 7 and 12 (Pt7 and Pt12) har-
bored high mutational rates and were categorized as
TBM high, while the others were classified as TMB low
(Figure 1C).
Using graph-based clustering to partition the cells

and t-distributed stochastic neighbor embedding (t-SNE)
for visualization,15 we integrated data from three tissue
types (adjacent, precancerous, and tumor) and identi-
fied major cell populations including T cells, B cells,
myeloid cells, mucosal associated invariant T (MAIT)
cells, natural killer (NK) cells, epithelial cells, fibroblasts,
and erythrocytes across all three tissue types (Figure 1B)
by examination of canonical marker genes (Figure 1D).
Erythrocyte contamination was removed for following
analysis. Notably, all the major cell types were retrieved
in distinct tissues or patients (Figure 1B–C). The samples
showed a remarkable heterogeneity that is associated
with different cancer stages (I–IV), tissues (adjacent,
precancerous, and tumor), and tumor mutational burden
(Figure S1).
To further explore the underlying molecular mecha-

nisms that shape the tumor immune microenvironment,
we performed single-cell assay for transposase accessi-
ble chromatin using sequencing (scATAC-seq) to pro-
file the epigenetic landscape on 6526 CRC cells sam-
pled from the same adjacent and tumor tissues for above
scRNA-seq from six patients (Pt7, Pt9, Pt12, Pt14, Pt17, and
Pt20) (Figures 1A and 2). We employed term frequency-
inverse document frequency (TF-IDF) normalization and



MEI et al. 3 of 18

F IGURE 1 Single-cell RNA-seq profiles of the human CRC. (A) Schematic of the experimental design for scRNA-seq of human CRC.
FFPE, formalin-fixed paraffin-embedded tissue specimens. (B) t-SNE plot of 34,037 cells from 12 CRC patients showing eight major cell types
(top). Bar plot of cell proportions in adjacent, precancerous, and tumor tissues (bottom). MAIT, mucosal-associated invariant T (MAIT) cells.
(C) Proportions of the major cell types, the clinical information and mutations for individual samples are shown. Mutations were detected by
whole exome sequencing (WES). Colors denote corresponding clusters. (D) Dot plot showing average expression of representative marker
genes of major cell clusters of integrated human CRC data. Dot size represents proportion of cells
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F IGURE 2 Single-cell ATAC-seq profiles of the human CRC. (A and B) Quality control of scATAC-seq data. Plot showing the fragment
length periodicity of signal from all single cells (A) and the proportion of all fragments that fall within ATAC-seq peaks (B, left), total number
of fragments in peaks (B, right). (C) t-SNE plots showing scATAC-seq data of human CRC cells color-coded by adjacent and tumor tissues. (D)
t-SNE plots showing scATAC-seq data of human CRC cells. (E) Aggregated ATAC-seq tracks of individual clusters of genomic regions of
indicated locus. (F) Dot plot showing average promoter activity of representative marker genes calculated based on scATAC-seq signal. Dot
size represents proportion of cells
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singular value decomposition (SVD) for dimensional
reduction toweight important peaks that enables detection
of hidden subpopulations.16 This analysis enabled us to
identify 11 clusters (Figure 2D). We noted that RNA-based
classification did not perfectly match the chromatin acces-
sibility based dimensionality reduction, which is consis-
tent with our previous findings of mismatch when pairing
scATAC-seq with scRNA-seq clusters.16 To interpret the
scATAC-seq data, we performed cross-modality integra-
tion and transferred cell type annotations from scRNA-seq
clusters to scATAC-seq data by identifying cluster-specific
peaks and assigned genes that were proximal to such peaks
(within 2 kb to TSSs). The aggregated reads from each
cluster exhibited open chromatin loci of PTPRC (encod-
ing CD45) and EPCAM in immune and non-immune cells,
respectively,which is consistentwith their RNAexpression
in individual clusters (Figure 2E,F).

2.2 Tumor-specific Tregs and highly
proliferative exhausted T cells identified in
human CRC

Tounravel the intrinsic subpopulations and potential func-
tions, we subset and performed unsupervised re-clustering
of each major cell types. T lymphocytes (including T and
MAIT cells) and NK cells comprised the largest immune
cell cluster across adjacent normal, precancerous, and
tumor tissues in our datasets. We re-clustered 16,397 single
T and NK cells and identified 20 subpopulations, includ-
ing a total of eight CD8+ and nine CD4+ T-cell clusters,
one NK cell cluster, one MAIT cluster, and one γδT cell
cluster (Figure 3A,B). We identified clusters according to
previously defined immune markers in colon tissues17,7,8
as well as DE (differentially expressed) genes in each clus-
ter (Figure S2A and Table S4). To statistically quantify tis-
sue enrichment of each subpopulation, we performed χ2-
test and measured the ratio of observed to expected cell
numbers (Robs/exp) (see Methods). By comparing tissue
distribution preference, we observed both NK cells and
MAIT cells were predominantly enriched in CRC tumor
tissues (Figure 3C). We found the tumor infiltrating MAIT
cells expressed genes related with activation and exhaus-
tion, such as pro-inflammatory cytokine TNFα, CTLA-4,
HAVCR2, Granzyme A, and Granzyme B, suggesting their
polyfunctionality in response to bacteria and/or metabo-
lites present in the tumor microenvironment in CRC (Fig-
ure 3B).
For CD4+ T cells, we identified two clusters of Th1

cells (expressing IFN-γ) (clusters 3 and 4), one cluster
of Th2 cells expressing IL13 (cluster 16), two clusters of

