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Torsades de Pointes (TdP) is a type of ventricular arrhythmia which could be observed as
an unwanted drug-induced cardiac side effect, and it is associated with repolarization
abnormalities in single cells. The pharmacological evaluations of TdP risk in previous years
mainly focused on the hERG channel due to its vital role in the repolarization of
cardiomyocytes. However, only considering drug effects on hERG led to false positive
predictions since the drug action on other ion channels can also have crucial regulatory
effects on repolarization. To address the limitation of only evaluating hERG, the
Comprehensive in Vitro Proarrhythmia Assay initiative has proposed to systematically
integrate drug effects on multiple ion channels into in silico drug trial to improve TdP risk
assessment. It is not clear how many ion channels are sufficient for reliable TdP risk
predictions, and whether differences in IC50 and Hill coefficient values from independent
sources can lead to divergent in silico prediction outcomes. The rationale of this work is to
investigate the above two questions using a computationally efficient population of human
ventricular cells optimized to favor repolarization abnormality. Our blinded results based
on two independent data sources confirm that simulations with the optimized population
of human ventricular cell models enable efficient in silico drug screening, and also provide
direct observation and mechanistic analysis of repolarization abnormality. Our results
show that 1) the minimum set of ion channels required for reliable TdP risk predictions are
Nav1.5 (peak), Cav1.2, and hERG; 2) for drugs with multiple ion channel blockage effects,
moderate IC50 variations combined with variable Hill coefficients can affect the accuracy of
in silico predictions.

Keywords: Torsades de Pointes, drug cardiotoxicity, ion channels, in silico drug trials, human ventricular
action potential
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INTRODUCTION

Cardiotoxicity is a major cause of drug withdrawal from the
pharmaceutical market, and its earlier detection and assessment
could largely speed up the evaluation of target compounds in the
drug development process. For instance, drug-induced Torsades de
Pointes (TdP) is a type of ventricular arrhythmia linked to sudden
cardiac death. It is generally accepted that early afterdepolarizations
(EADs) occurring during the repolarization phase of action
potentials (APs) can trigger premature events, and then give rise
to TdP (Vandersickel et al., 2014: Vandersickel et al., 2015). Drugs
that block the hERG current (IKr) can inhibit the repolarization
process, leading to AP duration (APD) prolongation, and
facilitating EAD generation (Jurkiewicz and Sanguinetti, 1993;
Guo et al., 2011; Pueyo et al., 2011; Dutta et al., 2016). Therefore,
prolongation of APD (reflected in the electrocardiogram as QTc
interval prolongation) is often used as a surrogate to assess TdP
risk. IKr inhibition and QTc prolongation are sensitive but not very
specific for predicting ventricular pro-arrhythmia risk. Inhibition of
other cardiac ion channels, especially sodium and calcium
channels, may mitigate the effects of hERG blockage and reduce
pro-arrhythmic risk and EAD generation (Bril et al., 1996; Martin
et al., 2004; Sager et al., 2014; Britton et al., 2017).

Since hERG assays alone can lead to false positives in
predicting TdP risk and repolarization abnormalities, Kramer
et al. measured concentration-response relationships of hERG,
Nav1.5 peak (the fast sodium current, INa), and Cav1.2 (the L-
type calcium current, ICaL) currents for 32 torsadogenic and 23
non-torsadogenic drugs from multiple pharmacological classes
(Kramer et al., 2013). A logistic regression analysis showed that
risk prediction based on the three channels improved accuracy
with respect to using solely hERG block (Kramer et al., 2013).

To overcome the limitation of hERG inhibition as the main
evaluation criteria, the Comprehensive in Vitro Proarrhythmia
Assay (CiPA) initiative, sponsored by the Food and Drug
Administration (FDA) among others, has proposed a new
paradigm to integrate drug effects on multiple ion channels
into in silico modeling to evaluate the propensity for EADs
and repolarization instabilities (Sager et al., 2014; Colatsky et al.,
2016). Driven by the scheme of CiPA, recent experimental
studies have comprehensively analyzed the effects of clinical
drugs on up to seven ionic currents (Crumb et al., 2016).
Abbreviations: AP, action potential; APD, action potential duration; CiPA,
Comprehensive in Vitro Proarrhythmia Assay initiative; EAD, early
afterdepolarization; EFTPCmax, maximal effective free therapeutic concentration;
FDA, Food and Drug Administration; IC50, the concentration for 50% ion channel
inhibition; ICaL, the L-type calcium current; INa, the fast sodium current; INaCa, the
sodium-calcium exchanger current; INaK, the sodium potassium pump current;
INaL, the late sodium current; IK1, the inward rectifier potassium current; IKr, the
hERG current, also known as the rapid delayed rectifier potassium current; IKs, the
slow delayed rectifier potassium current; Ito, the transient outward potassium
current; ORd model, O’Hara-Rudy dynamic human ventricular action potential
model; QTc, Q-T interval on electrocardiogram corrected with heart rate; RA,
repolarization abnormality; RF, repolarization failure; TdP, Torsades de Pointes;
TP, true positive; TN, true negative; FP, false positive; FN, false negative; PPV,
positive predictive value; NPV, negative predictive value.
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Building on in vitro ion channel data, in silico TdP risk
prediction has shown promising results using several
approaches. One strategy for in silico TdP risk stratification is
to utilize machine learning algorithms to derive TdP risk metrics.
Strong performance was achieved using principal component
analysis, support vector machine classifications, and logistic
regression classifiers, based on ion channel blockage data and
features of simulated AP and intracellular calcium transients
(Lancaster and Sobie, 2016; Parikh et al., 2017). Another strategy
is to use simple classification models to analyze the balance
between depolarization and repolarization blockages (Mistry
et al., 2015). However, statistical analysis and machine learning
classifications do not enable direct observations of pro-
arrhythmic repolarization abnormalities (RAs), and make
mechanistic interpretations difficult. Alternatively, using RAs
as the main metric, simulations using a population of over
1,000 human ventricular cell models with random ionic
current variations yielded 89% accuracy in TdP predictions
(Passini et al., 2017). The accuracy was higher using RAs in
the virtual human cell population than using a single model or
APD prolongation, and also higher compared to experimental
animal models. The simulation results also revealed mechanistic
ion channel properties underlying RAs: for example, weaker INaK
(the sodium potassium pump current) favored RA, which was
related to proarrhythmic clinical conditions such as acute
myocardial ischemia (Passini et al., 2017).

