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Abstract: Promoting the efficiency of bone regeneration in bone loss diseases is a significant clinical
challenge. Traditional therapies often fail to achieve better therapeutic outcomes and shorter treatment
times. However, in recent years, extracellular vesicles (EVs) have gained significant attention due to
their exceptional osteogenic function in bone regeneration and superior therapeutic effects compared
to traditional cell therapy. EVs have emerged as a promising therapy for tissue defect regeneration
due to their various physiological functions, such as regulating the immune response and promoting
tissue repair and regeneration. Moreover, EVs have good biocompatibility, low immunogenicity,
and long-term stability, and can be improved through pretreatment and other methods. Studies
investigating the mechanisms by which extracellular vesicles promote bone regeneration and applying
EVs from different sources using various methods to animal models of bone defects have increased.
Therefore, this paper reviews the types of EVs used for bone regeneration, their sources, roles, delivery
pathways, scaffold biomaterials, and applications.
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1. Introduction

Bone defects are intricate pathological alterations resulting from osteoporotic fractures,
traumatic injuries, inflammatory responses, malignant tumors, and various other factors.
Globally, osteoporosis-related fractures occur at a rate of one every 20 s among individuals
aged 50 and above, with over 2 million bone graft procedures conducted annually [1]. The
extended healing duration associated with traditional treatments contributes significantly
to the substantial healthcare expenses incurred and demonstrates certain inherent limita-
tions [2]. The primary traditional treatment for bone defects is bone grafting, which can
involve autologous bone, allogeneic bone, or synthetic materials [3]. However, autologous
bone graft treatment has several drawbacks, including poor bone volume, limited availabil-
ity, donor site damage, and other complications [4,5]. Conversely, allogeneic transplants
can increase the risk of disease transmission, angiogenesis problems, immune rejection,
and other issues [6]. To address these challenges, sustainable bone regeneration therapies
are emerging, such as scaffolds, bioactive substances, and cells or tissues with osteogenic
potential [7]. There are also inevitable challenges associated with cell therapy, such as bio-
logical safety concerns, limited tissue sources, and ethical issues. Additionally, the ischemic
microenvironment of bone injuries may lead to a reduced survival rate of transplanted
cells, making it difficult to ensure efficacy. Therefore, the emergence of cell-free therapies
provides a new opportunity for bone regeneration treatment. Extracellular vesicles (EVs)

Int. J. Mol. Sci. 2024, 25, 3480. https://doi.org/10.3390/ijms25063480 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25063480
https://doi.org/10.3390/ijms25063480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0131-4015
https://orcid.org/0000-0003-0728-3018
https://orcid.org/0000-0003-3702-3567
https://orcid.org/0000-0001-7537-2640
https://doi.org/10.3390/ijms25063480
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25063480?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 3480 2 of 15

can induce osteogenesis, angiogenesis, and regulate immunity. They contain fewer mem-
brane proteins, making clinical applications safer and with a higher yield. As such, EVs are
expected to be an ideal component to combine with bone engineering scaffolds to guide
bone regeneration [8,9].

Extracellular vesicles are small lipid bilayer membrane particles secreted by all cell
types. The term “EVs” collectively refers to diverse vesicle types, such as exosomes,
microvesicles, microparticles, shedding vesicles, and apoptotic bodies (Figure 1). These
heterogeneous families of small vesicles are conventionally classified into the following
three groups, according to their size and biogenesis: exosomes (30–100 nm), microvesicles
(100–1000 nm), and apoptotic bodies (1000–5000 nm) [10]. Their contents include DNA
fragments, messenger ribonucleic acids (mRNAs), proteins, and lipids [11,12]. Exosomes
are formed within multivesicular bodies and are released when these bodies fuse with the
plasma membrane. They contain proteins and lipids derived from the parent cells, including
tetraspanin (CD9, CD63, and CD81), proteins involved in multivesicular body biosynthesis
[such as Alix and tumor susceptibility gene 101, (TSG101)], heat shock proteins (HSP70
and HSP90), and membrane translocation and fusion proteins (GTPases and membrane
coupling proteins) [13]. Microvesicles are produced and released by budding from the
plasma membrane. Apoptotic bodies are vesicles formed during apoptosis that contain
nuclear and cytoplasmic fragments surrounded by membranes when cells shrink and break
apart. In recent years, researchers have discovered a new type of extracellular vesicle, called
a migrasome, which is a large vesicle growing at the tip or crossing of retraction fibers in the
back of migrating cells. It is about 500 nm to 3000 nm in diameter and contains numerous
smaller vesicles [14]. After the cells migrate, the retraction fibers eventually break, releasing
the migrasomes into the extracellular space. Compared with exosomes, migrasomes have
specific proteins, such as N-Deacetylase/N-Sulfotransferase 1 (NDST1), EGF domain-
specific O-linked N-acetylglucosamine transferase (EOGT), Phosphatidylinositol glycan
anchor biosynthesis class K (PIGK), and Carboxypeptidase Q (CPQ) [15]. A recent study
has shown that migrasomes promote angiogenesis in chick embryos [16]. However, there
have been no studies on the use of migrasomes for the treatment of specific diseases.