FOXP3+ Treg cells (clusters 9 and 17), and exhaustedCD4+
T cells (cluster 12). For CD8+ T cells, we designated clus-
ters 2, 5, and 6 as cytotoxic T cells (highly expressing
GZMK PRF1, GZMA, and GZMB, and showing low expres-
sion of exhaustion markers such as PDCD1, CTLA4, and
HAVCR2), and identified naïve CD8+ T cells (clusters 8
and 19; expressing TCF7 and SELL) and exhausted CD8+
T cells (cluster 6; CD8+ TEX) (Figure 3B). Further, clus-
ters 4 and 8 highly expressed CD69, ITGAE, and CXCR6,
andwere therefore designated as tissue-residentmemory T
cells (TRM). Two Treg clusters can be distinguished by the
expression of CTLA4 (Figure 3B). The CTLA4+ Treg clus-
ter (cluster 9) was present mostly in tumors, whereas the
CTLA– Treg cluster was enriched in adjacent tissues (Fig-
ure 3C). Differentially expressed gene analysis revealed
two distinct transcription programs by showing CTLA4+
Treg highly expressed IL32, KLF6, HLA-DRB1, ETS1, IL7R,
KMT2E, ISG20, TCF25, TIGIT and CD69, whereas TOX2
and ANKRD17 were enriched in CTLA4– Tregs (Figure
S2B). Alignment of all T cells along the potential devel-
opmental trajectories also corroborated distinct transcrip-
tome programs of CTLA4+ and CTLA– Treg cells, indi-
cating their different origination and cell function (Fig-
ure 3D and Figure S2C). We found both CD4+ and CD8+
TEX cells in CRC highly expressedMKI67 (Figure 3B). The
proliferative status was positively correlated with differen-
tiated exhausted states of TEX during chronic infections.18
Intriguingly, although CD8+ TEX cells were in exhaus-
tion state, they still expressed comparable levels of effector
molecules such as IFNG, GZMB, GZMH, and PRF1 as other
CD8+ subsets (Figure 3B).
We then analyzed scATAC-seq data in T cells and iden-

tified nine subpopulations based on promoter accessi-
bility of marker genes (Figure S2D,E). The T-cell sub-
populations of scATAC-seq also showed unequal prefer-
ence in adjacent and tumor tissues; for example naïve T
cells (CD8-TCF7 and CD4-CCR7) were found predomi-
nantly in adjacent tissues, whereas exhausted T cells (CD8-
HAVCR2) were enriched in the normal tumors (Figure
S2F). Consistently, the accumulated cluster-specific chro-
matin accessible peaks of TCF7 locus were decreased in
exhausted T cells comparing with that in TCF7+ cells (Fig-
ure 3E), which is reminiscent of previous study of TCF1
(encoded by TCF7) patterns revealed by bulk ATAC-seq.19
We then inferred enriched TF binding sites within accessi-
ble chromatin regions in TCF7+ and exhausted T cells. We
found a group of KLF family genes (KLF13/14/16) as well
as TCF7 enriched in TCF7+ cells, which suggested such
genes may play a role in maintaining T-cell stemness (Fig-
ure 3F). SOX10, MEIS1, RORα, and ZNF282 were enriched
in exhausted cells, which requires further study.
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F IGURE 3 Presence of activated tumor Tregs, proliferative exhausted T cells in human CRC. (A) t-SNE plot of T cells color-coded by cell
type and annotated by cluster numbers (top). Bar plot of cell proportions in adjacent, precancerous and tumor tissues (bottom). (B) Heatmap
showing average expression of selected T-cell function-associated genes in each cell cluster. (C) Tissue preference of each cluster estimated by
observed-to-expected ratio (Robs/exp). The Robs/exp was z-score transformed. (D) t-SNE plots showing pseudo-time paths of all CD4+ T cells.
CTLA4+ and CTLA4– Treg cells are denoted in red and blue, respectively, and other cells are in grey. (E) Genomic region of indicated locus
showing ATAC-seq tracks of aggregated single cells of TCF7+ and exhausted T cells. (F) Heatmap showing the enrichment of transcription
factor motifs in TCF7+ and exhausted T cells. p-Values were calculated from the hypergeometric distribution
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F IGURE 4 Tumor mutational burden-related T-cell heterogeneity. (A) Heatmap showing gene expression of chemokine genes in T cells
of TMB high and low samples. (B) Violin plot showing gene expression of indicated genes in T cells of TMB high and low samples. The dots
represent outliers. (C) Normalized expression of indicated genes in TCGA COADREAD data. Hypermutated and nonhypermutated samples
are separated based on genome-wide gene mutation rates. Boxplot showing the first quartile, median, and the third quartile. Whiskers extend
1.5 times of the interquartile range. p-Value was calculated using Student’s t-test