Normal repolarization involves complex interactions and
contributions of multiple ionic currents, which include some
redundancy for the robustness of this critical part of the cardiac
cycle, namely the so-called repolarization reserve (Roden, 1998;
Roden Dan, 2008; Roden and Abraham, 2011). The subclinical
change in some currents may not directly lead to RA but the
lower repolarization reserve in these scenarios provides
vulnerable conditions for RA generation when ion channel
blockers are superimposed (Roden, 1998; Roden Dan., 2008;
Roden and Abraham, 2011). Inspired by the mechanistic ion
channel properties revealed in a previous study (Passini et al.,
2017), a population of human ventricular cell models was
designed to favor RA by introducing lower repolarization
reserve as weaker repolarization currents and stronger
depolarization currents (Passini et al., 2019).

In this study, we performed blinded in silico drug trials for 85
reference compounds using the optimized virtual human cell
population by (Passini et al., 2019), to investigate the following
questions: 1) what is the minimum set of ion channels needed for
good TdP risk predictions; 2) how different are in silico
prediction outcomes using IC50 and Hill coefficient values from
two independent and highly cited sources?

The significance of blinding in this study is twofold: 1) no
iterations of model calibration were done to improve predictions,
and this enabled a clear and independent validation of the
simulations for the use of drug induced TdP risk prediction; 2)
blinding also mimicked the preclinical stage of drug development
when the side effects were unknown before large clinical trials,
and no additional information such as the effects of metabolites
can be taken into account, therefore the blinded simulations
January 2020 | Volume 10 | Article 1643
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reflected better the new compound evaluation process. The
accuracy of the blinded prediction and its low computational
cost demonstrated the potential applicability of this in silico
approach in cost and animal use reduction for drug development
in pharmaceutical industry.
MATERIALS AND METHODS

Optimization of the Population of Human
Ventricular Models
The baseline model used in this study is the O’Hara-Rudy
dynamic (ORd) human endocardial ventricular AP model
(O’Hara et al., 2011), developed using data from over 100
human hearts, with modifications to the fast sodium channel
(Passini et al., 2016). It includes detailed representation of the
potassium, sodium and calcium sarcolemmal currents, as well as
intracellular calcium handling (including SERCA pump and
ca l c ium- induced ca l c ium re l ea s e mechan i sm) . A
computationally efficient population of 107 human ventricular
AP models constructed in (Passini et al., 2019) was used for the
assessment of RAs, as a surrogate for pro-arrhythmic
mechanisms under drug action. Based on established
knowledge of ionic profiles more likely to develop drug
induced RA (Passini et al., 2017), the population of models
was constructed by varying nine key ionic conductances to
represent electrophysiological variability, then constrained and
calibrated using the human data (Britton et al., 2017).
Conductances were varied unevenly to allow weaker IKr, IKs
(the slow delayed rectifier potassium current) and INaK, and
stronger INaL (the late sodium current), ICaL, and INaCa (the
sodium-calcium exchanger current) (Supplementary Material
Table S1) (Passini et al., 2019). The low repolarization reserve
introduced in the population is also representative of different
pathological conditions, such as long QT syndrome (Schwartz
Peter. et al., 2012), hypertrophic cardiomyopathy (Coppini et al.,
2013), and heart failure (Shamraj et al., 1993; Ambrosi et al.,
2013). The full list of parameters for the optimized population is
provided in the Supplementary Material Table S5.

Datasets
The sources and the names of all the compounds were blinded
during the in silico test. In silico drug trials were performed for
two groups of reference compounds at multiple concentrations.
Drug/ionic current interactions were simulated using a simple
pore-block drug model (Brennan et al., 2009). For each drug,
IC50 and Hill coefficient were the input parameters used to
describe each ionic current block as in previous studies
(Mirams et al., 2011; Passini et al., 2017).

Dataset I consisted of 30 compounds, for which IC50 and Hill
coefficients were available for seven ionic currents: INa, INaL, Ito
(the transient outward potassium current), IKr, IKs, IK1 (the
inward rectifier potassium current), and ICaL (Crumb et al.,
2016). Dataset II had 55 compounds, with IC50 and Hill
coefficients available for only three ion channels: INa, IKr, and
ICaL (Kramer et al., 2013). The full lists of IC50 and Hill coefficient
Frontiers in Pharmacology | www.frontiersin.org 3
values for both datesets are provided in the Supplementary
Material Table S6. For each compound, five concentrations were
tested: 1, 3, 10, 30, and 100 folds of their maximal effective free
therapeutic concentration (EFTPCmax).

Simulation Environment
Virtual Assay (v.2.4.800 © 2014 Oxford University Innovation
Ltd. Oxford, UK), a user-friendly C++ based software package
was previously developed for the simulation of drug effects on
virtual cardiac AP populations. Virtual Assay uses the ordinary
differential equation solver CVODE to implement backward
differentiation formula with adaptive time steps (Hindmarsh
et al., 2005; Serban and Hindmarsh, 2008), and relative and
absolute tolerances equal to 1e-5 and 1e-7, respectively. As
shown previously in (Passini et al., 2017), similar simulations
of virtual AP traces can be achieved using MATLAB (Mathworks
Inc. Natwick, MA, USA) or any other software to solve ordinary
differential equations. The effect of a drug at a testing
concentration was simulated as conductance reductions which
were based on the IC50 values and Hill coefficients from the
blinded datasets. For each concentration of each compound, the
drug assay was conducted on the population of models at a
pacing frequency of 1Hz for 150 beats, and the AP traces of the
last beat were used for analysis as in (Passini et al., 2017). The
choice of the pacing frequency was based on clinical reports that
pacing rates slower than 70 beats per minute were more relevant
to TdP occurrence while faster pacing can suppress TdP (Viskin
et al., 2000; Pinski et al., 2002; Kurisu et al., 2008). For all the
simulated traces, APD was calculated as APD90 (AP duration at
90% of repolarization), and TdP risk prediction was conducted
by analyzing the morphology of simulated AP traces to detect
RAs, as described below.

