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Abstract

Spontaneously occurring canine mammary tumours (CMTs) are the most common neo-
plasms of unspayed female dogs leading to thrice higher mortality rates than human breast
cancer. These are also attractive models for human breast cancer studies owing to clinical
and molecular similarities. Thus, they are important candidates for biomarker studies and
understanding cancer pathobiology. The study was designed to explore underlying molecu-
lar networks and pathways in CMTs for deciphering new prognostic factors and therapeutic
targets. To gain an insight into various pathways and networks associated with the develop-
ment and pathogenesis of CMTs, comparative cDNA microarray expression profiling was
performed using CMT tissues and healthy mammary gland tissues. Upon analysis, 1700
and 1287 differentially expressed genes (DEGs, P < 0.05) were identified in malignant and
benign tissues, respectively. DEGs identified from microarray analysis were further anno-
tated using the Ingenuity Systems Pathway Analysis (IPA) tool for detection of deregulated
canonical pathways, upstream regulators, and networks associated with malignant, as well
as, benign disease. Top scoring key networks in benign and malignant mammary tumours
were having central nodes of VEGF and BUB1B, respectively. Cyclins & cell cycle regulation
and TREM1 signalling were amongst the top activated canonical pathways in CMTs. Other
cancer related significant pathways like apoptosis signalling, dendritic cell maturation, DNA
recombination and repair, Wnt/B-catenin signalling, etc. were also found to be altered. Fur-
thermore, seven proteins (ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and MYH9) highly
up-regulated in malignant tissues were identified by two-dimensional gel electrophoresis
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(2DE) and MALDI-TOF PMF studies which were in concordance with microarray data.
Thus, the study has uncovered ample number of candidate genes associated with CMTs
which need to be further validated as therapeutic targets and prognostic markers.

Introduction

Spontaneously occurring mammary tumours in dog have been demonstrated as useful models
for human breast cancer studies owing to their similarities in histological features and disease
biology; associated risk factors, clinical progression and response to treatment; biomarkers
and molecular targets etc. [1-2]. Although widely used, xenogeneic, as well as, transgenic
mouse tumour models fail to mimic various features of human breast cancers like steroid hor-
mone dependency, tumour microenvironment, heterogeneous behaviour etc. [1-2]. With
complete sequencing of dog genome revealing close similarities between dog and humans at
genetic level, spontaneously occurring canine mammary tumours (CMTs) have emerged as
attractive alternatives to artificially induced tumours in mice.

CMTs account for approximately 50% of all tumours of female dogs with approximately 50%
cases being malignant in nature [3-4]. Dogs with poorly differentiated tumours have increased
risk of recurrent or metastatic disease, with 90% recurrence rate for the most dedifferentiated
tumours [4]. In unspayed female dogs, CMTs are the most common neoplasms leading to at
least three times higher mortality rates than human breast cancer [5]. Presently, the genes
accountable for the aggressive behaviour of mammary cancer are not very clear, and poor prog-
nosis associated with malignant mammary cancers emphasize the necessity to unravel the
underlying pathways and genes which could act as targets for therapy. The molecular mecha-
nisms, networks and pathways contributing to the biological behaviour of CMTs are poorly
understood and there is a lack of knowledge about reliable tumour markers [6]. The detailed
characterization of the dysregulated genes and careful mining of the gene networks and path-
ways could also be of great help in identification of diagnostic, as well as, prognostic biomarkers.

The study was designed with the objective of identification of new prognostic factors and
targets for therapy, as well as, underlying pathological mechanisms and networks. To have an
insight into various pathways and networks associated with development and pathogenesis of
CMTs, comparative cDNA microarray analysis was performed. The gene expression profiles
of malignant and benign CMT tissues were compared with healthy mammary tissues. To gain
a deeper knowledge, differentially expressed genes (DEGs), identified from this analysis were
further subjected to functional annotation using the Ingenuity Systems Pathway Analysis
(IPA) tool. IPA was used to detect upstream regulators, pathways and networks associated
with CMTs. The study has uncovered numerous candidate genes involved in pathogenesis of
CMTs, which need to be further validated as therapeutic targets and prognostic markers for
mammary cancer.

Materials and methods

The overview of the methodology used for gene expression profiling of CMTs is depicted in
Fig 1.

Tissue samples

All experimental procedures involving animals were in accordance with Breeding of and
Experiments on Animals (Control and Supervision) Amendment Rules, Government of India,
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Fig 1. The overview of the methodology used for gene expression profiling and identification of major networks
and pathways associated with canine mammary tumour (CMT).

https://doi.org/10.1371/journal.pone.0208656.g001

2005 and were approved by Institute Animal Ethics Committee (IAEC) of ICAR-Indian Veter-
inary Research Institute (ICAR-IVRI), Izatnagar. Cancer tissue samples (n = 10) were collected
from clinical cases of CMT's which were referred for surgery to ‘Referral Veterinary Polyclinic’,
ICAR-IVRI, Izatnagar. Reference healthy tissues (n = 3) were collected from healthy dogs with
prior written consent from the owner. Animals were given local anaesthetic (1% lignocaine)
prior to tissue collection. Tissue sections were collected immediately after surgical resection
and stored in RNAlater at -80°C for RNA isolation. Part of tissue section was also preserved in
neutral buffered formalin for histopathology. For proteomic studies, tissues were preserved at
-80°C.

Histopathological classification

For histopathology, formalin-fixed tissues were paraffin-embedded and cut into 5 pm sections.
Sections were then mounted on 3-aminopropyl-triethoxy-silane (APTES) coated slides, and
air-dried overnight at 37°C. Prepared slides were deparaffinized in three washes of xylene (10
min each), and rehydrated in graded concentrations of ethanol. Slides were then stained with
Eosin-Hematoxylin and studied for identification for tumour type and grade. Histopatholog-
ical classification of the paraffin embedded tissue sections was done as per Goldschmidt et al.
[7]. The tumours of mammary gland used in the current study were classified into malignant
(n = 6) and benign (n = 4) nature. The malignant tumours were classified histopathologically
as tubuloacinar solid carcinoma, papillary and squamous cell mixed carcinoma, malignant
myoepithelioma, squamous cell carcinoma, lipid rich carcinoma and fibrosarcoma. Benign
tumours were classified histopathologically as adenomas, papillary adenoma and cystadeno-
myoepithelioma. Histological grades and types of cancer tissues used in study are provided in
supplementary information. Healthy mammary tissue samples (n = 3) were also examined his-
tologically for confirming absence of malignancy and any other pathological condition. Histo-
pathological details of tumour tissues used for the study are provided in S1 Table.

Isolation of total RNA

Total RNA was isolated from frozen tissue samples preserved in RNAlater using QTAGEN
RNeasy microarray tissue mini kit as per the manufacturer’s protocol. The purity and
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concentration of total RNA extracted was checked spectrophotometrically. The quality check
of the isolated RNA was performed in Agilent 2100 bioanalyzer as per the manufacturer’s rec-
ommendations using the Agilent RNA 6000 Nano Kit. RNA samples having RNA integrity
number (RIN) greater than 7 were used for further studies.

Microarray hybridization and data analysis

For performing microarray studies, 200ng of RNA was reverse transcribed into cDNA using
LowInput QuickAmp labelling kit (Agilent, USA) and further converted into cRNA to cause
incorporation of nucleotides containing cyanine 3 (Cy-3-dCTP) as per the manufacturer’s
instructions. Labelled cRNA was purified using QIAquick purification columns. The quality
and concentration of the labelled cRNA was checked spectrophotometrically and hybridization
experiments were performed at 65°C for 17 hours on canine (v2) gene expression 44K array
comprising of 43803 canine probes (Agilent Technologies, Cat No. G2519F-021193). Each sam-
ple was hybridized to set of duplicate arrays. After generating the microarray scan images, the
signal intensities were extracted using feature extraction software (version 10.7.3). The quality
of hybridization and overall chip performance was monitored by visual inspection of both inter-
nal quality control checks and the raw scanned data. The data generated after feature extraction
was exported into GeneSpring software (version 13.0) to identify the differentially expressed
genes (DEGs) between malignant v/s healthy and benign v/s healthy. Mean normalised signals
from malignant (n = 6), benign (n = 4) and healthy (n = 3) tissues were clubbed as a single
experimental group and named as malignant, benign, and healthy respectively and used for
comparative expression analysis. Paired t-test using storey with bootstrapping correction (P
value < 0.05) was used to identify differentially expressed mRNAs between malignant and
benign tumours with respect to healthy mammary tissue. The gene expression fold change
between tumour and healthy tissue was calculated by comparison of the normalised signal
intensity values. Data was submitted to NCBI GEO database (Accession number GSE104733).