2.3 Tumor mutational burden
associated T-cell subpopulations in human
CRC

TMB has been reported to predict response to immune
checkpoint inhibitors in colorectal cancer as a biomarker
independent of microsatellite instability status.13,14
We identified differentially expressed genes associated
with TMB classification and focused on chemokines
(Figure 4A). We found the abundance of Th1/Th17
cells expressing CXCL13 was increased in TMB high
in comparison with TMB low subjects (Figure 4A,B).
This finding is concordant with previous study that a
cluster of CXCL13+ Th1-like cells were preferentially
enriched in microsatellite-instable tumor that usually
corresponds to TMB high and shows favorable responses
to immunotherapy.10,8 In addition, we identified that

lymphotactin 1 and 2 (XCL1 and XCL2), the ligand of
chemokine XC receptor 1 and 2 (XCR1 and XCR2), were
highly expressed in CD8+ CTL and TEX cells in TMB high
than in TMB low tumors (Figure 4A,B). We subsequently
examined the association of gene signatures of TMB
states with DNA mutation rates in colorectal cancer from
the Cancer Genome Atlas (TCGA COADREAD cohort).
We found that remarkably higher expression of CXCR6
was associated with hypermutated subjects comparing
with nonhypermutated ones (Figure 4C). In addition,
analysis of XCL1 indicated increased expression in hyper-
mutated subjects compared to nonhypermutated ones
(Figure 4C). XCL1 is expressed in activated T cells and
involved in antigen presentation of dendritic cells (DCs),20
and thus the higher expression of XCL1 likely contributes
to activating antitumor T-cell responses by recruiting
DCs.
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F IGURE 5 Tumor-associated macrophage subpopulations in CRC. (A) UMAP plot of myeloid cells (top). Bar plot of cell proportions in
adjacent, precancerous, and tumor tissues (bottom). (B) Tissue preference of each cluster estimated by observed-to-expected ratio (Robs/exp).
The Robs/exp was z-score transformed. (C) Pathway enriched in C1QC+ and SPP1+ TAMs, and CXCL5+ and CD55+ macrophages. Prominent
pathway terms are highlighted in red. Mean score of GSVA was z-score transformed. (D) t-SNE plots showing pseudo-time paths of
monocytes, C1QC+ and SPP1+ TAMs, and CXCL5+ and CD55+ macrophages. (E) Genomic region of HLA-DRB locus showing ATAC-seq
tracks of aggregated single cells of myeloid cells

2.4 Clustering myeloid cells reveals
dichotomous function of tumor-associated
macrophages

Myeloid cells partitioned into nine subpopulations (Fig-
ure 5A, Figure S3A, and Table S2). Using bioinformati-
cal criteria to include cells with low transcript counts that

could be inadvertently excluded when using the common
data filtering standard,21 we identified hyperinflammatory
neutrophils enriched in tumors comparing with adjacent
and precancerous tissues (Figure 5B). DCs, including plas-
macytoidDCs (pDCs) and conventional DCs (cDCs), play a
central role in cancer immunity by processing tumor anti-
gen and activating T cells.22–24 In our dataset, pDCs and
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cDCs were less enriched in tumors comparing with other
tissues (Figure 5B), which suggests antigen presentation
ability and T-cell activation is compromised due to attenu-
ation of DC enrichment and may partially explain the dys-
functional T-cell immunity of tumors.
We identified four macrophage (Mφ) subpopulations,

of which C1QC+ Mφ and CD55+ Mφ (clusters 0 and 4)
showed preferential enrichment in adjacent rather than in
tumor tissues. SPP1+ and CXCL5+ Mφ (clusters 6 and 7)
clusters were enriched in tumor tissues and therefore were
designated as tumor-associatedmacrophages (TAMs). Sur-
prisingly, we found SPP1+ TAMs (cluster 6) hadmixed phe-
notypes of proinflammatory and anti-inflammatory func-
tions, whereas CXCL5+ TAMs (cluster 7) showed proin-
flammatory phenotypes (Figure S3B). We performed gene
set variation analysis (GSVA) and found SPP1+ TAMs
and CD55+ Mφ significantly enriched “antigen processing
and presentation” and “T-cell co-stimulation” pathways,
while CXCL5+ TAMs and C1QC+ Mφ enriched “angio-
genesis” pathways (Figure 5C). This suggests that such
diverse macrophage subsets not only orchestrate immune
responses but also control tumorigenesis via tumor angio-
genesis. In addition, we found SPP1+ TAM exhibited
enrichment of Wnt signaling pathway, which may support
tumor growth25 (Figure 5C). By ordering monocytes and
macrophages to reconstruct pseudo-time trajectories using
Monocle 2 algorithm,26 we observed a clear directional
flow that monocytes bifurcated to two branches of SPP1+
TAMs and C1QC + Mφ (Figure 5D), suggesting distinct
cellular differentiation paths of these two subpopulations.
In concordance with the enriched antigen processing and
presentation pathways in SPP1+ TAMs, we found elevated
expression ofMHCclass II genes such asHLA-DRB5,HLA-
DQA1, and HLA-DQB1 comparing in SPP1+ TAMs with
CXCL5+ TAMs (Figure S3C). Our scATAC-seq analysis of
myeloid cells in adjacent and tumor tissues was also able to
recover the SPP1+ TAMs (cluster 3) (Figure S3D–F). In line
with the dichotomous function revealed by scRNA-seq,
both proinflammatory and anti-inflammatory genes exhib-
ited opening promoter activities in SPP1+ TAMs (Figure
S3G). Consistent with the antigen processing and presen-
tation ability, theHLA-DRA andHLA-DRB loci were more
open compared with other clusters (Figure 5E). To further
explore the molecular mechanism that regulates SPP1+
TAMs, we used scATAC-seq data to identify transcription
factor motifs that become accessible due to nucleosome
eviction and/or chromatin remodeling using R package
chromVar.27 We found a strong enrichment of Krüppel-
like factor family (KLF) KLF14 and KLF16 in SPP1+ TAMs,
while the ETV family, ELK4, ZBTB7A, YY1, and RUNX3
were significantly enriched in C1QC+ Mφ (Figure S3H).
Taken together, our analysis delineates the TAM subpopu-
lationwithmixed proinflammatory and anti-inflammatory

function, further revealing that TAMs are more pheno-
typical and functionally diverse than conventional M1
and M2 classification, which is reminiscent of recent
studies.5,9