In silico TdP Risk Analysis
TdP risk prediction was calculated based on the occurrence of
two types of RAs in the population of human models,
encompassing EADs and repolarization failure (RF). The two
types of RAs were defined when positive derivatives were found
in the membrane voltage (Vm) after 150 ms following the AP
peak (for EADs), or the membrane voltage failed to reach resting
membrane voltage (Vm >-40 mV) at the end of the last beat (for
RF). In order to ensure the accuracy of automated RA detection,
simulation traces were also visually examined to check for
potential misclassifications caused by the algorithm.

Aggregated results at the population level are presented using
a scoring system (TdP risk score) as introduced in (Passini et al.,
2017) according to the following formula (where nRAc is the
number of models showing RA at a tested concentration c, Wc =
EFTPCmax / c is the weight inversely related to the tested
concentration c, and N is the total number of models in
the population).

TdP   risk   score =oc Wc*nRAcð Þ
N*ocWc

The analysis of TdP scores was also performed blindly. The
TdP risk score integrated RA occurrence at multiple
concentrations, and was computed in MATLAB. Logarithmic
January 2020 | Volume 10 | Article 1643

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Zhou et al. A Blinded In-Silico Drug Trial
scale was considered to maximize the visual separation of TdP
score between safe and risky drugs. Zero risk was approximated
for visualization with machine precision (10−16). For special
cases where access to individual ionic currents and ion channel
gating variables was needed, the same drug trials were repeated
in MATLAB to obtain more detailed information.

Evaluations of the In Silico Prediction
Results
After the blinded in silico prediction, the TdP risk of each
compound was compared against the current clinical reports in
the literature. Multiple sources were referenced for classification
as in (Kramer et al., 2013), including CredibleMeds® (Woosley
et al, 2019), available on www.crediblemeds.org, (Redfern et al.,
2003), publications on QT studies, and FDA-generated package
inserts. Considering the risk classifications of some drugs are
debatable, we also evaluated the prediction accuracy by only
applying the CredibleMeds® classification. For this, compounds
with any type of TdP risk (known, possible or conditional) were
considered to be risky even if the risk may only occur under
specific conditions such as overdose or interactions with other
drugs (Supplementary Material Figures S1–S4, Tables S2–S4).

Prediction results were classified as true positive (TP, both
clinical reports and in silico predictions were risky), true negative
(TN, both clinical reports and in silico predictions were safe),
false positive (FP, no clinical risk reports but in silico predictions
were risky), and false negative (FN, in silico predicted to be safe
but clinically reported to be risky). Sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
were computed separately for Dataset I and II based on the
number of TP, TN, FP, and FN predictions. Accuracy was
defined as the sum of TPs and TNs divided by the total
number of drugs. Each drug is referred to with the name and a
roman number to differentiate the two datasets.

Statistical Analysis
The formula for TdP score calculation is a deterministic
algorithm using the same models for all drugs, and therefore
no statistical algorithm was used for calculating TdP risk for
individual drugs. Pairwise linear correlation was performed
between TdP scores and drug induced APD prolongations
using MATLAB.
RESULTS

In Silico Prediction of TdP Risk
Considering All Available Ion Channel Data
and All Assessed Concentrations
The TdP risk scores were computed for both groups of
compounds, and in both cases risky and safe compounds were
identified. In Dataset I, unblinding the compounds revealed a
sensitivity of 85% and a specificity of 80% (Table 1), and the
overall accuracy was 83%, with 3 FN predictions and 2 FP
predictions. As illustrated in Figure 1A for Dataset I,
Frontiers in Pharmacology | www.frontiersin.org 4
simulations with 11 out of 30 compounds yielded no RAs and
thus no TdP risk, whereas 19 compounds induced RA in the
population of 107 human ventricular cell models. Among the
Dataset I compounds that produced RAs, Quinidine I
demonstrated the highest risk, with a TdP score of 0.78, while
Azithromycin I showed a mild risk with a TdP score of 10-3.

In Dataset II, 23 out of 55 compounds did not induce RAs,
while the remaining 22 compounds produced RAs according to
the automated RA detection algorithm (Figure 1B). Ibutilide II
had the highest TdP score of 1, and Solifenacin II had a very mild
TdP score of 6·10-5. Unblinding the compounds revealed a
sensitivity of 78% and a specificity of 70% (Table 1), with 7
FN predictions and 7 FP predictions from the automated
RA detection.

Further visual examination of the raw AP traces revealed that 3 of
the risky compounds detected by the automated algorithm
(highlighted in black squares in Figure 1B) did not induce RAs,
and the misclassification was caused by delayed AP peaks
(Supplementary Material, Figures S5A–C). The misclassifications
only happened for traces produced under 100×EFTPCmax. Fixing the
misclassification caused by the automated RA detection algorithm
revealed simulations had a true sensitivity of 78%, a specificity of 83%,
and an overall accuracy of 80% (Table 1, highlighted in bold).

The overall prediction accuracy against the CredibleMeds®

drug classifications was similar (Supplementary Material Figure
S1, Table S2). There were however some differences. Our
classifications of Saquinavir, Ranolazine, Dasatinib, Donepezil,
Metronidazole, Piperacillin were non-risky based on multiple
sources such as CredibleMeds®, publications on QT studies, and
package labels, but the latest CredibleMeds® database (accessed
2018-11-28) classify them as risky. The simulation results
showed Ranolazine, Metronidazole, and Piperacillin induced
RA, while Saquinavir, Dasatinib, and Donepezil did not
induce RA.

