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Abstract

Protein loops, the flexible short segments connecting two stable secondary structural units in proteins, play a critical role in
protein structure and function. Constructing chemically sensible conformations of protein loops that seamlessly bridge the
gap between the anchor points without introducing any steric collisions remains an open challenge. A variety of algorithms
have been developed to tackle the loop closure problem, ranging from inverse kinematics to knowledge-based approaches
that utilize pre-existing fragments extracted from known protein structures. However, many of these approaches focus on
the generation of conformations that mainly satisfy the fixed end point condition, leaving the steric constraints to be
resolved in subsequent post-processing steps. In the present work, we describe a simple solution that simultaneously
satisfies not only the end point and steric conditions, but also chirality and planarity constraints. Starting from random initial
atomic coordinates, each individual conformation is generated independently by using a simple alternating scheme of
pairwise distance adjustments of randomly chosen atoms, followed by fast geometric matching of the conformationally
rigid components of the constituent amino acids. The method is conceptually simple, numerically stable and
computationally efficient. Very importantly, additional constraints, such as those derived from NMR experiments, hydrogen
bonds or salt bridges, can be incorporated into the algorithm in a straightforward and inexpensive way, making the method
ideal for solving more complex multi-loop problems. The remarkable performance and robustness of the algorithm are
demonstrated on a set of protein loops of length 4, 8, and 12 that have been used in previous studies.
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Introduction

The characterization of protein loop structures and their

motions is essential in understanding the function of proteins

and the biological processes they mediate [1,2]. However, due to

their conformational flexibility, it is notoriously difficult to

uniquely determine their structure via traditional experimental

techniques such as X-ray scattering or nuclear magnetic resonance

(NMR). As a result, structures with missing loops are not

uncommon in the Protein Data Bank. The sequence and structure

variability of protein loops also presents a major challenge in

homology modeling. With moderate sequence identity and good

quality experimental template structures, it is generally feasible to

obtain the overall tertiary structure and some acceptable degree of

detail for the loop in question. However, the errors could be

significant in the loop regions where the sequences between the

target and template protein differ significantly. In our view, the

loop closure problem, namely the construction of a protein

fragment that closes the gap between two fixed end points, remains

unsolved. A satisfactory solution to this problem will not only

benefit experimental structure determination and comparative

modeling, but also be useful in de novo protein structure prediction

and phase space sampling, as the importance of local moves

without changing the rest of the system has been repeatedly

demonstrated for chain molecules [3,4].

A complete solution to the protein loop reconstruction problem

usually involves two important components, the buildup of the

loop structure and the selection of the most promising candidates

through an appropriate scoring function. The current study

addresses the former problem. A variety of algorithms has been

developed to tackle the loop closure problem. Many methods

construct protein loops by reusing representative loop blocks from

a database of experimentally determined protein structures [5–18].

Naturally, these methods are highly dependent on the size and

quality of the experimental data, and their performance has

improved substantially with the rapid growth of PDB [14,15].

More importantly, since the number of possible conformations

increases exponentially with length, this approach is limited to

relatively short loops. This is not a problem for ab initio methods

which construct loops by either distorting existing structures or by

relaxing distorted non-physical structures with molecular dynam-

ics, simulated annealing, gradient minimization, random tweaking,

discrete (w,y) dihedral angle sampling, or self-consistent field

optimization [19–27]. These algorithms often include energy

calculations using classical force fields and implicit or explicit

treatment of solvent effects, and therefore tend to be computa-

tionally expensive. Several groups have combined knowledge-

based and sampling approaches, sometimes with considerable

success [10,28–34]. For example, through modeling the crystal

environment, careful refinements, and extensive conformational

sampling, PLOP [33] obtained an average prediction accuracy of

0.84 and 1.63 Å RMSD from the crystal structures for a series of

8- and 11-residue loops. The performance of PLOP was further

improved by Zhu and coauthors through an improved sampling

algorithm and a new energy model [35], and was successfully

applied even to loops in inexact environments [36].
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An alternative class of methods determine proper loop

structures by identifying all possible solutions to a set of algebraic

equations derived from distance geometry, as described in the

pioneering work of Go and Sheraga [37] and many other

analytical methods adopted from kinematic theory [31,38–41]. In

particular, Canutescu and Dunbrack introduced a very attractive

approach known as cyclic coordinate descent (CCD), which can

close loops of different lengths through iterative adjustment of

dihedral angles [40]. This method has been incorporated into the

well-known de novo protein design package Rosetta and demon-

strated its strength in generating conformations for the loop

regions [42,43]. More recently, Coutsias and coauthors cast the

determination of loop conformations of six torsions into a problem

of finding the real roots of a 16th degree single-variable

polynomial, and demonstrated the efficiency and applicability to

various loops [41]. A thorough review of loop closure algorithms is

beyond the scope of this paper. For more information, the reader

is referred to several recent articles [31–34,44].