After leaving the initiating cell, these vesicles can reach the target cell via markers on
their membrane surface, which can interact with the receptor-ligand, and thus alter the
physiological state of the target cell by transferring their contents or triggering signals on the
target cell’s surface. The effective uptake of EVs by cells is crucial for their biological activity.
However, the precise mechanism underlying the uptake of EVs by recipient cells remains
incompletely understood. Recent research suggests that the uptake mechanism primarily
involves pinocytosis, which can be categorized into clathrin-dependent endocytosis (CDE),
clathrin-independent endocytosis (CIE), and macropinocytosis (MP), among which CIE
and MP are the most common modalities [17–20]. Increasingly, studies have shown that
EVs have multiple physiological functions, such as regulating the body’s immune response,
promoting tissue regeneration and repair, and neural communication [21]. Due to their
excellent biocompatibility, long-term stability, and low immunogenicity, EVs have attracted
widespread exploration and application, especially in the field of bone regeneration [22].
In this review, we discuss the related knowledge and research progress of EVs promoting
bone regeneration, including the sources of EVs for the treatment of bone regeneration, as
well as their functions and applications.
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Figure 1. Characteristics of different types of EVs. There are different types of EVs, and their for-
mation mechanisms, release patterns, cargo, and markers are not exactly the same. 
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Immune cells in the bone microenvironment release cytokines and paracrine factors 
that exhibit activating or inhibitory responses to bone-associated cells. Neutrophils are the 
most abundant white blood cells in the blood circulation, and they are also one of the first 
types of immune cells recruited in the microenvironment of bone injury and inflammatory 
response. Studies have shown that Thrombospondin-1 (TSP-1), an acellular glycoprotein 
associated with blood clot formation and angiogenesis, is strongly expressed in response 
to the stimulation of neutrophil-derived exosomes [23]. TSP-1 can trigger CD36-depend-
ent signal that reduces the sensitivity of platelets to PGE-1 stimulated by endothelium-
derived mediators, thereby impairing their ability to inhibit platelets [24]. Mast cells are 
widely distributed around microvessels in the skin and visceral submucosa, which pro-
mote the secretion of coagulation factors in the inflammatory process and participate in 
immune regulation. When activated, mast cell-derived exosomes can activate endothelial 
cells to secrete plasminogen activator inhibitor type 1 (PAI-1) [25]. Dendritic cells (DCs) 
can regulate the initiation of adaptive immunity by secreting EVs containing major histo-
compatibility complex (MHC) class I and II molecules to activate cognate T cells and 

Figure 1. Characteristics of different types of EVs. There are different types of EVs, and their
formation mechanisms, release patterns, cargo, and markers are not exactly the same.