After unblinding the compounds, we explored whether
different pacing rates can affect the predictive accuracy of the
simulations by applying a faster pacing rate of 2Hz and a slower
pacing rate of 0.5 Hz at 10x EFTPCmax for the compounds in
Dataset I. The simulation results showed that slower pacing
tended to induce more EADs (Supplementary Figure S7), but
TABLE 1 | Accuracy of the in silico Torsades de Pointes (TdP) risk predictions
using the population of 107 human ventricular cell models with maximum testing
concentrations of 100×EFTPCmax.

Dataset I Dataset II

Clinical TdP (+) Clinical TdP (-) Clinical TdP (+) Clinical TdP
(-)

In silico (+) 17 2 25 7 4
In silico (-) 3 8 7 16 19
Sensitivity 85% 78% 78%
Specificity 80% 70% 83%
PPV 89% 78% 86%
NPV 73% 70% 73%
Accuracy 83% 75% 80%
January 2
020 | Volume 10
 | Article
For Dataset II, bold scores indicate the true accuracy of the model predictions after
fixing the misclassifications of the automated repolarization abnormality (RA) detection
algorithm.
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no qualitative differences were observed for the FN (Amiodarone
I, Amitriptyline I and Toremifene I) and FP compounds in terms
of RA generation (Cibenzoline I and Ranolazine I)
(Supplementary Figures S8 and S9).

Action Potential Prolongation and
TdP Risk
Since many compounds can block hERG and cause prolongation
of APD, and excessive APD prolongation can also be a TdP risk
factor, the relationship between TdP risk and APD prolongation
at low doses was also evaluated. A good linear correlation was
found between the overall TdP risk score and the APD
prolongation at 1 × EFTPCmax (r2 = 0.96) (Figure 2, upper
panel). Ibutilide II, which had the biggest TdP score of 1 and
Frontiers in Pharmacology | www.frontiersin.org 5
yielded the biggest APD prolongation, induced RFs in the
population even at the lowest tested dose. Quinidine I (TdP
score = 0.78), Quinidine II (TdP score = 0.70), Terodiline II (TdP
score = 0.67), Dofetilide I (TdP score = 0.43), and Thioridazine II
(TdP score = 0.36) induced significant APD prolongation and
EADs at the lowest testing dose (Figure 3). Flecainide I (TdP
score = 0.22), Nilotinib I (TdP score = 0.17), Quinine I (TdP
score = 0.09), Terfenadine I (TdP score = 0.05), and Flecainide II
(TdP score = 0.10) did not induce RAs at 1×EFTPCmax.
However, they can lead to APD prolongation of more than
100 ms, and four of these compounds led to EADs when the
testing concentration was increased to 3×EFTPCmax (Figure 4).

Although a good linear correlation was found between very
high risk TdP scores and APD prolongation at 1×EFTPCmax,
FIGURE 1 | Torsades de Pointes (TdP) risk assessment based on all the available ion channel inputs and up to 100×EFTPCmax. (A) Dataset I TdP risk assessment
based on all data from 7 ion channels (Crumb et al., 2016). (B) Dataset II TdP risk assessment based on all information from 3 ion channels (Kramer et al., 2013).
Classifications inconsistent with current clinical reports are labeled with black “+” and “–”: “+” implies the true classification should be risky, while “–” means the true
classification should be safe. Black squares in panel (B) highlight the compounds whose TdP risk was generated by the misclassification of the automated algorithm,
and visual examinations of the simulated AP traces revealed they did not produce repolarization abnormalities (RAs).
January 2020 | Volume 10 | Article 1643
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APD prolongation was less well correlated with low TdP risk
scores. As shown in the lower panel of Figure 2, with similar low
TdP scores close to 0, some compounds showed APD
prolongations of up to 70 ms, while others showed very small
APD prolongations of less than 20 ms.

Reducing Maximum Testing Concentration
Does Not Improve the RA-Based TdP Risk
Stratification
In the clinical situation, the maximally-achieved plasma exposure
is determined by drug absorption, distribution, metabolism and
excretion in an individual whose genetic background and physical
condition have significant effects on pharmacokinetics (Tamargo
et al., 2017). Therefore, we considered high concentrations of up
Frontiers in Pharmacology | www.frontiersin.org 6
to 100×EFTPCmax in the formerly discussed evaluation of TdP
risk. Some compounds with intermediate TdP risk scores elicited
RAs only at the highest tested concentration. In order to assess the
effects of maximum tested concentrations, we also compared the
TdP score calculated with maximum concentrations up to
30×EFTPCmax. As shown in Figure 5A (Dataset I) and Figure
5B (Dataset II), predictions were not significantly affected for
drugs with either the highest or lowest TdP scores. However, in a
few cases, the risk classification can be qualitatively different. For
Dataset I, decreasing the maximum testing concentration to
30×EFTPCmax led to 2 extra FNs: Azithromycin and
Chlorpromazine . Even when class ified as r isky at
100×EFTPCmax, these two compounds had the lowest TdP
scores among the risky category. For Dataset II, decreasing
maximum concentration converted several FPs predictions to
TNs but also generated 5 extra FNs.

For both groups, FN predictions cannot be improved under
lower concentrations. Therefore decreasing the maximum
testing concentrations reduced the sensitivity in the predictions
for both datasets, while the specificity was not affected for
Dataset I but was improved for Dataset II. Similar results were
obtained using the latest CredibleMeds® TdP risk classifications
Supplementary Material (Supplementary Material Figure S2,
Table S3). Therefore, based on the overall accuracy, changing
maximum testing concentration to 30×EFTPCmax does not
improve the quality of predictions (Table 2).
Using Only hERG Decreases the
Specificity of Predictions
For Dataset I compounds, IC50/Hill coefficient values are
available for seven ion channels, while for Dataset II the
information is available for three ion channels. In order to
understand how many ion channels are necessary to achieve
sufficient prediction accuracy, we also compared the effect of
varying the number of affected ion channels. Figure 6A
compares prediction results for 7, 4 (INa+INaL+IKr+ICaL), 3
(INa+IKr+ICaL), and 1 (IKr) channel only for Dataset I. For
these compounds, there was no qualitative difference between
the predictions based on information from 7, 4, and 3 channels
(1 exception for Saquinavir I). However, if only hERG block (IKr)
was considered, TdP scores were frequently higher, and five safe
compounds were misclassified to FP, leading to a significant loss
of specificity and overall lower accuracy (Table 3).