2.5 Attenuated B-cell antigen
presentation in tertiary lymphoid
structures in human CRC

The overall shrinkage proportion of B and plasma cells
in tumor tissues suggests their potential roles in shaping
the tumor microenvironment (Figure 1A). We identified
five subpopulations of B cells and five plasma cell subpop-
ulations with marker-based annotations, identification of
cluster-specific differentially expressed (DE) genes and by
comparing with reference cells via SingleR2 (Figures 6A
and 7A,B and Table S3). In comparison with adjacent and
precancerous tissues, we found a significant reduction of
CD40+, CD27+, KLRB1+, and CCL5+ B cells (clusters 4, 9,
1, and 3, respectively) and MZB1+, DUSP1+, and CCL3+
plasma cells (clusters 5, 7, and 8) in tumor tissues (Fig-
ure 6B). Clusters 4, 7, 8, and 9 coexpressed CD44 and
CD69, which are the hallmark genes of tissue residency
of B cells in lung,28 and we therefore designated these
subpopulations as tissue-resident memory B cells in colon
mucosal (Figure 7C). We observed underrepresented pro-
portion of tissue-resident memory B cells in tumor tissues,
suggesting a systemic change in the B-cell immune
microenvironment (Figure 6B). By identifying DE genes in
each cluster (Table S3), we observed increased expression
of MHC class II genes in CD40+ and CD27+ B cells (Fig-
ure 7D). Recently, it was reported that proliferative B-cell
signatures were enriched in human tumors that respond
to immunotherapy but not in the nonresponding ones,
and such B cells localize within tertiary lymphoid struc-
ture (TLS) in several types of cancers including melanoma
and soft tissue tumor.29–31 Hence, we were promoted to
evaluate the TLS score by the examination of marker gene
expression including CCL19, CCL21, CXCL13, CCR7, SELL,
LAMP3, and CXCR4 and observed similar TLS genes score
in tumors comparing with adjacent tissues, which implied
the tertiary lymphoid structures in CRC tumor was intact
(Figure 6C).We then assessed the proliferation and antigen
presentation ability ofCD19+ andCD20+ B cells.We found
their proliferation states were higher and more disperse in
tumor tissues comparing with adjacent and precancerous
tissues, but the MHC class II genes score that may indi-
cate antigen presentation ability was lower (p< .0001, Stu-
dent’s t-test) (Figures 6C and 7E). Consistently, the IHC
staining of CD19 and MHC class II proteins showed that
the number of HLA-DPB1+ and CD19+ cells were sig-
nificantly decreased in tumor comparing with adjacent
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F IGURE 6 Tumor-associated B-cell subpopulations in CRC. (A) t-SNE plot of B cells (top). Bar plot of cell proportions in adjacent,
precancerous, and tumor tissues (bottom). (B) Tissue preference of each cluster estimated by observed-to-expected ratio (Robs/exp). The Robs/exp
was z-score transformed. (C) Tertiary lymphoid structure score (left) and MHC class II gene score (right) in adjacent and tumor tissues.
Boxplot showing the first quartile, median, and the third quartile. Whiskers extend 1.5 times the interquartile range. p-Value was calculated
using Student’s t-test. (D and E) IHC staining (D) and statistical bar plot (E) of CD19 and MHCII in adjacent and tumor tissues. The serial
sections of the same specimen are used to co-localize CD19 with MHCII in the same region. IHC staining pictures are exemplified by patient
Pt12. Bar plots represent results of Pt9, Pt12, and Pt17. The scale bar represents 100 μm (left panels) and 50 μm (right panels). p-Value was
calculated using Student’s t-test

regions (p = .0004, paired Student’s t-test) (Figure 6D,E).
Overall, our analysis evaluated B-cell immunity in human
CRC and revealed the attenuated antigen presentation and
diminished antitumor immunity capacity of CD40+ and
CD27+ B cells in tumor.

2.6 Tumor immune microenvironment
of CRC is affected by non-immune cells

We clustered non-immune cells into 11 subpopulations
according to cluster-specific DE genes (Figure 8A, Figure
S4A, and Table S5). High proliferative goblet cells express-
ingMKI67 andmetaplastic paneth cells expressing antimi-
crobial α-defensins (DEFA5 and DEFA6) were enriched in
precancerous and tumor tissues comparing with adjacent
tissues (Figure 8A), suggesting they might play a role in

tumorigenesis. Colonocytes highly expressing BEST4were
enriched in adjacent tissues, whereas BEST4low colono-
cytes exhibited tumor preference (Figure 8B). Four fibrob-
last subpopulations were identified (clusters 4, 6, 9, and
10), and cluster 6 was designated as cancer-associated
fibroblasts (CAFs) as itwas enriched in tumors (Figure 8B).
The CAFs were classified into myofibroblasts and inflam-
matory fibroblasts subtypes based on high expression of
either α-SMA or cytokines and chemokines.32 We found
a subpopulation of fibroblasts highly expressed MHC II
class genes and antigen presentation machinery such as
CD74 and TAP1 (Figure 8C and Figure S4B). We therefore
hypothesized such novel fibroblast subpopulation may
have the capacity to present antigen to T cells. How-
ever, MHC II+ fibroblasts did not express costimulatory
genes such as CD40, CD80, and CD86 for T-cell activation
(Figure 8C), suggesting their incapability to support full
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F IGURE 7 Single-cell RNA-seq of B cells of the human CRC. (A) Dot plot showing differentially expressed genes in each cluster. Dot
size represents proportion of cells. (B) Heatmap showing similarity score of B-cell clusters comparing with reference cells. The numbers
indicate the same clusters as clusters in (A). (C) Tissue preference of each B-cell cluster estimated by observed-to-expected ratio (Robs/exp). The
Robs/exp was z-score transformed. (D) Violin plots showing gene expression of marker genes across B-cell subpopulations. The y-axis was
log-scaled. Numbers indicate the same clusters as clusters in (A). (E) Heatmap showing gene expression of MHC genes in B cells. Numbers
indicate the same clusters as clusters in (A)