In computational modeling, a protein loop can be conveniently

represented by a set of connected points in three-dimensional

Cartesian space. A chemically sensible conformation must satisfy a

set of geometric constraints derived from the loop’s covalent

structure. The connectivity and common covalent bond lengths

and angles require that the distance dij between any pair of atoms i

and j falls between certain bounds, lijƒdijƒuij . Non-bonded

interactions introduce additional constraints, as do the planarity of

conjugated systems and the chirality of stereocenters. These can be

further supplemented with external constraints derived from

experimental techniques such as 2D NMR and fluorescent

resonance energy transfer (FRET). Taken together, these con-

straints greatly reduce the search space that needs to be sampled in

order to identify the loop’s accessible conformations. Distance

geometry (DG) is a class of methods that aim specifically at

generating conformations that satisfy such geometric constraints.

DG attempts to minimize an error function that measures the

violation of geometric constraints [45,46]. DG methods involve

four basic steps: 1) generating the interatomic distance bounds, 2)

assigning a random value to each distance within the respective

bounds, 3) converting the resulting distance matrix into a starting

set of Cartesian coordinates, and 4) refining the coordinates by

minimizing distance constraint violations. To ensure that reason-

able conformations are generated, the original upper and lower

bounds are usually refined using an iterative triangular smoothing

procedure. Although this process improves the initial guess, the

randomly chosen distances may still be inconsistent with a valid 3-

dimensional geometry, necessitating expensive metrization

schemes [47–49] or higher dimensional embeddings [46] prior

to error refinement, or lengthy refinement procedures if random

starting coordinates are used. Although DG methods can generate

sensible starting geometries, these geometries are rather crude for

most practical applications, and need to be further refined by some

form of energy minimization. Since its first chemical applications

in 1978 by Crippen and Havel [45], DG has been applied to a

wide range of problems, including NMR structure determination,

conformational analysis [48,50], homology modeling [49,51], and

ab initio fold prediction [52].

Recently, a new self-organizing technique known as stochastic

proximity embedding (SPE) has been developed as an extremely

attractive alternative to conventional DG embedding procedures

[53]. SPE starts from random initial atomic positions, and

gradually refines them by repeatedly selecting an individual

constraint at random, and updating the respective atomic

coordinates towards satisfying that specific constraint. This

procedure is performed repeatedly until a reasonable conforma-

tion is obtained. The method, which was originally developed for

dimensionality reduction [54] and nonlinear manifold learning

[55], is simple, fast and efficient, and can be applied to molecular

topologies of arbitrary complexity (acyclic, cyclic, macrocyclic,

bridged and caged systems alike). Because it avoids explicit

evaluation of an error function that measures all possible

interatomic distance bound violations in every refinement step,

the method is extremely fast and scales linearly with the size of the

molecule. SPE is significantly more effective in sampling the full

range of conformational space compared to other conformational

search methods [56], particularly when used in conjunction with

conformational boosting [57], a heuristic for biasing the search

towards more extended or compact geometries. Furthermore, SPE

is insensitive to permuted input, a problem that plagues many

systematic search algorithms [58].

Zhu and Agrafiotis subsequently proposed an improved variant

of SPE referred to as self-organizing superimposition (SOS) that

accelerates convergence by decomposing the molecule into rigid

fragments and using pre-computed conformations for those

fragments in order to enforce the desired geometry [59]. Starting

from completely random initial coordinates, the SOS algorithm

repeatedly superimposes the templates to adjust the positions of

the atoms, thereby gradually refining the conformation of the

molecule. Coupled with pair-wise atomic adjustments to resolve

steric clashes, the method is able to generate conformations that

satisfy all geometric constraints at a fraction of the time required

by SPE. The approach is conceptually simple, mathematically

straightforward, and numerically robust, and allows additional

constraints to be readily incorporated. Since rigid fragments are

pre-computed, planarity and chirality constraints are automati-

cally satisfied after the template superimposition process, and local

geometry is naturally restored. Furthermore, because each

embedding starts from completely random initial atomic coordi-

nates, each new conformation is independent of those generated in

the previous runs, resulting in greater diversity and more effective

sampling. As the algorithm only involves pairwise distance

adjustments and superimposition of relatively small fragments, it

is impressively efficient.