Quantitative real time PCR (qPCR)

To verify the microarray gene expression data, 14 genes were selected for validation using
qPCR. The genes selected for validation of microarray results included the top up-regulated
genes, some randomly selected genes, as well as, genes having potential role in cancer patho-
genesis. These genes included MMP9, CHI3L1, BIRC5, BIRC2, TLR2, CTSS, PGAM1, KIF11,
COL11A1, SRFP2, TOP2A, CPA2KL, CDCA3, RAB31 genes. The primers were designed for
qRT-PCR analysis using the Integrated DNA technologies-PrimerQuest Tool. The details of
primers sequences used for the study are mentioned in S2 Table. The cDNA was synthesized
using Revert Aid First Strand cDNA synthesis kit (Thermofischer Scientific, USA) according
to the manufacturer’s instructions and qRT-PCR was performed using Applied Biosystems
7500 Fast system using 2X SYBR Green Master mix (Sigma Aldrich, USA). Gene expression in
each sample was normalized against the expression of housekeeping gene (B-actin). The rela-
tive expression of each sample was calculated using the 244"
tissue as calibrator and log, fold change was plotted.

method with healthy mammary

Two-dimensional gel electrophoresis (2DGE) of CMT and healthy
mammary tissue

Tissue samples (~20mg) were homogenized in lysis buffer [8M urea, 2M thiourea, 4% CHAPS,
30mM Tris, pH 8.5] and kept on rotator for 15 mins followed by sonicating twice for 20s. The

samples were then centrifuged at 13000 rpm for 20 mins at 4°C. Crude tissue lysate was further
subjected to clean up using Ready Prep 2-D clean up kit (Bio-Rad, USA). Post clean up protein
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was quantified using 2-D Quant Kit (GE Healthcare, USA). Total 400ug of protein sample in
125ul destreak solution (GE healthcare, USA), containing Bio-Lyte 3/10 Ampholyte (40%)
(@0.2-2% final concentration), was loaded on 7 cm ReadyStrip IPG Strip [pH 3-10] (Bio-Rad,
USA). Protein was loaded onto the IPG strips by a passive rehydration method. After rehydra-
tion, isoelectric focusing (IEF) was performed on an Ettan IPGphore III apparatus at 20°C
with increasing voltages 150V-200Vh, 1000V-200Vh, 5000V-4000Vh, 5000-1250Vh. The
focused IPG strips were subjected to reduction with 1% w/v DTT in 10 mL of equilibration
buffer (6 M urea, 50 mM Tris- HCI pH 8.8, 30% v/v glycerol, and 2% w/v SDS) followed by
alkylation with 2.5% w/v iodoacetamide in the same buffer. The strips were then placed on the
top of 12% resolving gels and fixed by ReadyPrep Overlay Agarose (BioRad, USA). For spot
picking, gels were stained with commassie brilliant blue (R-350) stain. ImageMaster 2D Plati-
num v7.0 software was used for analysis and spot selection. After an automated spot detection,
the protein spots were checked manually in order to eliminate any possible artifacts such as gel
background or streaks and selected spots were picked. Proteins at the excised spots were then
subjected to MALDI-TOF PMF analysis for their identification.

Functional interpretation of microarray data and network analysis

To understand the functional significance of dysregulated genes in malignant and benign
tumours of mammary gland, Ingenuity Pathway Analysis (IPA version 01-07) was used. Using
the IPA tool, networks were generated based on an algorithmically generated score. The Z-
score, a numerical value was used to rank networks according to how relevant they were to genes
presented within the data set. Canonical pathways significant to the input data set were identified
from the IPA library of canonical pathways based upon 2 parameters, viz., (1) The ratio of the
number of genes within the data set mapping to the pathway divided by the total number of
genes mapping to the canonical pathway and (2) a P value (calculated based upon Fischer’s exact
test) determining the probability that each bio-function assigned to that dataset and the canoni-
cal pathway is not due to chance alone. Upstream regulators are defined as the genes that affects
the expression of numerous other genes, while canonical pathways are the idealized or general-
ized pathways that represent common properties of a particular signalling module or pathway.

Results
Differentially expressed genes (DEGs) in canine mammary tumour tissues

To identify differentially expressed candidate genes, gene expression profiles of malignant and
benign CMT tissues were comparatively analyzed with healthy mammary tissues by cDNA
microarray technique. On analysis, 1700 and 1287 DEGs (P < 0.05) were identified in malig-
nant and benign tumours of mammary gland respectively. Of these, 765 genes were up-regu-
lated and 935 genes were down-regulated in malignant cases. Among the benign tumours, 744
genes were found to be up-regulated and 543 genes were down-regulated. Upon Venn analysis
of up-regulated genes (log FC>1), it was observed that 269 genes were commonly up-regulated
in all the benign tissues (Fig 2A), whereas 90 common genes were up-regulated in all the
malignant tissues. Out of these 32 genes, displayed in Fig 2B, were commonly dysregulated in
all the malignant and benign tissues studied. However, there was no such gene which was
uniquely up-regulated in all the malignant tissues, as the dysregulated genes which were com-
mon in all the malignant tissues were also present in either one or all the benign tissues (Fig
2C). Among malignant tumours, maximum fold change was observed for COLI1AI gene
(Log, FC = 4.8), while among benign tumours maximum fold change was observed with
MMP3 gene (Log, FC = 6.6). Top five up-regulated genes in malignant tumours were
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Fig 2. Venn diagram analysis showing overlap of dysregulated genes among malignant and benign mammary
cancer tissues. (A) Overlay of up-regulated genes (logFC>1) among benign tumour tissues. (B). Overlay of genes
commonly up-regulated in all the malignant and benign tissues. 269 genes were commonly up-regulated in all the
benign tissues (n = 4), whereas 90 common genes were up-regulated in all the malignant tissues (n = 6).) Out of these
32 genes were commonly dysregulated in all the malignant (n = 6) and benign tissues (n = 4) studied. (C) Overlay of
genes up-regulated in all the malignant tissues and individual benign tissues (1-4). Analysis revealed that there was no
such gene which was uniquely up-regulated in all the malignant tissues, as the dysregulated genes which were common
in all the malignant tissues were also present in either one or all the benign tissues.

https://doi.org/10.1371/journal.pone.0208656.9002

COL11A1, SFRP2, LCN2, COL2A1 and H19, while top up-regulated genes in benign tumours
were MMP3, MMPI1, AREG, PTHLH and SFRP2.

Validation of DEGs by real time PCR

Microarray results were validated by carrying out qPCR analysis for selected genes viz.,
MMP9, CHI3L1, BIRCS5, BIRC2, TLR2, CTSS, PGAM, KIF11, COL11A1, SFRP2, TOP2A,
CPA2KL, CDCA3, RAB3I in the same tissues used for microarray gene expression analysis.
The genes selected for validation of microarray results included some of the top up-regulated
genes, some randomly selected genes, as well as, some genes having potential role in CMT
pathogenesis. The expression levels of the selected genes, in both microarray and qPCR tech-
nique were compared and results of both the studies revealed dysregulation of the target genes
in a similar fashion (Fig 3).