For Dataset II, the results from 3 channels and only hERG
were also compared. Similarly, only considering IKr block
increased the TdP scores in a number of cases (altering the
magnitude of predicted TdP risks), and the classification of seven
compounds was changed to risky (4 FP and 3 TPs, Figure 6B). It
was noted that the three compounds misclassified by the
automated algorithm when using 3 channels (Ceftriazone II,
Linezolid II and Phenytoin II) did induce RAs when only
considering hERG block (Supplementary Material, Figures
S5D–F). Therefore, the specificity for Dataset II was also
compromised as in Dataset I by using hERG only, leading to
lower overall accuracy. Similar effects were observed using
CredibleMeds® classifications (Supplementary Material Figure S3,
FIGURE 2 | Correlation between action potential duration (APD) prolongation
and Torsades de Pointes (TdP) risk score at 1×EFTPCmax for all 85
compounds. DAPD=APDdrug-APDcontrol. Blue labels indicate true positive
predictions, and yellow labels indicate false positive results. If CredibleMeds®
classification was used, Ranolazine I and Piperacillin II would be true positive
(blue) instead of false positive.
January 2020 | Volume 10 | Article 1643
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Table S4). Overall, considering hERG alone decreases the
specificity of the predictions for both datasets (Table 3).

The higher RA inducibility when considering hERG alone
was mainly due to ICaL re-activation under lower repolarization
reserve. For example, when only hERG block was applied to
Linezolid II, RFs were observed at 100×EFTPCmax, with re-
opening of the ICaL activation gate (gate d in the ORd model)
leading to oscillations in ICaL and membrane potential (Figure 7,
red traces). When hERG block alone was applied but the re-
activation of ICaL was inhibited (post upstroke inhibition of gate
d), RFs were successfully suppressed (Figure 7, black traces).
Since Linezolid II has a strong blockage effect on the L-type
calcium channel, the consideration of all three channels yielded a
much lower AP plateau. This further inhibited ICaL, preventing
Frontiers in Pharmacology | www.frontiersin.org 7
the occurrence of a positive feedback loop of ICaL re-activation to
trigger RAs (Figure 7, blue traces).
Moderate Changes in IC50s Combined
With Variable Hill Coefficients Are
Relevant to Divergent Prediction
Outcomes
The ion channel information for Datasets I and II used in this
in silico study came from different experimental groups, but
they both contain information for the 16 compounds listed in
Figure 8. In Figure 8, we listed the IC50 and Hill coefficient
values of the three common ion channels between both datasets:
hERG, Cav1.2 and Nav1.5-peak. For most compounds, the
FIGURE 3 | Representative compounds that induce repolarization abnormalities at 1×EFTPCmax. Grey, control condition; red, drug action.
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FIGURE 4 | Representative compounds that prolong action potential duration (APD) at 1×EFTPCmax and induce repolarization abnormalities at 3×EFTPCmax. Grey,
control condition; red, drug action.
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differences in ion channel IC50 datasets were moderate (<3-fold),
while variations of Hill coefficient values were more significant
between the two datasets. Despite the differences in IC50s, Hill
coefficients and the number of affected ion channels, for 14 out of
the 16 compounds, in silico predictions based on the two
independent datasets are consistent: almost all correct, except
for Amiodarone (Figure 8).

For Sotalol and Verapamil, in silico predictions based on the
seven currents from Dataset I produced the correct outcome,
while the predictions based on Dataset II lead to FP for
Verapamil and FN for Sotalol. Applying only the blockages of
hERG, Cav1.2 and Nav1.5-peak in Dataset I for Sotalol and
Verapamil still produced correct classification results for both
FIGURE 5 | Comparison of Torsades de Pointes (TdP) risk between up to 30×EFTPCmax and 100×EFTPCmax for Dataset I (A) and Dataset II (B). Red “+” and “–”

show the classification changes caused by lower testing concentrations: “+” implies the true classification should be risky, while “–” means the true classification
should be safe. The three Dataset II compounds whose TdP risk was misclassified by the automated algorithm were corrected in this figure.
TABLE 2 | Comparisons of the in silico Torsades de Pointes (TdP) risk
predictions between maximum testing concentrations of 30× and
100×EFTPCmax.

Dataset I Dataset II

100×EFTPCmax 30×EFTPCmax 100×EFTPCmax 30×EFTPCmax

Sensitivity 85% 75% 78% 78% 63%
Specificity 80% 80% 70% 83% 91%
PPV 89% 88% 78% 86% 91%
NPV 73% 62% 70% 73% 64%
Accuracy 83% 77% 75% 80% 75%
For Dataset II, bold scores indicate the true accuracy of the model predictions after fixing the
misclassifications of the automated repolarization abnormality (RA) detection algorithm.
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compounds (Figure 6A). This evidenced that it was not the
number of ion channels but the different input values between
the two datasets what led to the divergent prediction outcomes
for these two drugs.

For Sotalol, the Cav1.2 IC50 value was much smaller with a
steeper concentration-response curve (bigger Hill coefficient) in
Dataset II. This corresponded to a more potent calcium channel
blockage (100% blockage in Dataset II versus 20% blockage in
Dataset I at 100x EFTPCmax), providing the explanation for the
FN prediction of Sotalol II. Verapamil II displayed very slow
repolarization under 100×EFTPCmax, with several models failing
to reach resting membrane potential at the end of the simulation
time (Supplementary Figure S6A). The difference in the
prediction outcome of Verapamil between the two groups was
FIGURE 6 | Comparison of Torsades de Pointes (TdP) risk for different subsets of ion channel information for Dataset I (A) and Dataset II (B). Red “+” and “–” show
the classification changes caused by different ion channel profiles: “+” implies the true classification should be risky, while “–” means the true classification should be
safe. The three Dataset II compounds whose TdP risk was misclassified by the automated algorithm were corrected in this figure, and they did induce repolarization
abnormalities (RAs) under hERG only simulations.
Frontiers in Pharmacology | www.frontiersin.org 10
TABLE 3 | Comparisons of the in silico Torsades de Pointes (TdP) risk
predictions between different sets of ion channel profiles.