Author Summary

Protein loops play an important role in protein function,
such as ligand binding, recognition, and allosteric regula-
tion. However, due to their flexibility, it is notoriously
difficult to determine their 3D structures using traditional
experimental techniques. As a result, one can often find
protein structures with missing loops in the Protein Data
Bank. Their sequence variability also presents a particular
challenge for homology modeling methods, which can
only yield good overall structures given sufficient se-
quence identity and good experimental reference struc-
tures. Despite extensive research, the construction of
protein loop 3D structures remains an open problem, since
a sensible conformation should seamlessly bridge the
anchor points without introducing steric clashes within the
loop itself or between the loop and its surroundings
environment. Here, we present a conceptually simple,
mathematically straightforward, numerically robust and
computationally efficient approach for building protein
loop conformations that simultaneously satisfy end-point,
steric, planar and chiral constraints. More importantly,
additional constraints derived from experimental sources
can be incorporated in a straightforward manner, allowing
the processing of more complex structures involving
multiple interlocking loops.

Self-Organizing Protein Loop Modeling
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In this paper, we present the new variant of the SOS algorithm,

which has been adapted from conformational sampling of small

molecules and tailored to the protein loop closure problem. In the

remaining sections, we provide a detailed description of the

modified SOS algorithm and its implementation, and present

comparative results for a set of protein loops of residue size 4, 8,

and 12, which have been used in previous validation studies.

Methods

The SOS algorithm involves two main phases: 1) an initialization

phase, where the input molecule is decomposed into a set of rigid

fragments, and the upper and lower inter-atomic distance bounds

are determined; and 2) an embedding phase, where molecular

conformations consistent with these distance bounds are generated

through a series of alternating template fitting and pairwise

distance adjustments.

Initialization. The initialization process is applied once for

each new molecule and involves three basic steps:

1. Decompose the target molecule into overlapping fragments

[59] and retrieve the ideal conformational template Ti for each

fragment Fi from a library of pre-computed templates (since

there is a one-to-one correspondence between templates and

fragments, i is used as an index for both).

2. Construct the upper and lower inter-atomic distance bounds

from the connection table.

3. Assign a weight wi to each atom i.

In order to identify conformationally rigid fragments, the

program must first identify all rotatable bonds present in the

molecule. For a general molecule, single acyclic bonds are

assumed to be freely rotatable, unless they are part of a small

ring (size 6 or smaller), or a delocalized system, such as the N-C

bond in an amide group. The rotatable bonds are then removed,

and the remaining sub-graphs (connected components) represent

the rigid fragments. Figure 1 illustrates the fragments derived from

the backbone of a short protein loop with four residues connected

to a fixed part of the protein (area in shadow). The peptide

backbone can be decomposed into an alternating series of amide (-

NH-CO-) and Ca groups, each of which can be considered rigid.

The conformations of these groups can be either extracted from a

3D database or determined from simple geometric constraints

using SPE or other methods. For example, the geometry of the

amide group can be uniquely determined by the bond lengths,

bond angles, and planarity of the amide bond.

As in the original SOS algorithm, the fragment templates that

serve as reference structures for the superimposition operations also

include the atoms directly attached to them through rotatable bonds.

This ensures that the resulting conformation preserves the correct

relative orientation between fragments (Figure 1). However, while

the coordinates of the core atoms in a fragment can be taken directly

from the pre-computed templates, the coordinates of the attached

atoms need further adjustment because in the reference templates

they are represented by explicit hydrogens. This is achieved by

replacing the corresponding hydrogens with the actual atoms in the

molecule and adjusting the bond lengths accordingly. In our current

Figure 1. Decomposition of a 4-residue loop into a set of rigid fragments. The green, blue and red balls represent the carbon, nitrogen, and
oxygen atoms, respectively. The gray area corresponds to the fixed part of the protein where the loop is anchored. The protein loop backbone can be
decomposed into a series of alternating amide (in blue rectangular boxes) and methylene groups (in red elliptical boxes). The two structures on the
right hand side are the corresponding reference templates with their attached atoms.
doi:10.1371/journal.pcbi.1000478.g001

Self-Organizing Protein Loop Modeling
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implementation, the fixed part of the protein is treated as a single

fixed fragment, translating the loop closure problem into a

conformation generation problem for a cyclic molecule.