2. Common Sources of EVs for Bone Regeneration
2.1. Immune Cells

Immune cells in the bone microenvironment release cytokines and paracrine factors
that exhibit activating or inhibitory responses to bone-associated cells. Neutrophils are the
most abundant white blood cells in the blood circulation, and they are also one of the first
types of immune cells recruited in the microenvironment of bone injury and inflammatory
response. Studies have shown that Thrombospondin-1 (TSP-1), an acellular glycoprotein
associated with blood clot formation and angiogenesis, is strongly expressed in response to
the stimulation of neutrophil-derived exosomes [23]. TSP-1 can trigger CD36-dependent
signal that reduces the sensitivity of platelets to PGE-1 stimulated by endothelium-derived
mediators, thereby impairing their ability to inhibit platelets [24]. Mast cells are widely
distributed around microvessels in the skin and visceral submucosa, which promote the
secretion of coagulation factors in the inflammatory process and participate in immune
regulation. When activated, mast cell-derived exosomes can activate endothelial cells to se-
crete plasminogen activator inhibitor type 1 (PAI-1) [25]. Dendritic cells (DCs) can regulate
the initiation of adaptive immunity by secreting EVs containing major histocompatibility
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complex (MHC) class I and II molecules to activate cognate T cells and promote humoral
responses. Studies have shown that dendritic cell-derived EVs can induce osteogenesis [26].
Their exosomes contain immunomodulators, such as transforming growth factor-beta 1
(TGF-β1) and interleukin-10 (IL-10), which can be released in response to inflammation,
promoting the recruitment of regulatory T cells to inhibit osteoclasts and reduce bone
loss [27]. Macrophages are a ubiquitous cell type in vertebrate tissues, serving as a primary
defense against pathogens by phagocytosing microorganisms, infected particles, and dead
cells [28]. Their differentiation into M1 or M2 phenotypes is modulated by the local envi-
ronment, with exosomes derived from macrophages reflecting their respective phenotypic
characteristics [29] (Figure 2). These exosomes contain distinct biological information,
resulting in unique functions; for instance, M2-Exos have been shown to contain higher
levels of miR-365, whereas miR-326 is more abundant in M1-Exos [30,31]. Notably, no
biomarkers have been identified to distinguish M1-Exos from M2-Exos [32]. In a study
aimed at promoting osteogenesis, Chen et al. combined M2 macrophage-derived exosomes
and stromal cell-derived factor-1α (SDF-1α) with hydrogels, yielding a hydrogel with good
biocompatibility, hemostatic ability, and healing promotion. In vitro experiments revealed
that the hydrogel could facilitate the proliferation and migration of human bone marrow
mesenchymal stem cells and human umbilical vein endothelial cells, ultimately promoting
osteogenesis and angiogenesis [33].
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Figure 2. Different EVs in bone regeneration. EVs derived from various cells possess distinct contents
and functions. Certain EVs can act directly on bone cells, whereas others can indirectly stimulate
bone regeneration by regulating immune cells, inhibiting osteoclasts, and promoting endothelial cell
regeneration. The black arrow represents the process of EVs production and action, and the red arrow
represents the inhibitory effect of EVs or cells.

2.2. Stem Cells

Mesenchymal stem cells (MSCs) are multipotent stromal cells with various sources,
such as bone marrow-derived mesenchymal stem cells (BMSCs), adipose-derived mes-
enchymal stem cells (ASCs), umbilical cord-derived mesenchymal stem cells (UMSCs),
and others [34–36]. BMSCs have been widely used in bone regeneration strategies due to
their osteogenic capacity [37]. EVs derived from stem cells have been shown to have stem
cell-like regenerative functions. Thus, using EVs instead of stem cells to treat tissue defects
can avoid the side effects of stem cell therapy, such as immune response and tumor forma-
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tion [38]. EVs are also easier to store and transport. In addition to common surface markers
such as CD9 and CD81, exosomes derived from MSCs also express CD73, CD44, and CD90,
which are characteristic markers of MSCs [39]. Characterization of BMSC-derived exosome
contents based on proteomics identified 730 functional proteins, including proteins that
control the growth, proliferation, adhesion, migration, and morphogenesis capacities of
MSCs [40]. These extracellular vesicles can promote the expression of osteogenic growth
factors and bone-related proteins, and increase calcium deposition and matrix mineraliza-
tion in vitro [41–43]. BMSC-derived EVs showed characteristic markers CD13, CD29, CD44,
CD73, CD90, and CD105 [44], which can up-regulate the expression of TGF-β1 and bone
morphogenetic protein 9 (BMP9), thereby promoting the differentiation of osteoblasts [45].
Qin et al. isolated BMSC-derived EVs and found that they positively regulate osteogenic
genes and osteoblast differentiation in vitro. In vivo, experiments using rats with skull
defects showed that EVs lead to more bone formation in bone defects, and miR-196a may
play a crucial role [46].