T-cell activation and thereby leads to T-cell tolerance or
anergy. Reconstruction of cell differentiation pseudo-time
revealed MHC II+ fibroblasts, inflammatory fibroblasts,
and CAFs have different origination and cellular func-
tions (Figure S4C), suggesting the loss of costimulatory

molecules of fibroblasts in tumors may contribute to the
maintenance of T-cell exhaustion.33
Cell-to-cell communication, which is partially medi-

ated by ligand (surface or secreted) and receptor interac-
tions, is important for immune cells to function in both
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F IGURE 8 MHCII expression of cancer-associated fibroblast subpopulations and putative cell–cell communications between
non-immune and immune cells. (A) t-SNE plot of non-immune cells (top). Bar plot of cell proportions in adjacent, precancerous, and tumor
tissues (bottom). (B) Tissue preference of each cluster estimated by observed-to-expected ratio (Robs/exp). The Robs/exp was z-score transformed.
(C) Heatmap showing expression of selected MHC and antigen presentation related genes in each cell cluster. (D) Circos plot showing the
interactions between ligands and receptors across cell types in adjacent (top) and tumor tissues (bottom). The interactions between
non-immune and immune cells are highlighted in red, other interactions are in grey. (E and F) Heatmap showing ligands and receptor
interaction pairs in tumor tissues between non-immune and myeloid (E) or T cells (F)
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normal and tumor tissues. We focused on the crosstalk
between non-immune and immune cells and interrogated
ligand and receptor expression of single cells to predict
cell-to-cell communication in adjacent and tumor tissues
using R package CellTalker.34 We found strikingly mas-
sive expansion of non-immune and immune cells com-
munications in tumor comparing with adjacent tissues
(Figure 8D), suggesting the active roles of non-immune
cells in shaping tumor immune microenvironment. We
further inferred receptor and ligand interactions in adja-
cent and tumor tissues using CellPhoneDB packages35
(Figure S5A,B). Closer examination of non-immune and
myeloid cell interactions in tumor revealed TNF super-
family and receptors such as TNFSF13−FAS (Figure 8E),
suggesting signaling via TNF superfamily play an impor-
tant role in regulating myeloid cells in TME. TNF and Fas
interactions have been reported to regulate macrophage
polarization,36 however their functions in tumor remain
unknown. Other interaction pairs involvedCSF1−CELSR3
and CXCL13−ACKR4. CSF1R signaling has been reported
to control macrophage homeostasis.37 The interactions
of non-immune and T cells included NOTCH2−IL24,
XCR1−XCL1/2, andACKR2-CCL13/27 (Figure 8F). Of note,
NOTCH signaling is required for T-cell activation and
effector function.38 The inference of cell–cell commu-
nications also allowed us to compare receptor and lig-
and interactions between immune lineages from a global
perspective. For example, we found different chemokine
and receptor interactions between B and T cells in adja-
cent and tumor tissues (Figure S5C,D). Our analysis pro-
vided a framework for assessing putative cell-to-cell com-
munication to understand the function of non-immune
cells in shaping immune microenvironment in colorectal
cancer.

3 DISCUSSION

In this study, we generated 34,037 single-cell transcrip-
tomes and chromatin accessibility landscape of 6525 sin-
gle cells sampled from 12 CRC patients. Our large dataset
allowed us to elucidate how heterologous cellular com-
position determines CRC microenvironment in individ-
ual patients. It is reported that CRC patients with high
TMB respond better to the immune-checkpoint block-
ade of PD-1 but the ones with low TMB phenotypes
do not. Single-cell analysis of a cohort of CRC patients
with MSI or MSS (microsatellite stability) identified that
CXCL13+BHLHE40+ Th1-like cells were preferentially
enriched in MSI.8 We performed single-cell RNA-seq on a
cohort of CRC patients with high and low TMB to unravel
their distinct immune cell composition. It is worth not-
ing that WES analysis confirmed that all these patients

in our cohort were MSS. Interestingly, we also identified
CXCL13+ T cells in high-TMB tumors, which may play
the similar function as in MSI tumors and be responsi-
ble for the high response rate to checkpoint blockade. In
addition, we identified several TMB state-related genes
including XCL1 and 2 family genes that were further
confirmed through IHC staining, and significantly more
samples retrieved from TCGA cohort. High TMB reflects
high neoantigen loads at certain degree, and thereby
tumor with higher TMB can induce stronger immune
responses.39 CXCL13+ and XCL1/2+ T cells thus likely rep-
resent neoantigen-reactive T cells. XCL ligand and recep-
tor family genes are predominantly expressed in activated
T cells and dendritic cells, mediate GPCR signaling, and
induce efficient cytotoxic immunity.40,41 It is plausible that
XCL-XCR signal serves as a niche cue tomediate antitumor
immune response in high-TMB tumors, which requires
further study.
Currently, the immunotherapy for human CRC such as