The calculation of the upper and lower interatomic distance

bounds follows the standard procedure outlined in the original SPE

and SOS algorithms [53,59]. For atoms that are bonded to each

other (1,2), bonded to a common third atom (1,3), or bonded to two

atoms that are directly bonded themselves (1,4), the lower bound lij
(where i and j are the indices of the atoms in question) is determined

based on standard covalent geometry, otherwise it is set to the sum

of their Van der Waals radii. The upper bounds uij are usually set to

the sum of the bond lengths along the shortest path connecting

atoms i and j, obtained from the Floyd-Warshall algorithm.

Embedding. Once constructed, the templates are used in an

iterative embedding procedure that involves successive template fits

followed by pairwise adjustments of atomic positions to gradually refine

the conformation of the molecule. The algorithm proceeds as follows:

1. Position the terminal atoms of the loop at their predefined

distance. Place the remaining atoms at random positions in the

vicinity of the terminal atoms.

2. Repeat nc times

{

3. 3. For each fragment Fk in the molecule do
{

3. Repeat np times

{

4. 4. Reset the terminal atoms of the loop to their fixed

positions.

5. 5. Pick a random pair of atoms i and j from two

different fragments.

5. Calculate the distance between atoms i and j,

d
I

~r
I

i{r
I

j , d~ d
I
���
���.

6. 6. Retrieve the corresponding upper and lower

distance bounds, uij and lij, between atoms i and j.

7. 7. Update the coordinates of atoms i and j as follows.

If (d,lij)

{

8. Set r
I

i~r
I

izd
I

(lij=d{1)wj=(wizwj).

9. Set r
I

j~r
I

j{d
I

(lij=d{1)wi=(wizwj).
}

10. Else if (d.uij)

10. {

11. Set r
I

i~r
I

izd
I

(uij=d{1)wj=(wizwj).

12. Set r
I

j~r
I

j{d
I

(uij=d{1)wi=(wizwj).
}

}

13. 8. Superimpose the template Tk onto the existing

conformation of fragment Fk. Replace the

coordinates of the atoms in Fk with the

corresponding coordinates in the superimposed

template Tk. Record the maximum distance

deviation devtemplate
max .

}

14. 9. Record the maximum end-point distance devi-

ation, devendpoint
max . If devtemplate

max wdev
template
cutoff or

devendpoint
max wdev

endpoint
cutoff , where dev

template
cutoff and

dev
endpoint
cutoff are prescribed thresholds, repeat step

3.

}

After assigning random initial coordinates to all the atoms in

the loop, the SOS cycles begin by resetting the positions of the

terminal atoms to the predefined fixed points to satisfy the anchor

constraints. Every cycle iterates over all rigid fragments in random

order and updates the coordinates of their constituent atoms by

least-squares fitting of the corresponding template. Within each

cycle, steric clashes are gradually removed by np pairwise distance

adjustments between any two successive fitting operations. Each

pairwise adjustment selects a random pair of points and checks if

their distance dij falls within the prescribed lower and upper

bounds, lij and uij. If not, the atoms are moved along their axis

towards satisfying that constraint (i.e., towards each other if their

current distance is larger than the upper bound, and away from

each other if it is smaller than the lower bound). If the atoms are

already within their prescribed bounds, their positions remain

unchanged. The magnitude of the adjustment is inversely

proportional to the atoms’ weights, wi and wj. Properly assigned

weights can promote the satisfaction of the fixed point constraints

and accelerate convergence [59]. In effect, the superimposition

operations correct the geometry of locally rigid substructures in a

single conceptual step, while maintaining the proper chirality

(Figure 2). Compared with the original SOS implementation, the

current variant incorporates the anchor constraints for the

terminal atoms of the loop. Moreover, rather than stopping after

a predefined number of cycles, a more adaptive convergence

criterion is applied. The maximum displacement for all the atoms

in the template is recorded, and used to assess convergence. If the

maximum atomic displacement across all templates and the end

point distance violations are smaller than the prescribed

thresholds dev
template
cutoff and dev

endpoint
cutoff respectively, the innermost

loop is considered successful. Because the pairwise adjustments

are interlaced with the superimposition operations, it is possible

that the locally optimal geometry obtained from the last fitting

step is distorted by the subsequent pairwise adjustments and

superimposition operations. Therefore, we consider the cycle

successful after the completion of ncutoff successive successful

loops.