Dataset I Dataset II

7
channels

4
channels

3
channels

1
channel
(hERG)

3
channels

1
channel
(hERG)

Sensitivity 85% 85% 85% 85% 78% 78% 88%
Specificity 80% 80% 70% 30% 70% 83% 65%
PPV 89% 89% 85% 71% 78% 86% 78%
NPV 73% 73% 70% 50% 70% 73% 79%
Accuracy 83% 83% 80% 67% 75% 80% 78%
January 2020 | Vo
lume 10 | Art
For Dataset II, bold scores indicate the true accuracy of the model predictions of 3
channels after fixing the misclassifications of the automated repolarization abnormality (RA)
detection algorithm.
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due to the distinct input values in the two datasets: in Dataset II,
Verapamil’s IC50 for hERG was about half the value that in
Dataset I. In addition, the EFTPCmax concentration in Dataset II
was almost doubled (Figure 8).

If the lower EFTPCmax in Dataset I (0.045 mM) was applied to
the ionic profile of Verapamil II, RFs still occurred at
100×EFTPCmax (Supplementary Figure S6B), which proved
the role of IC50s and Hill coefficients underlying the
FP prediction. Therefore, for drugs with a multi-channel effect,
moderate IC50 variations (<3-fold) combined with variable Hill
coefficients can affect the accuracy of prediction outcomes.
DISCUSSION

In this study, we blindly performed 85 in silico drug trials for a
total of 69 compounds based on two independent ion channel
datasets with 16 overlapping drugs, using a computationally
efficient population of human ventricular cell models. The
main findings are the following:

1) For both datasets, the overall performance of the prediction
was strong, with respective maximum accuracies of 83% and 80%
for Dataset I and Dataset II.

2) When considering RAs for TdP prediction, decreasing the
maximum testing concentration led to lower sensitivity without
significant improvement of specificity, resulting in an optimal
testing concentration of 100×EFTPCmax.

3) ICaL re-activation under reduced repolarization reserve
caused by hERG block was the key mechanism underlying RAs.
Calcium channel block decreased the propensity to RA. Therefore,
only using hERG data decreased the specificity of predictions, and
the optimal number of ion channels to achieve sufficient prediction
accuracy was three: Nav1.5 (peak only), Cav1.2, and hERG.
Frontiers in Pharmacology | www.frontiersin.org 11
4) For compounds with multiple ion channel potencies,
moderate variations (<3-fold) in IC50 input values combined
with variable Hill coefficients can lead to divergent
prediction results.

An Optimized Population of Human ORd-
Based Models as an Efficient Tool for
In Silico Risk Prediction and Mechanism
Analysis
In this study, we used an optimized population of 107 models for
blinded in silico drug trials, and we achieved accuracies of 83%
for Dataset I and 80% for Dataset II if visual examination of the
AP traces was performed. We showed that by using a small
population of models that is more susceptible for RAs with
uneven variations of the ionic currents, similar prediction
accuracy can be achieved as a large population with even ionic
current variations. Our results showed that this optimized
population of models achieved a slightly lower accuracy than
the previous population of 1,213 human ventricular models
(Passini et al., 2017), but the computing efficiency was
improved by 90% due to much smaller population size.
Therefore, designing the optimized population of models is
proved to be an efficient strategy to perform TdP risk
prediction and physiological analysis (Passini et al., 2019).

We used the simple pore block model in this study, because it
only required conventional measurements such as IC50 values
and Hill coefficients. Other modeling studies have used more
complex representations of ion channel kinetics under drug
actions, such as Markov representations of the sodium
(Morotti et al., 2014; Yang et al., 2016) or the hERG channels
(Romero et al., 2015; Li et al., 2017) to incorporate the drug
binding states. However, in order to gain sufficient experimental
data to achieve accurate representations for these more detailed
FIGURE 7 | The lack of inhibition to ICaL re-activation by only considering hERG block leads to higher inducibility of repolarization abnormalities for 100×EFTPCmax

Linezolid II. Gate d is the activation gate of ICaL.
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drug binding models, more specialized experimental protocols
and settings are normally needed, which can be a speed limiting
step for efficient screening of new compounds. The simple pore
block model, on the other hand, enables a more efficient
experimental data collection and potentially a faster
application in new drug screening.

Another advantage of using populations of models with
electrophysiological variability is that it enables direct
observations of RAs after applying drug actions, which can be
used to provide physiological insights. Although logistic
regression models or machine learning algorithms can also
achieve good performances in TdP risk classifications based on
the ratios of IC50 and EFTPC (Kramer et al., 2013), or features
of AP and intracellular calcium transients (Lancaster and
Sobie, 2016), some of these algorithms do not enable direct
observations of RAs, which compromises the mechanistic
explorations for TdP risk. Combining machine learning
algorithms and modeling could also be a useful new strategy
(Parikh et al., 2017).