PD-1 or CTLA-4 blockade mainly leverages T-cell func-
tion. Our detailed classification of tumor-infiltrating T
cells can provide molecular mechanism on how check-
point blockade drugs affect T-cell subpopulation. We
identified two subpopulations of Tregs, that is, CTLA4+
and CTLA4– Tregs in CRC, which are also identified in
colon and non-small-cell lung cancer.42,43 The presence of
CTLA4+ Tregs in tumors and CTLA4– Tregs in adjacent
tissues is in line with observations that anti-CTLA4 ther-
apies may target FOXP3+ Tregs to induce tumor rejection
in melanoma.44 However, a recent contradictory result
showed that FOXP3+ Tregs were not affected in cancer
patients treated with anti-CTLA4 therapies.45 Hence, the
clinical significance of such heterogeneity of Treg popula-
tions needs further characterization.
In this study, we identified nine distinct myeloid

cell clusters in human CRC, suggesting that myeloid
cells in tumor are more heterologous than previously
appreciated.21 Importantly, we identified the polyfunc-
tional tumor-associated myeloid cells, namely SPP1+ TAM
subpopulations in CRC, whose functions do not fit the M1
andM2 polarization paradigm. In line with this, expanded
SPP1+Mφ clusterwas recovered and proposed to have both
pro- and anti-inflammatory features through scRNA-seq
analysis in a recent study.5 Moreover, another scRNA-seq
analysis in CRC also identified such TAMs and showed
that C1QC+ and SPP1+ TAMs have inflammatory and
angiogenic capacity, respectively.9 Targeting TAM subsets
with CSF1R blockade may provide novel immunother-
apy methods.9 However, as targeting CSF1R affects all
macrophages, other strategies are therefore needed to tar-
get specific subsets.
So far, the chromatin accessibility landscapes of

human CRC have not been investigated. We performed
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scATAC-seq on human CRC samples and focused on the
immune cells by inferring TFs that may play role in indi-
vidual subpopulations by binding cognate motifs. Further-
more, we analyzed chromatin accessibility dynamics dur-
ing T-cell exhaustion, and observed the epigenetic changes
of the TCF7+ stem-like to exhausted cells. Interestingly,
when coupled promoter opening activity of scATAC-seq
data with gene expression of scRNA-seq data, we observed
unmatched ATAC:RNA pairs, which was observed in our
previous studies andmay suggest that the chromatin acces-
sibility regulate targeting genes through long-distance
interactions such as enhancer–promoter interaction.16
In summary, our comprehensive characterization of

immune cells from different cancer stages of colorectal
cancer reveals the dynamic nature of immune and non-
immune cells. With the accumulation of more and more
single-cell transcriptional profiling of tumors from differ-
ent studies, integration and comprehensive characteriza-
tion of these data are necessary to gain the deeper insight
to tumor microenvironment.46 Our data can be a valuable
resource for further investigation to gain deeper biologi-
cal insights that will lead to discovery of novel biomarkers
and therapeutic targets for current immunotherapies for
human colorectal cancer.

4 METHODS

4.1 Human sample acquisition

In this study, we analyzed 12 human primary CRC sam-
ples (Table S1). For Pt1, the fresh biopsies were obtained by
colonoscopy, and single-cell suspension was immediately
prepared and subjected to scRNA-seq analysis. For other
samples, the tissues were obtained from patients under-
going surgical resection, and single-cell suspensions were
prepared and cryo-preserved in 90% FBS/10% DMSO until
further usage. The counterpart sections of all tumor tis-
sues were reviewed by pathologists to confirm the diagno-
sis. This study was conducted with approval of the Ethics
Committee of Sun Yat-sen University Cancer Center and
Zhongshan Hospital, Fudan University.

4.2 Sample dissociation

Human tumor or adjacent tissues were minced into small
pieces of 1–2 mm in a petri dish on ice in the RPMI-
1640 medium (Invitrogen), and enzymatically digested in
digestion buffer (25 mM HEPES [pH7.4], 0.15% Collage-
nase IV [m/v], 0.15% Collagenase II [m/v], 0.1% DNase
[m/v], 5% FBS, 2 mM L-glutamine, 5 mM CaCl2 in HBSS
buffer with Ca2+Mg2+) for 45 min on a rotor at 37◦C.

The dissociated cells were passed through 70 μm and
40 μm cell-strainer (BD) sequentially and centrifuged at
400g for 10 min at 4◦C. The pelleted cells were resus-
pended in Debris Removal Solution (Miltenyi Biotec) and
centrifuged according to manufacturer’s instruction. After
debris removal, the cells were subsequently resuspended
in red blood cell lysis buffer and incubated on ice for 2 min
to remove red blood cells. After washing with 1 × PBS,
the cell pellets were resuspended in sorting buffer (PBS
supplemented with 1% FBS) or cryopreserved until further
usage. The cryopreserved cells were thawed and incubated
with Dead Cell Removal Kit (Miltenyi Biotec) to remove
dead/stressed cells according to manufacturer’s instruc-
tion.