Weighted template superimpositions. The correct

geometry of each fragment is enforced by repeatedly

superimposing the corresponding template onto the fragment’s

current 3D configuration, and then copying the coordinates of the

atoms in the superimposed template back to the original molecule.

As we mentioned earlier, when two neighboring fragments are

connected by a rotatable bond, that bond is included in both of

them. Therefore, a superimposition operation of one fragment

may distort the locally optimal geometry that resulted from a

previous superimposition of one of its adjacent fragments. In order

to alleviate this wasteful oscillation and improve the convergence

rate, we assign a higher weight w1 to the atoms along the

connecting rotatable bonds, as we did in our previous study [59].

For the protein loop problem in particular, we assign a separate

weight w2 (w2&w1) to the fixed atoms in order to minimize the

deviation of the loop terminals from the fixed end points. The

weighted template superimposition is illustrated in Figure 2. For a

chosen fragment, we first perform a weighted rigid-body alignment

to superimpose the corresponding template on top of that

fragment, and then replace the fragment coordinates with those

of the superimposed template.

The rate-limiting step in the SOS algorithm is the superimpo-

sition of templates. Let A and B denote the coordinate matrixes of

the template and target fragment structures, where each row

corresponds to the position of the i-th atom in the respective

structure, (xA,i, yA,i, zA,i) and (xB,i, yB,i, zB,i). The weighted inner

product of A and B is given by

Self-Organizing Protein Loop Modeling
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M~B�WA~

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

0
B@

1
CA ð1Þ

where

Sxy~
XN

i

wixB,iyA,i ð2Þ

and the matrix W is the diagonal matrix with each diagonal

element being the weight wi we discussed above.

Horn has showed that the quaternion of the optimal rotation

matrix that minimizes the root mean square deviation between

two structures A and B is the eigenvector associated with the

largest positive eigenvalue of the symmetric matrix Q [60]:

SxxzSyyzSzz Syz{Szy Szx{Sxz Sxy{Syx

Syz{Szy Sxx{Syy{Szz SxyzSyx SxzzSzx

Szx{Sxz SxyzSyx {SxxzSyy{Szz SyzzSzy

Sxy{Syx SxzzSzx SyzzSzy {Sxx{SyyzSzz

0
BBB@

1
CCCAð3Þ

Instead of solving this eigensystem with the traditional

Householder reduction method followed by QL decomposition

with implicit shift [61] as used in the original SOS algorithm [59],

we adopt the Newton-Raphson quaternion-based characteristic

polynomial algorithm, an approach developed by Theobald and

reported to be orders of magnitude faster than the traditional eigen

decomposition approach [62]. Essentially, we first solve the

characteristic polynomial with the Newton-Raphson algorithm

for the largest eigenvalue, and then use cofactor matrices to

calculate the corresponding eigenvector, which can easily be

converted into the optimal rotational matrix needed for the

superimposition. This new approach of determining the rotation

matrix results in a 100% speedup compared to the original SOS

algorithm.

Computational details and test set. The algorithm was

implemented in C++ and is part of the DirectedDiversity software

suite [55], which is in turn part of the Third Dimension Explorer

and ABCD informatics offering [63]. To validate our algorithm,

we compared it with the CCD method recently developed by

Canutescu and Dunbrack [40] and the CSJD method by Coutsias

et al. [41]. To simplify comparison, we used the same data set that

was employed in both works, which consists of three sets of loops

Figure 2. Schematic illustration of superimposition operation for an amide group in a 4-residue loop. First, one of the fragments is
picked at random (shown in the rectangular box). Second, a weighted rigid-body alignment is performed to superimpose the template on top of the
selected fragment. Finally, the coordinates of the fragment are replaced with those of the superimposed template, therefore ensuring the correct
bond lengths, bond angles, and planarity for this fragment.
doi:10.1371/journal.pcbi.1000478.g002

Self-Organizing Protein Loop Modeling
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of length 4, 8, and 12, containing 10 different loops each. All SOS

conformations were generated using the following parameters:

np = 3 (number of pairwise distance adjustments between two

successive superimposition operations); w1 = 5 (weights assigned to

the atoms in the rotatable bonds); w2 = 500 (weights assigned to the

fixed terminal atoms); dev
template
cutoff ~0:2 A (maximum allowed

displacement during the fitting operation); dev
endpoint
cutoff ~0:08 A

(maximum allowed fixed end-point deviation); and ncutoff ~7
(number of successive successful cycles for SOS to be considered

converged). These parameters were chosen based on the following

considerations. The parameter np was tested on the 1cruA_358

12-residue loop to ensure sufficient distortion before the template

superimposition, and was then used for all the remaining loops.