Factors Affecting the Accuracy of Blinded
In Silico TdP Risk Predictions
Although this blinded drug analysis using a small population of
models achieved good accuracy for both groups of compounds,
examination of some wrong predictions showed that additional
Frontiers in Pharmacology | www.frontiersin.org 12
information can be crucial for prediction outcome. For example,
the predictions for Amiodarone were FN for both datasets in this
study. However, if considering the possible lower plasma protein
binding reported in literature (Lalloz et al., 1984; Latini et al.,
1984), then testing at higher concentrations led to RAs
occurrence with Amiodarone (Passini et al., 2017). Similarly,
when taking into account the effect of Paliperidone, which is the
major active metabolite of Risperidone, Passini et al. produced
correct TdP risk classifications for Risperidone (Passini et al.,
2017), since Paliperidone plays a more important role in QT
prolongation (Suzuki et al., 2012). The information on drug
metabolism was not optimized in this study because all
compounds were blinded during the simulation process. A
recent analysis by (Leishman, 2019) highlights the critical
need to address contributions from clinically relevant
metabolites in the qualification process to assure that the
predictive performance of a new in silico model can address
the pro-arrhythmic risk of exposure to both the parent drug
and metabolites.

Another factor that affected the prediction accuracy was the
definition of RAs. Based on our current definition, three
compounds in Dataset II (Ceftriazone II, Linezolid II and
Phenytoin II) were misclassified as RAs by the automated
algorithm due to their very weak upstrokes and late peaks at the
highest testing concentration (Supplementary Material Figure S5).
FIGURE 8 | Comparison of the input ion channel IC50 values (mM), Hill coefficients, EFTPCmax (mM), and in silico prediction results for the 16 common compounds
between the two datasets. * indicate the cases where IC50s were estimated based on the percentage of ion channel blockage at the maximum tested concentration,
with h equal to 1.
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Correcting such misclassifications led to a higher accuracy of
80% for Dataset II. This change in prediction revealed that, on
one hand, standardized criteria should be proposed for the
definition of RAs, especially if models are to be used for high-
throughput drug screening; on the other hand, there are
exceptional AP morphologies produced by high dose drugs
that may require manual inspections and alternative explanations.

In addition, the accurate classifications of TdP-positive or
TdP-negative drugs are benchmarks that are crucial in
assessing the performance of in-silico modeling. Due to the
controversial classification of TdP risk for some drugs, the
performance of in-silico modeling would be affected. Finally,
the inputs, i.e., ion channel potencies determined experimentally,
and EFTPCmax obtained clinically, determine the accuracy of
TdP prediction.

TdP Scores Computed Up to 30 Folds of
EFTPCmax Are Not Sufficient for the In
Silico Predictions of Conditional TdP Risk
In order to incorporate the effects of inter-subject variability in
drug binding and metabolism rates, as well as the uneven intra-
subject drug distributions in the body, drug overdose is often
used in both in vitro animal experimental tests and in silico
simulations. In rabbit isolated Langendorff hearts, 30×EFTPCmax

was shown to be sufficient without incurring TdP risk of
potentially beneficial drugs (Lawrence et al., 2006). In this
study, we also explored the effect of maximum testing
concentration on the accuracy of predictions. We found that
decreasing the testing concentration to 30×EFTPCmax can only
improve specificity of predictions for Dataset II, but at the same
time, the lower maximum testing concentration led to more FN
predictions. For both datasets, the overall accuracy was lower
under 30×EFTPCmax. Similarly, the previous study using 1213
models also showed that the optimal maximum testing
concentration is 100×EFTPCmax for the best accuracy (Passini
et al., 2017).

We also noted that some FN predictions in this study
(Clozapine II, Paroxetine II, Voriconazole II, and also
Saquinavir II, Dasatinib II if considering CredibleMeds®

classifications), were also FN in the previous 1,213 population
of models. Interestingly, although classified as risky, these FN
compounds were considered to have possible or conditional TdP
risk under the latest classification of CredibleMeds®. Cilostazol II
(and Donepezil II by CredibleMeds® classification) only induced
EAD in one model under 100×EFTPCmax in the previous
population, corresponding to the lowest TdP scores in the
risky category (Passini et al., 2017). Therefore, for compounds
with possible or conditional TdP risk, more detailed
investigations need to be performed to take into account other
factors in addition to the overdose, such as existing disease
conditions, drug interaction, and metabolites. In our recently
published paper, we reported the electromechanical window as a
sensitive biomarker to improve the prediction of TdP risk for 40
reference compounds under lower tested concentrations (Passini
et al., 2019), and future studies can test the prediction accuracy of
Frontiers in Pharmacology | www.frontiersin.org 13
combining electromechanical window for compounds with
conditional TdP risk.

In Silico Drug Trials Based on Nav1.5,
Cav1.2, and hERG Generate Robust
Prediction Results Without Compromising
Efficiency
Previous experiments conducted in isolated ventricular myocytes
or Langendorff-perfused animal hearts showed compounds with
sodium or calcium blockage effects such as Lidocaine,
Ranolazine, Nifedipine and Verapamil, can suppress EAD and
prevent hERG blocker-induced TdP (Abrahamsson et al., 1996;
Milberg et al., 2005; Yamada et al., 2008; Farkas et al., 2009;
Milberg et al., 2012; Parikh et al., 2012). Therefore, it is essential
to extend the TdP risk prediction from hERG-based analysis to a
multiple-channel assay, which is the principle underlying this
study and the CiPA initiative (Sager et al., 2014; Colatsky et al.,
2016). In this study, we compared the effects of simulating only
hERG blockage against simulating multiple ion channel
blockages. For Dataset I, where the analysis was based on
seven ion channel data from (Crumb et al., 2016), peak
Nav1.5, Cav1.2, and hERG were the minimum set of ion
channels with best efficiency for predictions, while for specific
drugs, which have strong potency on other ion channels,
predictions could improve by including these additional effects
in simulations. As for the Dataset II prediction, based on data
from (Kramer et al., 2013), only considering hERG significantly
decreased specificity, and although sensitivity was slightly
improved, the overall accuracy was also compromised. This
is consistent with the previous hypothesis underlying CiPA,
i.e., that simulating multiple channel blockages achieve
more accurate predictions than only considering hERG
(Gintant, 2011).