Differentially up-regulated proteins in CMTs

For identification of up-regulated proteins in malignant mammary tumours, total protein con-
tent from malignant and healthy mammary tissues was resolved separately using 2DGE. Upon
analysis using ImageMaster program, 298 individual spots were identified in the 2-D gel from
malignant tissue, whereas, 328 spots protein spots were identified in healthy mammary tissue.
Out of these, 178 proteins spots matched in both cancer and healthy mammary tissues. After
analysis of 2-D gels, we observed a total of 7 differentially expressed proteins (DEPs) having
greater than three times higher expression level in malignant tissue as compared to healthy tis-
sue (Fig 4). Upon MALDI-TOF PMF analysis, these proteins were confirmed as ANXA2,
APOCII, CDK6, GATC, GDI2, GNAQ and MYH9. These 7 proteins were also found to be up-
regulated in malignant tissues by microarray analysis, thus providing further validation of
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Fig 3. Fold change concordance of selected dysregulated genes by qPCR. The expression levels of the selected genes

were compared between microarray and qPCR analysis. For microarray analysis, mean normalised signals from
malignant and tissues were clubbed separately for comparison of gene expression levels. The expression levels

represent log, fold change values calculated from the normalised signal intensity values using healthy mammary tissues
expression data as control. For qPCR analysis, gene expression in each sample was normalized against the expression

of B-actin gene. The relative expression of each sample was calculated using the 2-AACT method with healthy group as
calibrator and the log2fold change (log,FC) was plotted.

https://doi.org/10.1371/journal.pone.0208656.9003

microarray data and confirming the overexpression of these genes at protein level in malignant

canine mamimary cancers.

Relevant functions, pathways and biological networks in CMT's

Significant DEGs (P < 0.05) were used for functional annotation by Ingenuity Pathway Analy-

sis (IPA) tool to explore the relevant biological pathways and functions of candidate genes

involved in pathogenesis of CMTs. In IPA, the reference knowledge base was kept as Homo

.\1

Malignant

Healthy

Fig 4. 2D gel electrophoresis of malignant CMT versus healthy mammary gland tissues. Upon analysis of 2D gels
of malignant versus healthy mammary tissue, 7 differentially expressed spots, (indicated by arrows 1-7) were identified
in malignant tissue.

https://doi.org/10.1371/journal.pone.0208656.g004
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sapiens and Mus musculus, as most functional studies on cancer has been carried out in these
organisms only and there is a severe lack of functional studies in CMTs. Each gene symbol was
mapped to their corresponding identifiers in the Ingenuity knowledge base. Of the total 2336
genes uploaded into IPA, 2259 genes were mapped in the IPA knowledge base, whereas 77
genes remained unmapped. Networks were generated based on an algorithmically generated
score based on connectivity between genes. A numerical value (Z-score) was used to rank net-
works according to how relevant they were to genes presented within the data set. Identified
networks between genes are presented as a graph, indicating relationships between different
genes in the data set. Genes are presented as nodes and relationship between two is indicated
as aline.

Canonical pathways deregulated in CMT's

Upon investigating the interactions using the IPA software, 2259 functional pathway eligible
genes were found. Canonical pathways, defined as the idealized or generalized pathways repre-
senting common properties of a particular signalling module or pathway, were identified by
IPA. Top activated canonical pathways in malignant tumours, (z-score > 2) included cyclins
and cell cycle regulation, apoptosis, and PPAR signalling pathway etc., and are shown in

Table 1 and Fig 5B. Top inhibited pathways in malignant cancers included intrinsic prothrom-
bin activation pathway and neuroprotective role of THOPI in Alzheimer’s disease. For benign
tumours, TREM1 signalling, dendritic cell maturation, Integrin linked kinase (ILK) signalling
pathway etc., were amongst the top activated canonical pathways, while top inhibited pathways
were related to cell cycle regulation, complement system and neuroprotective role of THOP1
in Alzheimer’s disease (Fig 5A and Table 2). The functional relevance of the dysregulated
genes in our dataset, related to the top activated pathways in malignant and benign CMTs is
depicted in Figs 6-9.

The DNA damage checkpoint, occurs at the end of G2 and prevents DNA damage that
might have occurred during replication. Any defects in this pathway results in genome insta-
bility and leads to carcinogenesis. Upon comparison of this pathway in malignant and benign
tumours, it was seen that, in malignant tissues ATM/ATR kinases having role in controlling
BRCALI phosphorylation in vivo are involved in regulation of G2/M DNA damage checkpoint,
while in benign tissues, activation of alternative AURKA-PLK1 pathway may play that role
(Fig 10). Other important canonical pathways related to cancer such polo like kinase related
pathways, cyclins and cell cycle regulation and Wnt/p-catenin signalling pathways were also
compared between malignant and benign CMTs (S1-S5 Figs), highlighting the differential
involvement of dysregulated genes contributing to malignant or benign nature.

Upstream regulators identified in CMTs

Upstream regulators have been defined as genes that direct the expression of numerous other
genes such that dysregulation of an upstream regulator affects the expression level of down-
stream gene it affects. In malignant tumours, 24 upstream regulators were identified which
were mainly enzymes, transcription regulators, G protein coupled receptors, kinases, etc.
(Table 3). The prediction of activation state was based upon the global direction of changes of
the modulated genes. The activation Z-score, indicating whether the observed gene responses
to upstream regulators agree with expected changes derived from the literature that accrued in
the Ingenuity Knowledge Base, was used to predict the activation state. Pathway analysis
revealed that secreted phosphoprotein (SPP1) gene was the top activated upstream regulator
among malignant tissues and affected expression of various genes including expression levels
of breast cancer type 1 susceptibility protein (BRCA1) and cell-division cycle protein 20
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Table 1. Canonical pathways with highest enrichment scores (z-score) in malignant CMTs and associated DEGs.

Ingenuity Canonical Pathways Z- score | Differentially expressed genes
TOP ACTIVATED PATHWAYS
Cyclins and Cell Cycle Regulation 2.887E CCNB3, CDK4,ATM, CDK2, PPP2R2C, CCNB2,WEE1,
+00 CCND1, PPP2CB,CCNA2,CDK6, HDAC1,CDK1
PPARI+/RXRi+ Activation 2.309E | CHUK, GNAS,ADCY3, LPL, INSR, IL1R2, INS,MAP2K1,
+00 NOTUM, PRKAR1A, NROB2,RELA
Apopmﬁssgndhng 2.309E BIRC2,CASP10,CHUK, APAF1,CASP3,BAX, MAP2K]1,
+00 CAPNS1,CDK1l,CASP8,SPTAN1,RELA
Estrogen-mediated S-phase Entry 2.236E CDK4,CCND1,CDK2,CCNA2,CDK1
+00
Osteoarthritis Pathway 2.191E AGER,MMP9, FZD2,MMP12, IL1R2,RARRES2, FN1,
+00 SMAD7,ITGB1,GDF5, LRP1,CASP4, SPP1, TLR2,
CASP10,CHUK, CTNNB1,H19, PRG4, SMAD9, CXCL8,
RELA, PPARD, CREB5, HIF1A, CASP3,COL2A1, PTHLH,
FOX03, RUNX2,CASPS8
ILK Signalling 2.132E FERMT2,MYL4,MMP9,VCL, CTNNB1,ATM,MYL6B,
+00 ACTN1,RHOQ, PPP2R2C, PIK3CG, RELA, FN1, CREB5S,
MYH4,CCND1, ITGB1,HIF1A, PPP2CB, CASP3, RHOF,
MYL7, PIK3C2G
Induction of Apoptosis by HIV1 2.121E BIRC2,CXCR4, CHUK, APAF1l,CASP3,BAX,CASP8,RELA
+00
Cytotoxic T Lymphocyte-mediated 2.000E APAF1,CASP3, FCER1G, CASP8
Apoptosis of Target Cells +00
Tumouricidal Function of Hepatic 2.000E APAF1,CASP3,BAX, CASP8
Natural Killer Cells +00
Inflammasome pathway 2.000E NLRP3,CTSB, CASP8, CXCL8
+00
Granzyme B Signalling 2.000E APAF1,LMNB1,CASP3,CASPS
+00
TREB4l$gndhng 2.000E TLR1,MPO,NLRP9,CD40,CXCL8,RELA, TLR8,NLRP10,
+00 NLRP3,NLRP14, ITGB1, TYROBP, CCL2, TLR2,CD86,
CIITA
TOP INHIBITED PATHWAYS
MIF-mediated Glucocorticoid -2.000E | PLA2G4E, PLA2G1B, PLA2G12B,RELA
Regulation +00
p38 MAPK Signalling -2.121E | RPS6KB2, PLA2G4E, CREB5, PLA2G1B, IL36B,
+00 PLA2G12B, IL1R2,EEF2K, IL1F10
Ceramide Signalling -2.121E | ATM, PPP2CB, PPP2R2C, MAP2K1, PIK3C2G, PIK3CG,
+00 S1PR1,RELA
Huntington’s Disease Signalling -2.138E | APAF1,DNM1,UBE2S, ITPR1,GNG13,CASP4,HDACI,
+00 BDNF, CAPNS1, PIK3C2G,RCOR1,CASP10,ATM,
POLR2C, RPH3A, PIK3CG, IGF1R, REST, EGF, CREB5,
DNM2, CASP3, BAX, CASP8, STX1A
Intrinsic Prothrombin Activation -2.309E | KLK10,F10,F5,KLK14,KLK1,KNG1, FGB, COL2A1,
Pathway +00 KLK15,KLK9, F8,KLKS8, F2
Neuroprotective Role of THOP1 in -3.742E | SST, PRSS53, PRSS48,MMP9,CTRL, F7,KLK10,
Alzheimer’s Disease +00 PRSS23, PRKAR1A, KLK1,KNG1,ECELl, CTRB2, PRSS2,