The weight w1 was directly adopted from the original SOS paper

since there is no fundamental difference between the fragments

from small organic molecules and peptides. The weight w2 was set

to an arbitrary large number, which essentially made the anchor

points immobile. (An alternative weight of 1000 was also tested,

but no substantial difference was observed.) The parameter

dev
template
cutoff was chosen so as to prevent substantial structural

distortion but still allow some flexibility. Three values, 0.05, 0.2,

and 0.4 Å, were tested on the 1cruA_358 12-residue loop, and the

value of 0.2 Å was found to be the most appropriate and applied

to all the remaining loops. The parameter dev
endpoint
cutoff was adopted

directly from the original cyclic coordinate descent paper. Finally,

the parameter ncutoff was chosen so as to produce an ensemble of

physically plausible conformations. The smaller the value, the

faster the convergence and the higher the probability for the

conformation to be distorted. Several values were tested on the

1cruA_358 12-residue loop (1, 3, 5, and 7), and the value of 7 was

found to be a reasonably conservative choice.

All calculations were performed on an IBM Thinkpad T61

laptop computer equipped with a single dual-core 2 GHz mobile

Intel processor and 1.96 GB 667 MHz DRAM (using only a single

core).

Results

To allow a direct comparison with the CSJD and CCD

algorithms, 5,000 different conformations were generated for each

of the 30 representative loops, and the RMSD of each of these

conformations to the known crystal structure was recorded. To

further demonstrate the robustness of our algorithm, three

different sets of simulations (i.e., three sets of 5,000 conformations)

were performed for each loop, each starting from a different

random number seed. The minimum RMSD’s to the X-ray

structures among the 5,000 conformations associated with each

run (where a run denotes the 5,000 conformations generated from

a particular random seed) are illustrated in Figure 3. The plot is

divided into three panels for the 4, 8 and 12-residue loops

respectively. The loop labels are composed of the PDB name of

the proteins in which they were found, followed by their starting

positions in the amino acid sequence. The y axis shows the best

RMSD values calculated for the backbone atoms N, C, O and Ca.

The three lines in each panel represent the results for each

independent run (random seed). As seen from these plots, the

observed variability is relatively small and within the limits

expected from the stochastic nature of the method. From these

three independent simulations, the current algorithm produced

consistently good backbone conformations with a mean best

RMSD of 0.20, 1.19, and 2.29 Å, and the average sample size

required to produce the best RMSD conformation was 2493,

2316, and 2761 for short (4-residue), medium (8-residue), and long

(12-residue) loops, respectively.

To enable a more direct comparison, the results from the first

run are listed in Table 1, along with the values obtained by the

CSJD and CCD methods. The average minimum RMSD’s across

all 10 loops of a given size were 0.20, 1.19, and 2.25 Å for the 4, 8,

and 12-residue loops, respectively, compared to 0.56, 1.59, and

3.05 Å for CCD, and 0.40, 1.01, and 2.34 Å for CSJD. Although

5,000 conformations were generated for each loop, in the majority

of cases the best structure was identified within the first 3,000 SOS

trials. As seen in Figure 3, these values can be further improved if

another random seed is employed. We have previously shown that

SPE and SOS are considerably more effective than other methods

in sampling the full range of conformations available to a given

molecule [53,59], and it is to be expected that there will be less

variability as the conformational space gets saturated (the number

of unique conformations levels off asymptotically as the number of

trials increases).

It is also worth noting that the results obtained with our

algorithm are more consistent than those obtained by CSJD and

CCD. For instance, for all ten of the 12-residue loops, the

minimum RMSD’s obtained by SOS were always less than

2.55 Å, whereas for the CSJD and CCD algorithms these values

ranged as high as 3.10 and 4.83 Å, respectively. Because in the

realistic loop prediction problem there is no reference structure to

compare against, this observation gives us more confidence that

the actual loop structure will be close to at least one of the

structures identified by our algorithm. Clearly, the larger the loop,

the greater its conformational flexibility, and the greater the

number of trial conformations one needs to generate in order to

adequately sample the space.