4.3 scRNA-seq library preparation

scRNA-seq was performed using 10x Chromium Single
Cell 3′ Reagent (V2 Chemistry for Pt1, V3 for all other
samples) according to manufacturer’s instruction. In
brief, viable single cells were resuspended in PBS with
0.04% bovine serum albumin (BSA; Sigma) and counted
using the hemocytometer. Cells were then mixed with
RT-PCR master mix and loaded into the Single Cell Chip
B and processed through the 10x controller for droplet
generation (targeting a recovery of 5000∼8000 cells
per sample). After droplet generation, in-drop lysis and
reverse transcription occurs and mRNA transcripts from
single cells were uniquely barcoded to identify the cell
origin. Following reverse transcription, barcoded cDNAs
were purified, amplified by 12 cycles of PCR, end-repaired,
and ligated with Illumina adapters. The resulted libraries
were sequenced on the Illumina Novaseq 6000 platform
with paired end 150 bp sequencing. Each sample was
sequenced to depth of ∼120 G of raw reads.

4.4 scATAC-seq library preparation

scATAC-seq was performed using 10x Chromium Single
Cell ATAC Reagent (V1.1 chemistry) according to man-
ufacturer’s instruction. Briefly, viable single cells were
resuspended in PBS with 0.04% BSA (Sigma) and counted
using the hemocytometer. Cells were subsequently incu-
bated with chilled Lysis Buffer (10 mM Tris-HCl [pH
7.4], 10 mM NaCl, 3 MgCl2, 0.1% tween-20, 0.1% IGPEL-
630 [NP-40 substitute], 0.01% Digitonin, and 1% BSA) for
4 min on ice. Following lysis, the isolated nuclei were
combined with ATAC Buffer and ATAC Enzyme (10x
Genomics; 2000123/2000138) and then were incubated
for 60 min at 37◦C. Afterwards, the transposed nuclei
were mixed with the Master Mix comprising of Barcoding
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Reagent (10x Genomics; 2000124), Reducing Agent B
(10x Genomics; 2000087) and Barcoding Enzyme (10x
Genomics; 2000125/2000139) and subjected to Chromium
Chip E (10x Genomics; 2000121). The droplet generation
was processed through the 10x controller targeting for
10,000 cells per sample. Resulting single-cell droplets were
collected and linear amplification was performed by PCR
with 12 cycles. The sequencing libraries were constructed
by amplification of barcoded product with sample index
and DNA clean-up. The libraries were sequenced on Illu-
mina sequencer with the following read length: 50 bp Read
1N, 8 bp i7 Index, 16 bp i5 Index, and 50 bp Read 2N. Each
sample was sequenced with depth of ∼20 G of raw reads.

4.5 Preprocessing of scRNA-seq data

scRNA-seq sequencing data were demultiplexed, aligned,
and quantified using the Cell Ranger Single-Cell Software
Suite (version 2.3, 10x Genomics) against the human refer-
ence genome hg19 or mouse reference genomemm10. The
generated outputs were processed using R package Seurat
(version 3.1).15 To filter out bad-quality cells, we considered
the following criteria and excluded them: cells with few
genes per cell (<50) or many molecules per cell (>20,000);
cells for which more than 10% of counts were derived from
mitochondrial genes. For samples of Pt7, Pt9, Pt12, Pt14,
Pt17, and Pt20, this threshold was set to 30% of mitochon-
drial genes because these cells were cryopreserved and
stressed due to freeze–thaw process. It is worth noting that
a more permissive filtering was necessary to avoid filter-
ing out human neutrophils and retain nonhematopoietic
cells.21 We subsequently combined three methods “Dou-
bletScore,” “scDblFinder,” and “DoubletFinder” to iden-
tify and exclude doublet cells. The filtered gene expres-
sion matrix was normalized using Seurat’s NormalizeData
function so that the expression of each genewasmultiplied
10,000 and log transformed.

4.6 Dimension reduction and
unsupervised clustering

To integrate datasets generated from different samples
and batches, we used the canonical correlation analysis
to integrate them using the top 30 dimensionalities. After
the integration, to perform dimension reduction, we first
scaled the data by shifting and scaling the expression of
each gene so that the mean expression across cells was 0
and the variance across cells was 1. Afterwards we ran PCA
analysis using top 2000 genes identified by FindVariable-
Features function of Seurat. We calculated a PCA matrix
and chose the first 50 components for t-stochastic neigh-
bor embedding (tSNE) dimension reduction.

4.7 Identification of cellular clusters
and differentially expressed genes

We used Seurat’s FindAllMarkers function for identifica-
tion of major canonical cellular clusters, by which we
identified marker genes and designated cell cluster labels
accordingly.
The detailed description of the clusters and correspond-

ing marker genes are included in the main text. For iden-
tification of DE genes between clusters, we used Wilcoxon
rank sum test, comparing natural log transformed and
library size normalized expression values of genes that are
expressed in at least 25% of cells between the cluster of
interest. The resultedDEGswere filtered using aminimum
log2 (fold change) of 0.5 and a maximum FDR value of
0.01.

4.8 Construction of single-cell
trajectories

To construct cell development trajectories, we used the
Monocle 2 package to align the cells in pseudo-time order.
The DDRTree approach implemented in the reduceDi-
mension function of Monocle 2 was used to map cells.26

4.9 Assessment of receptor/ligand
interactions

To evaluate putative interactions between cells, we used
CellPhoneDB and CellTalker.34,35 The database of human
receptors and ligands (including subunit of heteromeric
complexes for both ligands and receptors) was used to
identify putative ligand/receptor interactions between cell
types. The putative ligands and receptors were determined
according to whether they were expressed on each cell.
Afterwards, putative interaction pairs were identified and
displayed as circos plots.