KLK15,CFD, KLK8, PRSS36

https://doi.org/10.1371/journal.pone.0208656.t001

(CDC20). Various genes affected by SPP1 are displayed in Fig 11A. Analysis of the malignant
data set also revealed F2 (coagulation factor II, Thrombin) as another top activated upstream
regulator, which was connected with overexpression of chemokines CCL2, CXCL8, CXCL10,
CCL8 and their ligands CXCR4, F2RL2, ITGB1 (Fig 11B). Other upstream regulators like
GCG and PTF1A were found to be downregulated and inhibited the expression of various
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Fig 5. Top Canonical pathways identified using IPA in benign (A) and malignant (B) CMTs.
https://doi.org/10.1371/journal.pone.0208656.9005

associated genes as depicted in Fig 12A and 12B. In benign tumours, 25 upstream regulators
were identified. Of these 22 were activated, and 3 were inhibited based on Z-score cut-off
(Table 4). The genes affected by the top activated upstream regulators in benign tissues i.e.,
AREG and TLR2 are displayed in Fig 11C and 11D. Analysis also revealed INSIG1 and
NROB? as the top inhibited upstream regulators among the benign cancers.

Common regulators that were affecting the dysregulation of genes in malignant tumours
had a consistency score ranging from 9.9 to -13.584. Further, 47 regulators have a combined
consistency score of 9.9 which affected a total of 142 genes in our data set, followed by a group
of 27 regulators which affected 173 genes having an overall consistency score of 9.7. These two
groups of regulators affected diseases related to female genital neoplasm, hematologic cancer,
lymphocytic neoplasm, lymphoid cancer, tumourigenesis of reproductive tract and hemato-
logic cancer, lymphocytic neoplasm, lymphoid cancer. Similarly, common regulators were also
identified for benign tumours with consistency score ranging from 3.7 to -12.2. The regulators
with the highest score were related to cell movement, invasion of cells and cell movement of
tumour cell lines.

Functional relevance of activated pathways and networks in CMTs

For knowing the functional relevance of activated pathways and networks, we investigated the
disease and bio-functions related to the top activated, as well as, inhibited pathways using IPA
tool. The top most affected diseases with respect to genes in our malignant data set were can-
cer, organismal injury and abnormalities, etc. The activated bio-functions in malignant tissues
were attributed to cell to cell signalling, cellular movement, inflammatory response, immune
cell trafficking, DNA replication, recombination, and repair. Genes that were seen to be down-
regulated in our analysis were related to bio-functions like exocytosis, secretory pathways, bac-
terial infections, female genital neoplasms etc. (Table 5). Among the benign tumours, top most
activated bio-functions were related to immune response of leukocytes, immune response of
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Table 2. Canonical pathways with highest enrichment scores (z-score) in benign CMTs and associated DEGs.

Ingenuity Canonical Pathways

‘ Z-Score ‘ Differentially expressed genes

TOP ACTIVATED PATHWAYS

TREM1 Signalling 3.36E TLR7,AKT3,AKT1, TLR1,MPO,CD40, TLRS,
+00 NLRP3,NLRP14, TYROBP,CCL2,GRB2, TLR2,
CD86,CIITA
Dendritic Cell Maturation 3.13E AKT3,AKT1,FCGR1A, PLCB2, FCER1G, CD40,
+00 TREM2, PIK3CG, HLA-DRB1, CD40LG, ATF4,
TYROBP, KLB, GRB2, CD80, COL11A2, TLR2,
CD86, IL33, FSCN1l, PIK3C2G
Role of Pattern Recognition Receptors in 2.84E EIF2AK2,0AS1,TLR7, TGFB1, TLR1,C1QB,OAS2,
Recognition of Bacteria and Viruses +00 DDX58, IL13,C3AR1,C1QA, PIK3CG,C1QC, TLRS,
PRKCD, SYK, C5AR1,NLRP3,0AS3, KLB, GRB2,
TLR2,CLEC7A, PIK3C2G
ILK Signalling 2.71E RHOH, AKT3,AKT1,MMP9, ITGB2, RHOQ, FN1,
+00 CFL1,ARHGEF6,MYH4, SNAI2,KLB, FBLIMI,
GRB2, FLNC, PIK3C2G,CTNNB1, LEF1, ITGBS,
ACTN1,CFL2,PIK3CG,ATF4, HIF1A, NACA
Role of NFAT in Regulation of the 2.67E GNA13,AKT3,AKT1, FCGR1A, PLCB2,CD79B,
Immune Response +00 FCER1G, RCAN2, PIK3CG, XPO1, SYK, HLA-DRB]1,
KLB, GRB2, CD80, CSNK1Gl, CD86, PIK3C2G,
LYN
Fcfs Receptor-mediated Phagocytosis in 2.67E HCK,AKT3,AKT1,GPLD1, FCGR1A,NCF1, FGR,
Macrophages and Monocytes +00 FYB,CBL,VAV1, ARPC1B, HMOX1, PIK3CG, PRKCD,
SYK, PIK3C2G, LYN
G Beta Gamma Signalling 2.65E PRKCD, GNA13, ARHGEF6,AKT3, AKT1, GRB2,
+00 PIK3CG
Colorectal Cancer Metastasis Signalling 2.65E RHOH, AKT3, AKT1, TGFB1,MMP9, TLR1, ADCY6,
+00 FzD2,MMP12,RHOQ, TLR8, ADCY3,KLB, GRB2,
TLR2, PIK3C2G, TLR7,CTNNB1,ADCY7, LEF1,
BIRCS5,WNT1, PIK3CG,MMP7,EGF,MMP3, BAX,
MMP1
Leukocyte Extravasation Signalling 2.56E CLDN10, RHOH, MMP9,MMP12,NCF1, ITGB2,
+00 WIPF1,CXCR4,KLB,GRB2, PIK3C2G,NCF4,
CTNNB1,MSN,CLDN18,ACTN1,CLDN6, VAV,
EDIL3,PIK3CG,MMP7, PRKCD, MMP3, TIMP1,
CYBB,MMP1, PECAM1
Th1 Pathway 2.50E LGALS9, IFNGR2, ITGB2,CD40, VAV1,NOTCH2,
+00 PIK3CG, CCR5,HLA-DRB1,CD40LG, KLB, GRB2,
CD80,CD86, PIK3C2G
Interferon Signalling 2.45E OAS1,IFNGR2,ISG15,MX1,BAX, PSMB8
+00
Production of Nitric Oxide and Reactive 2.36E NCF4,RHOH, AKT3,AKT1, IFNGR2,MPO,NCF1,
Oxygen Species in Macrophages +00 RHOQ, PIK3CG, LYZ, PRKCD, APOB, MAP3K1, KLB,
GRB2, SERPINA1,CYBB, TLR2, PIK3C2G
Mitotic Roles of Polo-Like Kinase 2.36E CCNB3, TGFB1, PLK5,ESPL1,CDC20,CCNB2,
+00 KIF11l,WEE1l,CDC25C,ANAPC10,CDC7,PLK3,
CDC16, PLK4, PLK2, PTTG1, PLK1,CDK1,CDC27
Cholecystokinin/Gastrin-mediated 2.33E SST, RHOH, CREM, PRKCD, GNA13, PLCB2, GRB2,
Signalling +00 RHOQ, IL33
Cyclins and Cell Cycle Regulation 2.33E CCNB3, CDK4, TGFB1, CDK2, CCNA2, CCNB2,
+00 TFDP1,WEE1l,CDK1
Integrin Signalling 2.32E RHOH, AKT3,AKT1, ITGB8, ITGB2,ACTN1,WIPF1,
+00 RHOQ, ARPC1B, PIK3CG, KLB, GRB2, ARF3,
CAPNS1,PIK3C2G
Tec Kinase Signalling 2.31E RHOH, HCK, GNA13, FGR, FCER1G, RHOQ, VAV1,
+00 PIK3CG, PRKCD, KLB, GRB2, PIK3C2G, LYN
(Continued)
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Table 2. (Continued)