To assess the quality of the entire conformational ensemble

generated by the SOS algorithm, the root mean square deviations

of all bond lengths and angles in the resulting loop conformations

were calculated against their ideal values, and the resulting

distributions were plotted in Figure 4 (bond lengths in the top

panel, bond angles in the bottom). The three series in each panel

represent the combined distributions of the 4, 8, and 12-residue

loops, respectively. As is evident from these distributions, the bond

lengths were reproduced remarkably well, with the majority of the

deviations limited to less than 0.02 Å and the overwhelming

majority less than 0.04 Å. This is a very satisfactory result,

considering that the s bonds between two carbon atoms can vary

from 1.49 Å to 1.54 Å [59] and that an even larger variation is

observed in the crystal structures deposited in the Protein Data

Bank. Similarly, the majority of conformations show very small

bond angle deviations (less than 3 degrees). Interestingly, the

distribution of angle deviations is slightly broader for the 4-residue

loops, which probably reflects their more constrained nature and

the relatively greater difficulty in meeting the end point

constraints.

To illustrate how the molecular geometries are improved during

the course of the SOS refinement, Figure 5 shows a few

representative snapshots of a single 8-residue loop refinement

run. Starting from a random initial conformation (Step 0), the

SOS procedure rapidly drives the atoms close to their final

locations within only 5 refinement steps. After 20 steps, the loop

conformation is successfully constructed with only one steric clash.

This clash is gradually resolved within a few more steps. The

conformation is only slightly adjusted beyond Step 30 to satisfy the

strict convergence criteria, which are fully satisfied in Step 144.

A practical and useful algorithm must strike a good balance

between the quality of conformations that it generates and the

computational time expended. The efficiency of the SOS

algorithm was evaluated by calculating the average time required

to generate 5,000 conformations for all ten protein loops in each
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Figure 3. Minimum RMSD of the 5,000 conformers generated for each loop from their respective X-ray structures. The three series
represent three independent SOS runs, each starting from a different random number seed and resulting in a different set of 5,000 conformers. The
results are presented in 3 different panels for clarity. (A) 4-residue loops; (B) 8-residue loops; (C) 12-residue loops.
doi:10.1371/journal.pcbi.1000478.g003
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set. The computing time per conformation averaged over 5,000

conformations for each 4, 8 and 12-residue loop was 4.5, 12, and

17 milliseconds, respectively, on a single 2 GHz mobile Intel

processor (using only one of the two available cores). In addition to

giving better average minimum RMSDs (0.20, 1.19, and 2.25 Å

for SOS, 0.56, 1.59, and 3.05 Å for CCD, and 0.40, 1.01, and

2.34 Å for CSJD for the 4, 8, and 12-residue loops, respectively),

the current approach is more efficient than CCD. Indeed, SOS

required 5.0, 13, and 19 ms when scaled to the same processor

(AMD 1800+ MP), compared to 31, 37, and 23 ms for CCD for

the 4, 8 and 12-residue loops. Although the efficiency is not as

impressive as the CSJD algorithm’s (0.56, 0.68, and 0.72 ms on an

AMD 1800+ MP processor), it is more than sufficient for virtually

all practical uses. It is worth mentioning that the ‘‘numerical’’

closure, which is essentially the conformational sampling scheme

used in PLOP [33], gave very good RMSD’s (0.27, 1.04, and

1.89 Å) with an average computing time of 8.5, 6.1, and 23 ms per

loop for the 4, 8, and 12-residue loops [41]. Since the SOS

algorithm resolves steric clashes during the course of the

refinement through the use of pairwise distance adjustments, the

resulting conformations are chemically and geometrically ‘‘clean’’,

and ready for use in more detailed investigations. It is worth

pointing out that the efficiency of our algorithm can be

substantially improved by employing less stringent convergence

criteria. As seen in Figure 5, if the simulation is stopped at Step 30,

the efficiency will be enhanced by a factor 5 without a significant

impact on the quality of the resulting geometries.

Discussion

In this article, we introduced a conceptually simple, fast and

robust solution to the well-known loop closure problem. By

performing fast weighted superimpositions of rigid fragments and

adjusting the distances between randomly chosen atoms to resolve

steric clashes, this method can efficiently generate chemically

sensible geometries that satisfy end point, steric, planar and chiral

constraints. Once the templates are constructed, their correct

chirality and planarity is naturally preserved through the template

fitting operations.