2.3. Bone Cells

Bone homeostasis is regulated by interactions among osteoblasts, osteocytes, and
osteoclasts and their surrounding microenvironment [47]. Exosomes from bone cells, im-
mune cells, mesenchymal stem cells, and endothelial cells have been shown to affect bone
formation and resorption, potentially influencing the development of bone-related dis-
eases [48]. Osteoclasts are multinucleated cells derived from bone marrow monocytes and
macrophages responsible for bone resorption. EVs derived from mature osteoclasts contain
competitive inhibitors of receptor activator of nuclear factor kappa-B (NF-κB), which inhibit
osteoclast generation in the same environment [49]. Moreover, EVs released by mature
osteoclasts can bind to receptor activator of nuclear factor-kappa B ligand (RANKL) on the
surface of osteoblasts and trigger the RANKL reverse signaling pathway, thereby activating
the key Runt-related transcription factor 2 (Runx2) and promoting bone formation [50].
Osteoclast-derived exosomes have been shown to promote osteogenic differentiation of
stromal cells before osteogenesis [51]. However, it has also been shown to inhibit their
differentiation and lead to reduced bone formation by being internalized in osteoblasts
through EphrinA2/EphA2 recognition [52]. Li et al. found that miR-214-3p levels in os-
teoclasts were elevated in ovariectomized mice and elderly women with fractures, and
that miR-214-3p in osteoclast-derived EVs was able to transfer to osteoblasts in vitro to
inhibit osteoblast activity and reduce bone formation in vivo [53]. Osteoblasts are resident
bone cells derived from bone marrow mesenchymal stem cells and are responsible for bone
matrix synthesis and mineralization by releasing collagen and glycoproteins. Mineralized
osteoblast-derived exosomes have been shown to induce osteogenic differentiation through
activation of the Wnt signaling pathway, calcium signaling, and regulation of microRNA
profiling [54]. Meanwhile, osteoblast-derived exosomes are also rich in RANKL protein,
which can stimulate osteoclast differentiation through the RANKL-RANK signaling path-
way and lead to nuclear translocation of nuclear factor of activated T cells, cytoplasmic 1
(NFATc1), a major transcriptional regulator of osteoclast differentiation [55]. In contrast,
another study showed that mineralized osteoblasts were able to release EVs containing
miR-503-3p, which impaired osteogenesis by inhibiting RANK expression [56]. This may
be due to the heterogeneity of EVs, and the mechanisms regulating the switch between
bone formation and bone resorption are not fully understood [57].

2.4. Endothelial Cells

Angiogenesis plays a crucial role in the bone regeneration microenvironment. Exo-
somes derived from endothelial cells can target osteocytes and stimulate bone regenera-
tion [58]. Studies have demonstrated that exosomes derived from endothelial progenitor
cells (EPCs) can promote angiogenesis through the Raf/ERK signaling pathway, thereby
accelerating bone formation [59]. Moreover, EPCs were found to enhance healing and neo-
vascularization in a mouse fracture model by recruiting osteoclast precursors. EPC-derived
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exosomes have also been shown to have a positive impact in animal models of osteoporosis,
mainly through the high ferritin pathway in osteoblasts [60].

3. Functions of EVs

EVs are involved in promoting bone regeneration in various ways, including regula-
tion of the immune environment, promotion of angiogenesis, differentiation of osteoblasts
and osteoclasts, and promotion of bone mineralization (Figure 3).
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arrows represent the immunomodulatory effect of EVs in bone regeneration, red represents the
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3.1. Mediating Immune Stimulation or Immunosuppression