Z-Score |Differentially expressed genes

Ingenuity Canonical Pathways
231E RHOH, AKT3,AKT1, TGFB1, IFNGR2, CCL2,KLB,

HMGBI Signalling

+00 GRB2, IL13,RHOQ, PIK3C2G, PIK3CG
iCOS-iCOSL Signalling in T Helper Cells 2.31E AKT3,AKT1,FCER1G,CD40,VAV1, PIK3CG,
+00 HLA-DRB1, CD40LG, KLB, GRB2,CD80, PTPRC,
PIK3C2G
Role of BRCA1 in DNA Damage Response | 2.24E RFC3,RFC2, FANCA, HLTF, BRCA2, FANCM, RAD5S1,
+00 SMARCC1, PLK1
IL-8 Signalling 2.24E RHOH, GNA13,AKT3, AKT1,MMP9, GPLD1, PLCB2,
+00 MPO, ITGB2, RHOQ, HMOX1, PIK3CG, EGF, PRKCD,

KLB,FLT1, GRB2, BAX, CYBB, PIK3C2G

TOP INHIBITED PATHWAYS

Complement System

2.24E C10C, C5AR1, C1QB, C4BPA, ITGB2,C6, C3AR],

+00 C1lQA
Cell Cycle: G2/M DNA Damage -2.83E TOP2A, CCNB3, AURKA, CKS2,CCNB2, YWHAH,
Checkpoint Regulation +00 WEE1,CDC25C, PLK1, CDK1
Neuroprotective Role of THOP1 in -2.89E SST, PRSS53, TAC1,MMP9, CTRL, F7, PREP, KLK1,
+00 KNG1,ECE1l,CTRB2, PRSS2,KLK15,PRSS12,

Alzheimer’s Disease

KLK8, PRSS36

https://doi.org/10.1371/journal.pone.0208656.t002
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cells, cell engulfment and cell survival. The top inhibited bio-functions were related to organis-
mal death, morbidity or mortality (Table 6).

To further understand the inter-relationship between genes that were dysregulated in malig-
nant and benign tumours, networks were identified to present how the genes interact and
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Fig 8. The top-ranked enriched canonical pathway identified in benign CMTs using IPA: The TREM1 signalling
pathway.

https://doi.org/10.1371/journal.pone.0208656.9008
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Fig 9. Dendritic cell maturation: Second enriched canonical pathway in benign CMTs, identified using IPA.

https://doi.org/10.1371/journal.pone.0208656.9009

coordinate their roles in a specific pathway. In malignant tumours, 25 networks were identified
that were related to cell cycle, cellular assembly and organization, DNA replication, recombina-
tion, and repair. The network with a maximum score was related to cell cycle, cellular assembly
and organization, DNA replication, recombination, and repair. Other top networks were related
to developmental and hereditary disorders, organismal injury, abnormalities, post-translational
modification, DNA replication, recombination and repair, cell cycle etc. Networks presenting
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Fig 10. Canonical pathway-G2/M DNA damage checkpoint in (A) malignant and (B) benign CMTs.
https://doi.org/10.1371/journal.pone.0208656.g010
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Table 3. Upstream regulators in malignant CMTs.

Upstream Regulator
FN1

SPP1
CXCR4
PPARGCIB
EGR1
TYROBP
CYR61
EIF2AK2
C5AR1
MTPN
CCND1
SRC
CASP3
CHUK
LHX1
NUPR1
ALDHI1A2
IFRD1
HNF1B
NR5A2
EGF
PTF1A
GCG

F2

https://doi.org/10.1371/journal.pone.0208656.t003

Expression Log Ratio Molecule Type Predicted Activation State Z-score
2.828 Enzyme Activated 2.277
2.384 Cytokine Activated 2.978
2.115 G-protein coupled receptor Activated 2.556
1.867 Transcription regulator Inhibited -2.395
1.592 Transcription regulator Activated 2.174
1.558 Transmembrane receptor Activated 2.2
1.444 Other Activated 2.812
1.341 Kinase Activated 2.179
1.24 G-protein coupled receptor Activated 2.76
1.222 Transcription regulator Activated 3.081
1.059 Transcription regulator Activated 3.681
0.993 Kinase Activated 2.13
0.889 Peptidase Activated 2.356
0.569 Kinase Activated 2.649
-1.042 Transcription regulator Inhibited -2.111
-1.423 Transcription regulator Inhibited -4.866
-1.591 Enzyme Inhibited -2.646
-1.88 Other Inhibited -2.213
-2.604 Transcription regulator Inhibited -2.331
-2.698 Ligand-dependent nuclear receptor Inhibited -2.976
-3.865 Growth factor Activated 3.333
-4.347 Transcription regulator Inhibited -2.562
-4.56 Other Inhibited -2.842
-7.153 Peptidase Activated 2.501

interrelationship of genes dysregulated in benign tumours were 25 in total with a maximum
score for the network showing genes related to cellular assembly and organization, cell cycle,
DNA replication, recombination, and repair. Other notable identified networks were related to
cancer, organismal injury, abnormalities and embryonic development, cell injury, DNA replica-
tion, cell signalling and cell cycle among others. It was observed that the top scoring network
amongst the malignant mammary cancers have a central node of mitotic checkpoint serine/
threonine kinase (BUB1B), while top network in the benign tumours have a central node of vas-
cular endothelial growth factor (VEGF), as shown in Fig 13.

Discussion

Mammary tumour is an important neoplastic disease of dogs, besides its role as a model for
human breast cancer studies. Our study has revealed new biomarkers, networks and pathways
dysregulated in canine mammary tumours. Previous work on expression profiling of canine
mammary tumour has suggested that separate pathological and molecular characterization
can complement one another [8]. Previous transcriptomic studies of canine mammary
tumours (CMTs) have shown that transcriptomic signatures overlap with human breast cancer
profiles and dogs are reliable models for oncogenic and pharmacogenomic studies [9].