By using human ventricular cell models of electrophysiology,
we were able to provide mechanistic explanations of the
increased inducibility of RAs under hERG block. Our results
showed that ICaL re-activation was the key mechanism of RAs
under hERG block, which was consistent with the mechanism
revealed by sheep Purkinje fiber experiments (January et al.,
1988; January and Riddle, 1989) and previous modeling
investigations (Zeng and Rudy, 1995; Passini et al., 2016).
Therefore, if calcium block effect is not considered, the TdP
risk of a compound may be overestimated.

Moderate Variations in IC50s Combined
With Variable Hill Coefficients Affect In
Silico Prediction Accuracy
IC50s as well as the steepness of the concentration-response curve
of a same drug can vary across experiments and datasets (Kirsch
et al., 2004; Yao et al., 2005; Milnes et al., 2010; Fermini et al.,
2016; Passini et al., 2017). In this study, we also aimed to explore
the effect of IC50 and Hill coefficient inputs on the stability of
in silico predictions. By comparing the simulation results of 16
common drugs, 14 drugs showed consistent results across
datasets. Considering the same ion channels (Nav1.5-peak,
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Cav1.2, and hERG), the overall accuracy for the 16 common
drugs was slightly higher using the Crumb’s input values (14
correct) than the Kramer’s values (13 correct). This difference
could originate from the experimental measurements: 1) the patch
clamp experiments in the Crumb’s dataset was performed manually
and mostly at physiological temperature, while in Kramer’s dataset,
the experiments were conducted using automated patch clamp at
ambient temperature; 2) for hERG and Cav1.2, Crumb’s dataset
used AP waveform voltage protocols, while Kramer’s data were
generated using step protocols (Kramer et al., 2013; Crumb et al.,
2016). These differences in experimental settings may have
contributed to the variability in IC50 and Hill coefficient
measurements, and some variations in key ionic currents may
lead to divergent simulation outcomes. For instance, the low IC50

value and steep concentration-response curve of Cav1.2 explained
the FN prediction of Sotalol II.

From EADs to Clinical TdP Risk
In clinical settings, patients with structural heart disease and
electrophysiological remodeling are at highest risk for drug
induced arrhythmia. Experimental work showed that
cardiomyocytes isolated from structural heart disease patients
with a history of ventricular tachycardia were significantly more
prone to the development of EADs (Coppini et al., 2013), and
EADs were frequently observed in whole heart experimental
recordings of aged or diseased animals, as well as in human
whole ventricle simulations (Morita et al., 2009; Milberg et al.,
2012; Dutta et al., 2016; Van Nieuwenhuyse et al., 2017). In this
study we considered an optimized population of models with low
repolarization reserve, including weak IKr, IKs, and INaK, together
with strong INaL, ICaL, and INaCa, which are observed in multiple
diseases, such as long QT syndrome (Schwartz Peter et al., 2012),
hypertrophic cardiomyopathy (Coppini et al., 2013), and heart
failure (Shamraj et al., 1993; Ambrosi et al., 2013). Therefore, the
optimized population of models was designed to favor the
generation of EAD and RF, but also to include possible
electrophysiological remodeling occurring in patients at higher
risk of developing drug-induced arrhythmias.

EADs have been frequently observed in single cells as well as
in whole-heart and tissue experimental recordings and
simulations in human and animal hearts (Sato et al., 1993;
Morita et al., 2009; Sato et al., 2009; Milberg et al., 2012; Coppini
et al., 2013; Dutta et al., 2016; Van Nieuwenhuyse et al., 2017).
Additional pro-arrhythmic mechanisms such as increased
dispersion of repolarization can also provide the substrate for
the development of reentrant arrhythmia, and drugs with hERG
blockage effects can amplify the intrinsic spatial dispersion of
repolarization (Antzelevitch, 2005; Dutta et al., 2016). For
instance, low therapeutic concentrations of quinidine
preferentially prolonged APD in the midmyocardial cells
(Antzelevitch et al., 1999), creating a vulnerable condition
across the ventricular wall. In addition, cellular coupling has
important roles in modulating EAD generations at tissue level
(Pueyo et al., 2011). Although electrotonic coupling can smooth
the chaotic EAD behavior (Weiss et al., 2010), regional EADs
can propagate into the heterogeneous substrates, resulting in
Frontiers in Pharmacology | www.frontiersin.org 14
reentry and TdP patterns (Dutta et al., 2016; Vandersickel
et al., 2016).

One effective approach to include the tissue effects in TdP risk
predictions is whole ventricle simulations (Sato et al., 2009;
Moreno et al., 2011; Trayanova, 2011; Dutta et al., 2016;
Vandersickel et al., 2016; Martinez-Navarro et al., 2019),
however they are computationally much more expensive than
the current cell model population which has already shown
strong performance. In this study we did not aim to equate
EADs and TdP, but rather to use EADs as a pro-arrhythmic risk
marker that is mechanistically linked to TdP. Given that the
predictive accuracy of populations of models is high,
computationally expensive simulations are not necessary.
However, whole-ventricular simulations are very valuable for
investigating mechanisms of arrhythmia as shown by (Sato et al.,
2009; Moreno et al., 2011; Trayanova, 2011; Dutta et al., 2016;
Vandersickel et al., 2016; Martinez-Navarro et al., 2019). Whole
heart electrophysiology is also complicated by heart rate changes,
which are regulated by the autonomic nervous system and
hormones. For example Isoproterenol, a b-adrenergic receptor
agonist, was used to terminate TdP by increasing heart rate and
decreasing the dispersion of repolarization (Surawicz, 1989).
Future studies could be performed by evaluating an agent’s
TdP risk under b-adrenergic stimulations (Heijman et al.,
2011; Tomek et al., 2017; Tomek et al., 2019).
CONCLUSION

Through this blinded in silico drug trial, we demonstrated that
computer simulations utilizing optimized population of human
ventricular cell models are useful tools for high-throughput TdP
risk predictions, and the minimum set of ion channels required
for reliable predictions with highest computational efficiency are
Nav1.5 (peak), Cav1.2, and hERG. For drugs with a multi-
channel effect, moderate IC50 variations (<3-fold) combined
with variable Hill coefficients could affect the accuracy of
in silico predictions.
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