Moderate inflammatory response is necessary in the early stage of bone injury, while
hyperactive and persistent inflammation can hinder bone regeneration and lead to in-
flammatory injury. EVs have the potential to act as immunomodulatory messengers by
mediating immune stimulation or immunosuppression [61]. MSC-derived exosomes can
influence the activity of immune cells, including T cells, B cells, NK cells, and macrophages.
A clinical study has shown that MSC-derived exosomes may reduce the ability of pe-
ripheral blood mononuclear cells (PBMCs) to release proinflammatory cytokines in vivo.
MSC-derived exosomes upregulate IL-10 and TGF-β1 in PBMCs, thereby promoting the
proliferation and immunosuppressive capacity of Tregs to reduce inflammatory dam-
age [62]. In addition, human umbilical vein endothelial cells (HUVECs) -derived exosomes
contain a high concentration of programmed death ligand-1 (PD-L1). Exosomes overex-
pressing PD-L1 can specifically bind to programmed death-1 (PD-1) on T cells, inhibit
the activation of T cells, and promote callus formation and fracture healing [63]. Studies
have shown that mesenchymal cell-derived microvesicles (MVs) can deliver several im-
munomodulators such as PD-L1, galectin-1, and TGF-β, which can inhibit self-reactive cells
and suppress their mediated tissue damage, induce peripheral tolerance, and modulate
immune responses [64]. Furthermore, MSC-derived exosomes have been found to inhibit
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the concentrations of pro-inflammatory cytokines such as interleukin-1 beta (IL-1β) and tu-
mor necrosis factor-alpha (TNF-α), while the secretion of TGF-β is increased. This induces
the conversion of Th1 to Th2 cells and inhibits the pro-inflammatory response, thereby
reducing inflammation and promoting anti-inflammatory response in a similar manner
to MSCs [65]. In addition, M2-type macrophages have an anti-inflammatory phenotype
and are mainly responsible for tissue remodeling during macrophage polarization. Studies
have shown that MSC-derived microvesicles can promote the polarization of monocytes to
M2-type macrophages, thereby mediating tissue repair [66].

3.2. Promotion of Angiogenesis

EVs can also play a crucial role in promoting angiogenesis. In vitro studies have shown
that BMSC-Exos can promote fibroblast migration and proliferation through signaling
pathways involving AKT, STAT3, and ERK 1/2 [67]. Furthermore, BMSCs are enriched
in transcriptionally active STAT3, a transcription factor that is involved in angiogenesis,
proliferation, migration, and growth factor production. iPS-MSC-Exos, which are secreted
by induced pluripotent stem cell-derived mesenchymal stem cells, have been shown to
have great potential in treating ischemic tissues. Liu et al. found that after intravenous
injection into a rat model of steroid-induced osteonecrosis, iPS-MSC-Exos significantly
prevented bone loss and promoted angiogenesis in the femur [68]. Hypoxic preconditioning
can enhance the regenerative capacity of stem cells. Ding et al. reported that miR-126
was significantly upregulated in BMSC-Exos under hypoxic conditions compared to the
normal group. MiR-126, which is involved in the process of angiogenesis, can induce the
activation of the PI3K/AKT pathway in HUVECs, thereby promoting the formation of
new blood vessels [69]. Moreover, research has shown that transplantation of umbilical
cord MSC-derived exosomes (uMSC-Exos) combined with hydrogel into the site of injury
in a rat model of femur fracture resulted in uMSC-Exos promoting bone healing through
hypoxia-inducible factor 1α (HIF-1α)-mediated pro-angiogenic effects [70].

3.3. Differentiation of Osteoblasts and Osteoclasts

EVs play a role in promoting the differentiation of bone marrow mesenchymal stem
cells into osteoblasts and osteoclasts, thus maintaining the balance of bone metabolism [71].
Paracrine signaling mediated by EVs regulates bone homeostasis by affecting osteoblasts
and osteoclasts [72]. Furthermore, miR-214-3p in osteoblast-derived exosomes can be trans-
ferred to osteoblasts, inhibiting osteoblast activity in vitro and reducing bone formation
in vivo [53]. Annexins and sodium-dependent inorganic phosphate transporters transport
calcium and phosphate for the initial formation and accumulation of hydroxyapatite crys-
tals in matrix vesicles. These vesicles later release these crystals into the extracellular fluid
inducing calcification following collagen calcification [73,74].