4.10 Tissue enrichment of cell
subpopulations

We used observed cell number over the expected cell num-
ber (Robs/exp) of a given cell cluster to determine whether
such cluster is depleted or enriched.8 The observed and
expected cell numbers are obtained from the χ2 test.
Then the Robs/exp was z-score transformed. Therefore, if
Robs/exp > 0, it means the cell numbers of one cluster are
more frequently observed than random expectations, that
is, enriched. If Robs/exp < 0, it suggests that the cells of one
cluster in the specific tissue are depleted.
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4.11 scATAC-seq data preprocessing and
analysis

Similar to single-cell RNA-seq data, scATAC-seq sequenc-
ing datawere demultiplexed, aligned, and quantified using
the Cell Ranger Single-Cell Software Suite (version 2.3,
10x Genomics) against the human reference genome hg19.
The generated outputs were processed using R package
Signac.15 We then did quality control assessment and only
retained cells that met the following threshold: transcrip-
tional start site (TSS) enrichment score >2; total number
of fragments in peaks >1000 and <20,000; fraction of frag-
ments in peaks>20%; the ratio of reads in ENCODE black-
list sites <1.5%.
To reduce dimensions of the scATAC-seq dataset, we

first performed term frequency-inverse document fre-
quency (TF-IDF) normalization. The normalized matrix
was used as input for TF-IDF weighting, and term fre-
quency and smoothed inverse document frequency (SVD)
were used as weighting scheme. The data were then
reduced to 50 dimensions using SVD, and cells were
mapped into two dimensions using t-SNE. To find differen-
tially accessible peaks between cell clusters, we used Find-
Markers function of SignacRpackage andperformed logis-
tic regression for accessible peaks.
To transfer cell labels from scRNA-seq clusters to

scATAC-seq data,we quantified the activity of each gene by
assessing the chromatin accessibility within 2 kb upstream
region that was associated with each gene and created a
new gene activity assay using the FeatureMatrix function
of Signac. We then identified shared correlation patterns
in the gene activity matrix and scRNA-seq dataset in order
to identify matched biological states across the twomodal-
ities. Then each cell of scATAC-seq got the classification
score corresponding to individual scRNA-seq label.
To discover transcription factor dynamics and vari-

ation in their motif accessibility, we conducted analy-
sis using chromVAR.27 Briefly, we downloaded position
weight matrices (PWMs) for 579 known TFs from JASPAR
and used FIMO with default parameters to find transcrip-
tion factor motif occurrences. Transcription factor motif to
peak assignments were used in conjunction with counts
from 500 bp size fixed cluster-specific peaks to calculate an
accessibility deviation z-score for each transcription factor
motif/cell pair.

4.12 Whole exome sequencing

Genomic DNA was extracted from either FFPE sections
or fresh tissues. The quality of gDNA of each sample was
assessed to meet the requirement of purity and concen-
tration (OD260/280 > 1.8; >50 ng/ml). The gDNA was

subsequently sonicated to a peak size of ∼250 bp frag-
ments, followed by end-repairing, dA-Tailing and adap-
tor ligation using the NEBNext DNA Library Prep Reagent
Set from Illumina (New England Biolabs). The DNA frag-
ments were purified using AMPure beads for desired size
selection (300–400 bp). The purified DNA was amplified
by PCR with 10 cycles and the resulted PCR products were
then subjected to exome sequence capture using SureSe-
lect Human All Exon V6. The enriched elution was ampli-
fied by PCR with 10 cycles and the amplicons were size-
checked and quantitated using a BioAnalyzer 2100, and
then subjected to 2 × 150 bp paired-end on the Illumina
Novaseq 6000 platform. Each sample was sequenced to
500× coverage depth.

4.13 WES data processing and
SNV/indel calling

The raw reads were trimmed and filtered for quality, and
then aligned to the human genome hg19 using BWA. Reads
that did not map, mapped non-uniquely, mapped to repet-
itive regions or to chromosome M, as wells as PCR dupli-
cates were removed. The variant calling was performed
using the GenomeAnalysis Toolkit (GATK) and annotated
using ANNOVAR. TMBwas classified following the below
criteria: low ≤20 mutations/Mb, high ≥20.

4.14 TCGA data analysis

The TCGA colon adenocarcinoma (COAD) and rectum
adenocarcinoma (READ) data were used to confirm the
gene expression differences of the T-cell subtype between
patients of hypermutated and nonhypermutated genomes.
The gene expression data and genomicmutation data were
downloaded from UCSC Xena (http://xena.ucsc.edu/).

4.15 Immunohistochemistry staining

Tissues were fixed in 4% paraformaldehyde for 24∼48 h,
paraffin embedded, and the specimen were cut in 4-μm
serial sections. Slides were rehydrated through histoclear
and series concentration of ethanol, and antigen retrieval
was performed in a high-pressure heat repair process using
citrate buffer at pH 6.0. Tissues were blocked in goat
serum (ZLI-9022; ZSGB-BIO) for 60 min at 37◦C, and
then incubated with primary antibodies followed by HRP-
linked secondary antibodies and diaminobenzidine (ZLI-
9018; ZSGB-BIO) staining. Counterstaining was done with
hematoxylin for 45 s. Antibodies used are listed as follow-
ing: CD19 (Cat# GB11061, Servicebio), HLA-DMB (Cat#

http://xena.ucsc.edu/
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bs-4107R, Bioss), and HRP-conjugated IgG (Cat#ZB-2306,
Cat# G1215, ZSGB-BIO).
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