Compared to other loop construction algorithms, the

advantages of the current approach lie on its conceptual

simplicity, computational efficiency, numerical stability and

ease of implementation. Unlike alternative methods which

generate new conformations by randomly perturbing the

current structure, our algorithm always starts from completely

random initial coordinates and there is no correlation whatso-

ever between successive conformations. Moreover, our method

does not necessitate an existing three-dimensional conformation

as input, but only the loop’s sequence (connection table). More

importantly, it is straightforward to incorporate additional

distance constraints, making the approach especially suitable

for protein structure determination using NMR and other

methods. Non-covalent interactions such as hydrogen bonds can

be encoded using additional distance constraints, making

possible the detection of multiple interlocking rings in protein

loop regions. This represents a tremendous challenge for

conventional loop closure algorithms, but the SOS algorithm

handles it naturally without any additional algorithmic modi-

fications.

The only possible disadvantage of the SOS method is its

reliance on pre-computed conformational templates. A method for

extracting such templates from an existing set of molecules into a

3D fragment library has already been presented [59]. But for the

protein loop closure problem the task is actually trivial, since the

entire protein can be built from just a few rigid fragments, whose

conformations can be either directly extracted from known protein

structures or generated from other conformation sampling

algorithms such as SOS and SPE.

The algorithm described here can be used to generate good

quality conformations for protein loops of any length. Its efficiency

makes it ideally suited for homology modeling where speed is

critical. By relaxing the convergence criteria, the loop building

process can be further accelerated without a significant worsening

of the resulting conformations. Our approach could also be used as

a means of generating local moves in a Markov Chain Monte

Carlo simulation. The extension of this approach to include crystal

contacts, side chains and other non-covalent interactions is

currently under investigation.

Table 1. Minimum RMS from X-ray structures for three different algorithms.

4-residue Loops 8-residue Loops 12-residue Loops

Loop SOS CSJD CCD Loop SOS CSJD CCD Loop SOS CSJD CCD

1dvjA_20 0.23 0.38 0.61 1cruA_85 1.48 0.99 1.75 1cruA_358 2.39 2.00 2.54

1dysA_47 0.16 0.37 0.68 1ctqA_144 1.37 0.96 1.34 1ctqA_26 2.54 1.86 2.49

1eguA_404 0.16 0.36 0.68 1d8wA_334 1.18 0.37 1.51 1d4oA_88 2.44 1.60 2.33

1ej0A_74 0.16 0.21 0.34 1ds1A_20 0.93 1.30 1.58 1d8wA_46 2.17 2.94 4.83

1i0hA_123 0.22 0.26 0.62 1gk8A_122 0.96 1.29 1.68 1ds1A_282 2.33 3.10 3.04

1id0A_405 0.33 0.72 0.67 1i0hA_122 1.37 0.36 1.35 1dysA_291 2.08 3.04 2.48

1qnrA_195 0.32 0.39 0.49 1ixh_106 1.21 2.36 1.61 1eguA_508 2.36 2.82 2.14

1qopA_44 0.13 0.61 0.63 1lam_420 0.90 0.83 1.60 1f74A_11 2.23 1.53 2.72

1tca_95 0.15 0.28 0.39 1qopB_14 1.24 0.69 1.85 1qlwA_31 1.73 2.32 3.38

1thfD_121 0.11 0.36 0.50 3chbD_51 1.23 0.96 1.66 1qopA_178 2.21 2.18 4.57

Average 0.20 0.40 0.56 Average 1.19 1.01 1.59 Average 2.25 2.34 3.05

CSJD and CCD results were obtained from Table 1 and Table 2 of ref [41] and ref [40], respectively. As in CCD, 5,000 trials were performed for each test loop in our SOS
calculations. However, the majority of minimum RMSD’s were reached within the first 3,000 trials. All the results reported here came from a single run per loop, using
the same random seed. Some of these values can be improved if a different seed is chosen.
doi:10.1371/journal.pcbi.1000478.t001

Self-Organizing Protein Loop Modeling

PLoS Computational Biology | www.ploscompbiol.org 8 August 2009 | Volume 5 | Issue 8 | e1000478



Figure 4. Histogram of the root mean square deviations of bond lengths and angles. The histograms are generated from all
conformations for a given loop size. (A) Bond lengths, and (B) bond angles.
doi:10.1371/journal.pcbi.1000478.g004
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