Clinical relevance of top up-regulated genes in cancer pathogenesis

The top up-regulated genes among malignant and benign tumours in our study were found to
have a significant role in cancer progression and tumour invasiveness, as evidenced by human
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cancer studies. Top five up-regulated genes in malignant tumours were COL11A1, SFRP2,
LCN2, COL2A1 and H19. COL11A1 gene encodes one of the two alpha chains of type XI colla-
gen, a minor fibrillar collagen which has been implicated in tumour progression in humans.
Overexpression of COL11A1 has been reported in mesenchymal derived tumours [10-11]. Wu
et al., reported that COL11AI may promote tumour aggressiveness via the TGF-f1 and MMP3
axis in ovarian cancers [12]. Halsted et al., reported expression of COLIIA1 in epithelial cells,
stroma, and vessels of normal and cancerous breast tissue [13]. Overexpression of COL11A1
has recently been reported in canine melanomas [14]

Secreted frizzled-related proteins (SFRPs) constitute a family of 5 members (SFRP 1-5) that
modulate Wnt signalling. Overexpression of secreted frizzled related protein 2 (SFRP2) in
CMTs has been shown to induce cancerous transformation in normal mammary epithelial cells
[15]. The anti-apoptotic function of SFRP2 is mediated through activation of NF-«B or Janus
kinase (JNK) suppression [16]. Further in vitro, as well as, in vivo oncogenic potential of SFRP2
have been demonstrated in renal cancer. Recently, SFRP2 was shown to be related to poor prog-
nosis along with genes associated with epithelial-to-mesenchymal transition [17]. Overexpres-
sion of SFRP2 was seen in both malignant and benign CMTs in this study. Lipocalin (LCN2),
another top up-regulated gene among malignant tumours in our data set, has been shown to be
associated with oestrogen receptor (ER)-negative breast tumours in humans [18]. The gene is
significantly increased in the luminal epithelial cells compared with myoepithelial cells, an
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important finding because the majority of breast carcinomas are thought to arise from the lumi-
nal epithelial cells [19-20]. LCN2 promotes breast and prostate cancer progression by inducing
epithelial to mesenchymal transition (EMT) through the ERo/Slug axis [21-22]. Structural simi-
larity between human and dog LCN2 has been studied recently [23]. LCN2 has been shown to
be associated with tumour invasiveness of human cervical cancer also [24]. Ganpathi et al.,
revealed that high expression of collagen type II, alpha 1 (COL2A1) was associated with delayed
time to recurrence in high grade serious ovarian cancers [25]. COL2A1 gene also undergoes
somatic alterations in chondrosarcoma and enchondroma cases [26]. H19 is a gene for a long
noncoding RNA, having a role in the negative regulation of body weight and cell proliferation
[27]. Dugimont et al., reported expression of H19 gene in both epithelial and stromal compo-
nents of human invasive adenocarcinomas [28]. H19 is associated with enhancer of EZH2, and
this association results in Wnt/B-catenin activation and subsequent down-regulation of E-cad-
herin. H19 has been reported to enhance bladder cancer metastasis by associating with EZH2
and inhibiting E-cad expression [29]. Biological and clinical relevance of H19 in colorectal can-
cer patients has been reported recently [30].

The most up-regulated genes among benign mammary tumours in our experiment were
MMP3, MMP1, AREG, PTHLH and SFRP2. Matrix metalloproteinases (MMPs) play role in
cancer progression by degrading extracellular matrix and basement membrane and are the
main proteolytic enzymes involved in cancer invasion and metastasis [31]. MMP3 and MMP1
have a synergistic effect on breast cancer carcinogenesis [32]. MMP1 is the most widely
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Table 4. Upstream regulators in benign CMTs.

Upstream Regulator Expression Log Ratio Molecule Type Predicted Activation State Z-score
AREG 5.72 Growth factor Activated 3.882
TLR2 3.158 Transmembrane receptor Activated 2.392
PTGES 3.026 Enzyme Activated 2.193
FN1 2.834 Enzyme Activated 2.664
HGF 2.675 Growth factor Activated 3.886
NCF1 2.566 Enzyme Activated 2.219
C5AR1 2.336 G-protein coupled receptor Activated 3.251
TYROBP 2.272 Transmembrane receptor Activated 2.224
CD40 2.233 Transmembrane receptor Activated 2.081
CTLA4 2.201 Transmembrane receptor Inhibited -2.326
EIF2AK2 2.011 Kinase Activated 2.575
REL 1.868 Transcription regulator Activated 2.663
ITGB2 1.801 Transmembrane receptor Activated 2.425
CD40LG 1.484 Cytokine Activated 3.583
C3AR1 1.426 G-protein coupled receptor Activated 2.395
TLR7 1.425 Transmembrane receptor Activated 3.851
TGFB1 1.402 Growth factor Activated 5.165
HIF1A 0.888 Transcription regulator Activated 2.939
AKT1 0.809 Kinase Activated 241
MAP3K1 -0.841 Kinase Activated 2.905
NUPRI1 -2.063 Transcription regulator Inhibited -5.986
INSIG1 -3.015 Other Inhibited -3.357
EGF -3.154 Growth factor Activated 4.898
NROB2 -4.416 Ligand-dependent nuclear receptor Activated 2.16
F2 -7.006 Peptidase Activated 3.085

https://doi.org/10.1371/journal.pone.0208656.t1004

expressed collagenase and plays role in degradation of collagen I, I and III. MMP3 has a high
proteolytic efficiency and activates a number of proMMPs [33-34]. Overexpression of MMPs
has been reported widely in canine mammary tumours [9, 35].

Amphiregulin (AREG) is one of the many ligands for epithelial growth factor receptor [36].
It plays a central role in mammary gland development and branching morphogenesis in organs
and is expressed both in healthy and cancerous tissues [37-40]. The oncogenic potential of
AREG and its role in tissue invasion & metastasis, angiogenesis, resistance to apoptosis etc., has
been reported in human epithelial malignancies, such as lung, breast, colorectal, ovary and pros-
tate carcinomas, as well as, in some haematological and mesenchymal cancers [40-45]. Further-
more, AREG also contributes to therapeutic resistance to several cancer treatments [46].

Parathyroid hormone like hormone (PTHLH) has previously been reported to be produced
by tumour cells in the bone microenvironment and is implicated in osteoclastic activity and
bone metastasis [47]. Ghoussaini et al., combined several datasets for a genome wide analysis
and identified PTHLH as loci for susceptibility for breast cancer [48]. Researchers suggest that
PTHLP powerfully promotes tumour formation in breast cancer [49].

Impact analysis of major upstream regulators reveals genes involved in
tumour angiogenesis and cancer metastasis
In this study, we found numerous dysregulated upstream regulators in both malignant and

benign tumours of mammary gland, which affected expression patterns of various other genes
related with tumourigenesis. The top upstream regulators in malignant mammary tumours
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Table 5. Diseases and bio-functions associated with malignant CMTs and their association with the top signalling pathways.

Signalling Pathways Diseases or Functions p- Predicted Activation z-
Annotation Value |Activation State | score
Cell-To-Cell Signalling and Interaction, Cellular Movement, Hematological System recruitment of antigen 1.25E- | Increased 3.494
Development and Function, Immune Cell Trafficking presenting cells 05
Cell-To-Cell Signalling and Interaction, Cellular Movement, Hematological System recruitment of macrophages | 7.09E- | Increased 3.397
Development and Function, Immune Cell Trafficking, Inflammatory Response 06
Cellular Function and Maintenance endocytosis 2.18E- | Increased 3.339
05
DNA Replication, Recombination, and Repair metabolism of DNA 6.81E- | Increased 3.337
07
Cell-To-Cell Signalling and Interaction, Hematological System Development and activation of myeloid cells 9.77E- | Increased 3.069
Function 06
Cellular Movement cell movement of myeloid 6.51E- | Increased 2.998
cells 08
Inflammatory Response, Organismal Injury and Abnormalities inflammation of organ 1.96E- | Increased 2.939
09
Cell-To-Cell Signalling and Interaction, Hematological System Development and activation of phagocytes 3.06E- | Increased 2.899
Function, Immune Cell Trafficking, Inflammatory Response 07
Cell-To-Cell Signalling and Interaction, Hematological System Development and activation of leukocytes 1.40E- | Increased 2.233
Function, Immune Cell Trafficking, Inflammatory Response 09
Cardiovascular System Development and Function, Embryonic Development, Organ cardiogenesis 1.50E- | Increased 2.013
Development, Organismal Development, Tissue Development 05
Cancer, Hematological Disease, Organismal Injury and Abnormalities hematologic cancer 2.06E- | Decreased -2.012
07
Cellular Function and Maintenance, Molecular Transport exocytosis 1.26E- | Decreased -2.012
05
Cellular Function and Maintenance, Molecular Transport secretory pathway 1.39E- | Decreased -2.012
05
Infectious Diseases Bacterial Infections 2.24E- | Decreased -2.052
06
Cancer, Organismal Injury and Abnormalities, Reproductive System Disease female genital neoplasm 1.35E- | Decreased -2.056
15
Cancer, Organismal Injury and Abnormalities, Reproductive System Disease tumourigenesis of 4.26E- | Decreased -2.056
reproductive tract 15
Endocrine System Disorders, Organismal Injury and Abnormalities, Reproductive ovarian lesion 1.48E- | Decreased -2.092
System Disease 10
Hematological Disease, Inmunological Disease lymphoproliferative disorder | 5.38E- | Decreased -2.144
07
Cancer, Hematological Disease, Organismal Injury and Abnormalities lymphoid cancer 1.44E- | Decreased -2.24
06
Cancer, Hematological Disease, Organismal Injury and Abnormalities lymphocytic neoplasm 2.30E- | Decreased -2.33
07