4. Application of EVs in Bone Regeneration
4.1. Isolation, Storage, and Management of EVs

Purity is critical before applying EVs to the clinic, and isolation and purification tech-
niques should be standardized. Differential centrifugation (DC) is one of the most commonly
used separation methods, but the separation efficiency is low and time-consuming [75]. Tan-
gential flow filtration (TFF) has been widely used in industry due to its advantages of high
efficiency, flexibility, and scalability [76]. Whereas size cannot be used as the sole criterion
to distinguish vesicle types, TFF may allow similarly sized contaminants or nonvesicular
particles to flow together. Therefore, TFF can be used in combination with other techniques,
such as the immunomagnetic bead capture method, density gradient ultracentrifugation
(DG UC), anion exchange chromatography (AEC), and various principles of microfluidics
systems, which is the current trend for the isolation of EVs [77]. In addition, the stability
of EVs is very important in trials or clinical applications, but it is often easily overlooked.
Although the bilayer structure makes exosomes resistant to degradation to a certain ex-
tent, EVs are unstable. Temperature is the decisive factor for EVs storage. Studies have



Int. J. Mol. Sci. 2024, 25, 3480 8 of 15

shown that it can be maintained at room temperature for less than 48 h [78]. At the storage
temperature of 4 ◦C, the number and antibacterial ability of EVs is observed to decrease
in a short time, which may be related to their aggregation, fusion, adsorption to the tube
wall, and decomposition [79]. Storage at −20 ◦C affects the size of EVs, while the total
number is relatively stable, a temperature of −80 ◦C seems to be most suitable for long-term
storage [80]. In addition to temperature, more and more people are investigating methods
to improve its stability. The slow degradation rate of hydrogel-encapsulated exosomes is
an effective method. Liu et al. used nanocomposite hydrogel as a carrier of exosomes to
extend the time of BMSC-derived exosomes in the periodontal pocket and enhance their
osteogenic function [81].

4.2. Delivery Method of EVs

In bone regeneration engineering, EVs play a crucial role in promoting tissue regen-
eration and can be delivered to the designated injury site through a variety of methods.
Currently, EVs are utilized as a biologic agent to treat tissue damage by both in vivo and
topical injection. Osteoarthritis is mainly managed through pain medication, with no
satisfactory treatment available to improve joint stability [82]. However, extracellular vesi-
cles have been utilized in the exploration of osteoarthritis treatment, given their ability to
promote bone tissue regeneration. Exosomes extracted from bone marrow-derived mes-
enchymal cells were injected into the joints of mice with osteoarthritis, and BMMSC-Exos
were found to be effective in treating osteoarthritis, as evidenced by a significant increase
in type II collagen expression [83]. Injection therapy has limitations in achieving sustained
aggregation and controlled release due to immune system clearance in the body, thus
weakening their function [84]. Direct treatment of EVs cannot reach the appropriate concen-
tration required for treatment, and off-target effects and accumulation in non-target organs
are inevitable [85,86]. Moreover, local EVs injection therapy is inefficient in the treatment
of large bone defects, and its mechanical supporting capacity and carrying capacity are
insufficient. To overcome these limitations, many studies have explored the combination of
biological materials with EVs as loading carriers.

Scaffold materials commonly used for bone regeneration include synthetic polymers,
natural polymers, and bioceramics. Examples of commonly used synthetic polymers are
polycaprolactone, polypropylene glycolate, and polyglycolic acid [87,88]. Loading and
delivering EVs from biomaterials are promising tools for bone regeneration. In recent
years, researchers have experimented with new biological scaffolds as slow-release carriers
for EVs to maintain their biological activity and retention time at the site of bone defects,
which can further accelerate the efficiency and effectiveness of bone regeneration. EVs can
bind to biological scaffolds and provide a safe and stable carrier for the in vivo delivery
of EVs. Different composite technologies have been applied in the loading process of
EVs, including physical adsorption [35], chemical cross-linking [89], specific binding [90],
lyophilization [91], 3D printing [92], and more. Some studies have shown that combining
EVs with biological scaffolds has a better effect on repairing bone defects than using
EVs alone [93]. For example, Wu et al. compared the therapeutic effects of β-tricalcium
phosphate (β-TCP) alone and SHED-derived exosomes combined with β-TCP in a rat model
of periodontal injury. The exosomes/β-TCP group exhibited better bone regeneration
than either the β-TCP group or the control group, and SHED-derived exosomes were
found to promote periodontal bone regeneration through the AMPK signaling pathway by
promoting new angiogenesis and osteogenesis [94]. Additionally, hASC-derived exosomes
were combined with polydopamine-coating PLGA (PLGA/pDA) scaffolds for the treatment
of cranio-parietal defects in mice, which showed slow and sustained release of exosomes
from PLGA/pDA scaffolds. This combination significantly enhanced bone regeneration
by promoting the migration and homing ability of MSCs around the defect [95]. EVs can
also enhance the mechanical strength of biological materials. For instance, Qayoom et al.
used a calcium sulfate/nanohydroxyapatite-based nanocement (NC) as a carrier of MSC-
derived exosomes, which improved the biomechanical strength and promoted bone tissue
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formation in the femoral neck canal defect of osteoporotic rats [96]. However, the efficacy
of EVs combined with biological scaffolds may be influenced by factors such as stress
distribution at the damaged site, degradation rate of biological materials, and material
properties. Therefore, numerous in vivo studies are necessary to elucidate the standard
and process of EVs treatment for bone regeneration, enabling it to be better applied in
clinical treatments.

4.3. Application Direction

EVs are now widely used in the treatment of bone defects. In addition to the above-
mentioned applications, which promote fracture healing, bone defect healing, and the
treatment of osteoporosis and osteoarthritis, EVs can also be utilized in the treatment of
periodontal tissue loss. Periodontitis is a chronic inflammatory disease, and is one of the
most common chronic infections in humans. It leads to the destruction of periodontal
tissues, including alveolar bone, periodontal ligaments, and cementum [97]. Currently,
there is no effective treatment available to repair inflammatory bone loss in periodontitis.
In contrast, extracellular vesicles offer a promising new avenue for treating periodontitis
and improving alveolar bone resorption [98]. Although MSC-derived exosomes have
demonstrated therapeutic potential in experimental periodontitis, their clinical application
is hindered by their low yield and limited efficacy. To address this issue, Zhang et al.
used 3D systemic culture to extract exosomes, and found that they were able to exert
enhanced anti-inflammatory effects in a periodontitis model by restoring the homeostasis
of reactive T helper 17 (Th17) cells/Tregs [99]. Moreover, dental pulp stem cell-derived
exosomes (DPSC-Exos) were also effective in treating experimental periodontitis. DPSC-
Exos promoted a shift from a pro-inflammatory to an anti-inflammatory phenotype of
macrophages in periodontal tissues of mice with periodontitis, and this effect may be
related to miR-1246 in DPSC-Exos [100].

Although naturally derived EVs can perform important functions through a variety of
biological mechanisms, they still have some limitations, such as poor targeting and insuf-
ficient numbers of effective EVs. While EVs can inherit similar properties to their parent
cells, the bioactive molecules vary greatly among different EVs. Therefore, researchers are
currently studying engineered EVs, which use methods to improve their performance and
increase production. One approach is to genetically engineer EVs by treating parental cells
before collection [101].

Genetic modification of parental cells can confer more precise functions on the vesicles
they produce. Studies have shown that MSCs with up-regulated HIF-1α expression can
produce exosomes that have a better effect of promoting osteogenesis, leading to significant
new bone tissue regeneration [102]. Additionally, preconditioning parental cells with
conditioned medium can also improve the production or bioactivity of EVs. For instance,
when rat bone marrow stromal cells (rBMSCs) were pretreated with osteogenic induction
medium, multiple osteogenic miRNAs were expressed in exosomes derived from rBMSCs,
resulting in a 2-fold increase in alkaline phosphatase (ALP) activity compared with the
blank control group [91]. Furthermore, physical operations, such as force and electrical
stimulation, can alter the amount and content of derived EVs.