https://doi.org/10.1371/journal.pone.0208656.t005

were secreted phosphoprotein (SPP1) and coagulation factor II (F2). Pathway analysis revealed
that SPP1 overexpression affected the expression levels of BRCA1 and CDC20, which have
been reported to be associated with several cancers types [50-51]. F2 (thrombin) in our study
was found to be dysregulated and its expression has been connected to overexpression of vari-
ous chemokines and their ligands having role in tumour angiogenesis and cancer metastasis
[52-54]. Nierodzik and Karpatkin have provided ample evidence to support that thrombin
activates tumour cell adhesion to platelets, endothelial cells, and subendothelial matrix pro-

teins. Thrombin also enhances tumour cell growth, metastasis and angiogenesis, apart from its
role in preservation of dormant tumour cells in individuals, preventing host eradication.
Therefore, it is proposed that tumour malignancy may be regulated by a procoagulant/antico-
agulant axis [55].
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Table 6. Diseases and bio-functions associated with benign CMTs and their association with the top signalling pathways.

Categories

Cell-To-Cell Signalling and Interaction, Inflammatory Response
Inflammatory Response

Cellular Function and Maintenance

Cell Death and Survival

Cellular Function and Maintenance, Inflammatory Response

Cell-To-Cell Signalling and Interaction, Cellular Function and Maintenance,
Inflammatory Response

Cellular Function and Maintenance

Cell-To-Cell Signalling and Interaction, Inflammatory Response

Cellular Movement, Hematological System Development and Function, Immune

Cell Trafficking, Inflammatory Response

Cancer, Endocrine System Disorders, Organismal Injury and Abnormalities,
Reproductive System Disease

Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities
Cancer, Endocrine System Disorders, Organismal Injury and Abnormalities,
Reproductive System Disease

Developmental Disorder, Neurological Disease

Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities
Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities
Infectious Diseases

Cell Death and Survival

Cancer, Gastrointestinal Disease, Organismal Injury and Abnormalities

Organismal Survival

Organismal Survival

https://doi.org/10.1371/journal.pone.0208656.t006

Diseases or Functions
Annotation

immune response of leukocytes
immune response of cells
engulfment of cells

cell survival

phagocytosis

phagocytosis of cells
endocytosis by eukaryotic cells
response of phagocytes

cell movement of phagocytes
Ovarian Cancer and Tumours
colon cancer

gonadal tumour

congenital anomaly of central
nervous system

large intestine neoplasm
colorectal neoplasia

infection of mammalia

cell death of cervical cancer cell
lines

colon tumour

morbidity or mortality

organismal death

p-Value | Predicted Activation

State
3.35E- | Increased
10
1.07E- | Increased
14
6.72E- | Increased
09
2.18E- | Increased
16
3.44E- | Increased
08
2.60E- | Increased
07
7.52E- | Increased
07
7.89E- | Increased
08
1.55E- | Increased
17
2.65E- | Decreased
09
2.48E- | Decreased
09
8.87E- | Decreased
09
6.50E- | Decreased
07
2.30E- | Decreased
24
3.63E- | Decreased
12
1.10E- | Decreased
08
1.00E- | Decreased
07
3.45E- | Decreased
09
5.44E- | Decreased
24
4.24E- | Decreased
24

Activation z-

score
5.376

5.343

5.188

5.161

5.145

5.1

5.044

5.025

4.977

-2.186

-2.2

-2.4

-2.522

-2.612

-2.612

-2.734

-2.789

-2.957

-5.407

-5.493

Top upstream regulator identified for benign mammary tumour was AREG. DNA damage
signals caused by radiation and chemo are transmitted by master regulators like NF-kB to gen-

erate a powerful, conserved and senescence associated secretory phenotype, and its down-
stream effectors comprise a large spectrum of extracellular proteins including AREG, SFRP2,
HGF, IL8, MMPs. Together these proteins give rise to a pro-angiogenic and pro-inflammatory
micro-environmental niche that promotes malignant phenotype [56-57]. Furthermore, AREG

affected downstream molecules like BIRC5, CCNA2, CCNB2, TOP2A, MMP9, MMP1,

CXCR4, have roles in development and progression of various types of cancers [32, 57-61].
Important upstream regulators in our study, unique to benign tumours were AREG, TLR2,
TGF1B, HGF, MAP3K1. TLR2 has been reported in intestinal and breast epithelia
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Fig 13. Top scoring networks in malignant (A) and benign (B) CMTs. Top scoring network in malignant CMT's
involved a central node of BUB1B, while top network amongst benign tumours involved VEGF central hub.

https://doi.org/10.1371/journal.pone.0208656.g013

oncogenesis. Scheeren et al., reported that inhibition of TLR2 or its co-receptor CD14, or its
downstream targets MYD88 and IRAK1 inhibits growth of human breast cancers in vitro and
in vivo [62]. TLR2 agonists fed to neu transgenic mice significantly inhibits breast cancer
growth [63] and leads to inhibition of immune responses by production of IL-10 and regula-
tory T-cells [64]. Thus, TLR2 stimulation on immune cells may also have opposing immune
effects as in the case of PSA and PSK [65].

Role of top activated pathways and networks in cancer pathogenesis

The top activated pathways in malignant tumours revealed a unique cancer landscape wherein
induction of certain pathways involved targets associated with cell cycle regulation, cellular
proliferation, apoptotic pathways, cellular stress and injury (e.g. pathways of cell cycle regula-
tion, oestrogen mediated S phase entry, granzyme B signalling and apoptosis signalling). The
data suggests genes involved in cell cycle regulation, apoptosis and cell signalling as major
events in the study.

The top scoring network in canine mammary tumour was found to have BUBIB as central
node in this study. BUB1B is a protein kinase involved in metaphase to anaphase transition
checkpoint [66-67]. Aneuploidy and chromosomal instability (CIN) in human cancers can be
attributed to alterations in this checkpoint [68]. BUB1B was seen to be linked with NDC80, an
essential protein of kinetochore-associated complex required for chromosome segregation and
spindle checkpoint activity [69]. NDC80 complex exists as part of a larger super complex called
KMN network previously reported to be overexpressed in CMTs [9]. NDCB80 has also been
shown to depend on KNL-1 and the CENP/H/I/K complex for kinetochore recruitment [70-
72]. A subnetwork of centromeric proteins CENP- H/C/U/K/A/N was seen within the net-
work. Overexpression of CENP-H is reported in the development and pathogenesis of human
breast, colorectal, oesophageal and oral squamous cell cancers [73-76].