Exogenous engineering of EVs is also a current topic of interest. Currently, EVs can be
directly modified on their surface through methods such as incubation, electroporation,
ultrasonic treatment, mechanical extrusion, cyclic freezing, and thawing, as well as through
covalent or non-covalent interactions [103]. By these methods, modified EVs can be loaded
with desired biomolecules inside or on their surface, enhancing the function required for
treatment. For example, Zha et al. used electrical pulses to create holes on the surface of
EVs to increase membrane permeability and then loaded vascular endothelial growth factor
(VEGF) plasmids into EVs to construct gene-activated engineering exosomes. These engi-
neered exosomes can be used as osteogenic substrates to induce osteogenic differentiation
of mesenchymal stem cells. As gene vectors, VEGF genes can be released in a controlled
manner to reshape the vascular system [90].
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4.4. Clinical Trail

The ultimate goal of these studies is to better apply them in clinical treatment. In
recent years, with the continuous development of research, clinical trials related to EVs
have also been gradually carried out. As of March 2024, there were 100 clinical studies with
“Extracellular vesicles” as keywords, and 204 with “Exosomes” as keywords (ClinicalTri-
als.gov). EVs are now widely used in the treatment of various diseases, such as respiratory
diseases, central nervous system diseases, infectious diseases, and more. The most studied
disease is respiratory disease, which may also be affected by COVID-19. Currently, there
are seven clinical trials of bone tissue-related EVs for diseases including osteoarthritis,
periodontal disease, fracture, and disc disease, of which two have been completed (Table 1).
Vozel et al. conducted a clinical trial in 2021 (NCT04281901) using autologous platelet-
and extracellular vesicle-rich plasma (PVRP) to treat chronic postoperative temporal bone
cavity inflammation, and found that the PVRP treatment group became asymptomatic
faster, suggesting PVRP as a potential new treatment approach [104]. Another completed
clinical trial in 2022 (NCT04849429) used platelet-rich plasma (PRP) with exosomes to treat
degenerative disc disease, but no results have been published yet.

Table 1. Clinical trial of EVs for bone tissue-related diseases (ClinicalTrials.gov).

Condition or
Disease

Year
of Initiation Origin Sponsor Status Clinical Trial

Number

Osteoarthritis 2020 Adipose-derived Stromal Cells (ASC) Istituto Ortopedico Galeazzi, Italy Recruiting NCT04223622

Segmental
Fracture-Bone Loss 2022 Mesenchymal stem cells enriched by

extracellular vesicles

Institute of Biophysics and Cell
Engineering of National Academy

of Sciences of Belarus, Belarus

Not yet
recruiting NCT05520125

Otitis Media
Chronic

Temporal Bone
2020

Autologous blood-derived product
called platelet-and extracellular

vesicle-rich plasma (PVRP)

University Medical Centre
Ljubljana, Slovenia Completed NCT04281901

Periodontitis 2020 Adipose derived stem
cells exosomes Beni-Suef University, Egypt Recruiting NCT04270006

Bone Loss, Alveolar 2021
Autogenous Mesenchymal
Stem Cell Culture-Derived

Signaling Molecules

Pontificia Universidade Católica
do Rio Grande do Sul, Brazil

Not yet
recruiting NCT04998058

Osteoarthritis, Knee 2021 Exosomes derived from allogeneic
mesenchymal stromal cells. Universidad de los Andes, Chile Not yet

recruiting NCT05060107

Degenerative Disc
Disease 2021 Platelet rich plasma (PRP)

with exosomes
Platelet rich plasma (PRP) with

exosomes, India Completed NCT04849429

5. Conclusions

Extracellular vesicles are rich in biogenetic information, lipids, and a variety of proteins.
Currently, researchers have been able to successfully isolate and identify extracellular
vesicles from cells of different origins and apply them to the repair process of bone defects
in combination with various advanced biomaterials, providing a novel therapeutic modality
for promoting bone regeneration. However, there are still some questions that need to be
addressed, such as whether there are differences in the effects of extracellular vesicles from
different sources on bone regeneration in the same individual, the long-term efficacy of
extracellular vesicles after their in vivo application, and their regression and degradation
processes, and the potential for immune rejection after the injection of extracellular vesicles
of cross-species origin. Much more research is required to fully explore the potential of
extracellular vesicles for bone regeneration. We remain optimistic that continued study will
lead to new insights and discoveries in this field.
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