Among benign tumours, central molecule in the top scoring network was vascular endothe-
lial growth factor (VEGF). VEGF has been identified as a vascular permeability factor, angio-
genic cytokine, and a survival factor in mammary tumours. VEGF overexpression and its role
in angiogenesis of CMTs have been reported [77]. VEGF can act directly on T lymphocytes
and elevated VEGF levels may contribute to the aberrant MMP-9 secretion by mammary
tumour bearing T cells [78]. VEGF is known to stimulate IL-18 production, which in turn,
promotes cancer cell migration, proliferation, angiogenesis and decreases cancer cell suscepti-
bility to lymphocyte mediated cytotoxicity [79-80]. In this network, overexpression of
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Vasohibin 2 (VASH2) was also seen. VASH2 is a VASH1 homolog, expressed in mononuclear
cells and has been reported as an angiogenesis stimulator in mice [81]. Higher expression of
VASH?2 induces expression of growth factors and promotes cell proliferation in breast cancer
[82]. VASH2 is also involved in the proliferation of hepatic and ovarian cancers [83-84].
Another protein in our dataset lying within VEGF network is maternal embryonic leucine-zip-
per kinase (MELK), a highly conserved serine/threonine kinase that is essential for cell cycle
regulation, organogenesis and stem cell proliferation [85]. Interestingly, MELK is additionally
involved in the initiation and propagation of numerous human cancers and correlates with
poor prognosis [86-87]. Expression of MELK has been reported in canine prostate carcinoma
derived cell lines [88]. In this study we also found increased expression of MELK in CMTs.
Further in this network, up-regulation of ST8SIA4 was seen to be directly linked to VEGF.
ST8SIA4 is involved in sialylation of proteins associated with cancer progression. ST8SIA4 is
significantly up-regulated in breast cancers and its up-regulation is highly correlated with can-
cer malignancy [89-90]. Dual specificity phosphatase (DUSP6), is another protein within the
VEGF network which was found to be overexpressed in CMTs in the present study. DUSP6
expression has been reported to play an oncogenic role in breast cancers [91]. Moreover,
DUSP6 is part of a high-risk gene signature for non-small cell lung cancer [92], and its expres-
sion is significantly correlated with high extracellular signal-regulated kinase (ERK) 1/2 activ-
ity in primary human ovarian cancer cells [93]. Other proteins in the VEGF network, whose
overexpression was observed, were cyclin-dependent kinase inhibitor-3(CDKN3) and PROM1
(CD133). CDKN3 is a dual-specificity protein tyrosine phosphatase of the CDC14 group,
which is often overexpressed in human cancers [94-95]. Since rapidly growing tumours have
more mitotic cells, the high level of CDKN?3 in mitotic phase provides the best plausible expla-
nation for the frequent CDKN3 overexpression in human cancers [96]. PROM1 is linked to
VEGE directly in this network and is attributed to poor prognosis in triple negative breast can-
cer due to its nuclear mislocalization [97]. Up-regulation of PROM1 increases the invasive
capability, metastasis and drug-resistance of breast cancers [98].

Functional significance of differentially up-regulated proteins in CMT's

Proteomic analysis of malignant CMT and healthy mammary tissues, revealed seven proteins
highly up-regulated in CMTs, namely ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and
MYH9. Overexpression of ANXA2 and CDKG6 has previously been reported in canine gliomas
[99] and CMT cell lines [100]. GNAQ is implicated in canine melanomas and T cell lympho-
mas by different researchers [101-102]. To the best of our knowledge, none of the other over-
expressed proteins has previously been reported in cancers affecting dogs. However, role of
these proteins in cancer pathogenesis in humans is well studied. Annexin A2 (ANXA?2), a cal-
cium-dependent phospholipid-binding protein localized at the extracellular surface of endo-
thelial cells having role in regulation of cellular growth and in signal transduction pathways
[103]. ANXA2 over expression has been reported in cancers of the breast, liver, prostate and
pancreas, where it plays role in cancer cell migration, invasion, metastasis and adhesion [104-
107]. Apolipoprotein C2 (APOCII) is a lipid binding protein belonging to the apolipoprotein
gene family. This protein activates the enzyme lipoprotein lipase, which hydrolyzes triglycer-
ides and thus provides free fatty acids for cells. APOC2 is one of the biomarkers that have been
used in differentiating bladder cancer from hernia [108]. Cyclin-dependent kinase 6 (CDK6)
plays a vital role in regulating the progression of the cell cycle. More recently, CDK6 has also
been shown to have a transcriptional role in tumour angiogenesis, being a part of a transcrip-
tion complex that induces the expression of the tumour suppressor p16™~** and the pro-
angiogenic factor VEGF-A [109]. Emerging evidence suggests that certain tumour cells require
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CDKS6 for proliferation [110]. Guanine nucleotide-binding protein G(q) subunit alpha
(GNAQ) is involved in glutamine metabolism and allows the formation of correctly charged
GIn-tRNA(GIn). Researchers have demonstrated that glutamine is a major nutrient involved
in multiple aspects of cancer metabolism [111]. Most cancer cells are dependent on glutamine
and cannot survive in the absence of exogenous glutamine and targeting glutamine metabo-
lism has been recently looked upon as a promising strategy for cancer treatment [112]. Rab
GDP dissociation inhibitor beta (RABGDIB/GDI2) is a member of the GDP dissociation
inhibitor family that controls the recycling of Rab GTPases involved in membrane trafficking.
GDI2 has been proposed as a tumor suppressor gene and acts as an indicator of tumorigenesis
in NSCLC [113]. Increased expression of GDI2 has been reported pancreatic carcinoma [114].
Guanine nucleotide-binding protein G(q) subunit alpha(GNAQ) encodes for alpha subunit of
q class of heterotrimeric GTP binding protein (Gq) that mediates signals between G-protein-
coupled receptors (GPCRs). Genetic, biochemical and biological analysis has shown that
GNAQ behaves as a bona fide human oncogene. Recent studies have shown that GNAQ is a
pivotal cancer gene in blue naevi [115]. Myosin Heavy Chain 9, (MYH9) encodes NM II-A
protein which exists primarily in the cytoplasm and is involved in cytokinesis, cell motility and
maintenance of cell shape. The role of MYHY in cell migration, invasion, and metastasis has
been established [116-117]. The overexpression of MYH9 is related to a poor prognosis in
oesophageal, bladder, and gastric cancer [116-120].

Thus, the proteomic studies have identified seven proteins unregulated in CMTs. Overex-
pression of these proteins has not been reported previously in CMTs, however their role in
human cancer pathogenesis is well studied. Thus, these proteins need to be studied further for
their role in pathogenesis of different cancers of dog.

Conclusions

This study presents gene expression profile of spontaneously occurring canine mammary
tumours. Differential gene expression was analysed in context of gene networks and pathways
to have insight into the signature pathways associated with benign and malignant CMTs. The
research will also add to the knowledge of human cancer studies as dog mammary cancer is a
useful model for human breast cancer studies. Presently, the genes accountable for the aggres-
sive behaviour of mammary cancer are not very clear, and poor prognosis associated with
malignant mammary cancers emphasize the necessity to unravel the underlying pathways and
genes which could act as targets for therapy. In this study we have identified several genes
which play a diverse role in tumour angiogenesis, cancer onset and pathogenesis. We have also
identified important canonical pathways and key networks in CMTs. The identified differential
genes need to be further validated as therapeutic targets and prognostic markers for mammary
cancer. In future, further investigations are required to delineate the gene expression patterns
among different types & grades of cancers and their response to specific therapies. Further
research for identification of gene signatures associated with prediction of response to specific
chemotherapies for developing personalized chemotherapeutic regimens is need of the hour.
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S1 Fig. Canonical pathway—cyclins and cell cycle regulation in malignant (A) and benign (B)
mammary tumour.
(TIF)
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$2 Fig. Canonical pathway—mitotic role of polo like kinases in malignant (a) and benign (b)
mammary tumour.
(TIF)

83 Fig. Canonical pathway—Wnt/B-catenin signalling in malignant (A) and benign (B) mam-
mary tumour.
(TIF)

$4 Fig. Overlapping canonical pathways in malignant vs. healthy mammary tissues.
(TIF)

S5 Fig. Overlapping canonical pathways in benign vs. healthy mammary tissues.
(TIF)

S1 Table. Histopathological details of tumour tissues used for the study.
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S2 Table. Primer sequences used for qPCR of target genes.
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