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Purpose: To investigate the association between clinic-radiological features and glioma-
associated epilepsy (GAE), we developed and validated a radiomics nomogram for
predicting GAE in WHO grade II~IV gliomas.

Methods: This retrospective study consecutively enrolled 380 adult patients with glioma
(266 in the training cohort and 114 in the testing cohort). Regions of interest, including the
entire tumor and peritumoral edema, were drawn manually. The semantic radiological
characteristics were assessed by a radiologist with 15 years of experience in neuro-
oncology. A clinic-radiological model, radiomic signature, and a combined model were built
for predicting GAE. The combined model was visualized as a radiomics nomogram. The
AUC was used to evaluate model classification performance, and the McNemar test and
Delong test were used to compare the performance among the models. Statistical analysis
was performed using SPSS software, and p < 0.05 was regarded as statistically significant.

Results: The combined model reached the highest AUC with the testing cohort (training
cohort, 0.911 [95% CI, 0.878–0.942]; testing cohort, 0.866 [95% CI, 0.790–0.929]). The
McNemar test revealed that the differences among the accuracies of the clinic-radiological
model, radiomic signature, and combined model in predicting GAE in the testing cohorts
(p > 0.05) were not significantly different. The DeLong tests showed that the difference
between the performance of the radiomic signature and the combined model was
significant (p < 0.05).

Conclusion: The radiomics nomogram predicted seizures in patients with glioma non-
invasively, simply, and practically. Compared with the radiomics models, comprehensive
clinic-radiological imaging signs observed by the naked eye have non-discriminatory
performance in predicting GAE.
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INTRODUCTION

Glioma-associated epilepsy (GAE) is a common neurological
symptom of glioma patients. The frequency of epilepsy in
glioblastoma (60%) is lower than that in low-grade glioma
(LGG) (89%); however, the incidence of glioblastoma is higher
than that of LGG (1–3). Thus, the same focus is needed for
predicting seizures in patients with glioblastoma. GAE greatly
impairs patients’ quality of life, and if they do not receive
treatment, some of them could develop status epilepticus and
multiple seizures without regaining consciousness (4). Early
prediction, increased awareness, and proper treatment and care
are vital for protecting neurocognition, limiting progression,
and improving patient quality of life (1, 5–7).The occurrence
of GAE is multifactorial, including tumor location and
microenvironment, peritumoral edema, alteration of the
peritumoral environment, and genetic background. A tool for
extracting and selecting massive amounts of tumor information,
and offering a comprehensive and effective model for predicting
the development of GAE in WHO grade II~IV gliomas,
is needed.

Radiomics is a high-throughput method that extracts a large
number of quantitative features from medical images and
identifies features related to the target information in an
objective, repeatable, and non-invasive way. Given these
strengths, radiomics is widely used in differential diagnosis and
prognostic assessment in clinical research, especially in studies of
tumors (8–11). Glioma radiomics may be used to classify glioma
grade, subtype, and gene type and to predict tumor proliferation,
patient prognosis, etc., and is thus an area of high research interest
(12–19). Magnetic resonance imaging (MRI) is an essential
preoperative examination for patients with glioma due to its
advantages in visualizing the central nervous system. MRI
sequences selected for glioma radiomics research are mostly
based on conventional sequencing (12–19), but multi-sequence
MRI could be used to obtain a greater number of tumor features.
However, previous studies have suggested that a single MRI
sequence can achieve satisfactory results in glioma research (13,
14, 19–21), while multi-sequence MRI radiomics may increase the
chances of overfitting. Radiomics based on a single MRI sequence
has been shown to have effective performance in predicting the
occurrence and type of GAE in patients with glioma (19–22).
Radiomics nomogram is a simple and practical tool for assisting
clinicians in performing differential diagnosis and is currently used
in studies of epilepsy associated with LGG (19–21).

Therefore, the present study was designed to investigate the
association between clinic-radiological features and GAE and
develop and to validate a radiomics nomogram for predicting
GAE in cerebral WHO grade II~IV gliomas.
MATERIALS AND METHODS

Patients and MRI
This retrospective study was approved by the Ethics Committee
of Scientific Research and Clinical Experiments of the First
Frontiers in Oncology | www.frontiersin.org 2
Affiliated Hospital of Zhengzhou University, and the
requirement for a written consent was waived. We enrolled
380 consecutive glioma patients who underwent MRI scanning
before surgery at our hospital from August 2016 through August
2019. The inclusion criteria for all enrolled patients were (a)
pathologically confirmed glioma (WHO grades II~IV) according
to the 2016 World Health Organization central nervous system
classification and (b) presurgical convention MRI scanning
including T1-weighted, T2-weighted, diffusion-weighted, and
T2 fluid-attenuated inversion-recovery (FLAIR) imaging. The
exclusion criteria were as follows: (a) puncture biopsy and
antitumor therapy initiation before MRI scan; (b) other lesions
that could cause epilepsy, such as cerebral hemorrhage, stroke,
and other brain tumors; and (c) WHO grade I glioma and non-
singular tumors. The preoperative diagnosis of GAE was made
based on clinical signs, electroencephalography (EEG), and
imaging findings (23). All patients’ clinical characteristics
including age, sex, tumor grade, and tumor location, and
radiological characteristics including edema degree, cystic
components, necrosis, hemorrhage (Appendix 1), crossing
midline, and involvement of the cortex, were recorded. The
whole workflow is illustrated in Figure 1.

MR images of patients scanned on 3.0-T MRI scanners
(Magnetom Trio TIM/Prisma, Verio, or Skyra, Siemens
Healthcare; Discovery 750, GE Medical Systems) were
retrieved from the Picture Archive and Communication
System at the hospital. The sequence acquisition parameters
were as follows: T2 FLAIR images: matrix 256 × 256-pixel; field
of view 240 × 240 mm; TI = 2,400–2,500 ms; TE = 81–135 ms;
TR = 8,000–8,500 ms; section thickness = 5 mm and intersection
gap = 1 mm. T2-weighted turbo spin-echo images (TR/TE
2,000–3,800/90–120 ms), and T1-weighted spin-echo images
(TR/TE 200–220/2–3 ms) with sagittal and axial non-enhanced
sequences, had a 256 × 256-pixel matrix and a 240 × 240-mm
field of view, with section thickness = 5 mm and intersection
gap = 1 mm. Diffusion-weighted images were obtained by using
single-shot spin-echo echo-planar sequences (TR/TE 2,000–
4,000/50–80), matrix 256 × 256; field of view 240 × 240 mm,
section thickness 5 mm, intersection gap 1 mm, and b values = 0
and 1,000 s/mm2. Maps of the apparent diffusion coefficients
(ADCs) were also generated.

Tumor Masking and Image Preprocessing
A volume of interest (VOI) containing the entire tumor and
peritumoral edema was manually drawn slice by slice on the T2
FLAIR images using ITK SNAP (version 3.6.0; www.itksnap.org)
software by a PhD candidate in imaging for medicine (GA, 5
years of experience in neuro-oncology). Next, the segmentation
results were reviewed and modified, if necessary, by a
neuroradiologist with 20 years of experience in neuroradiology
(BJ) using the same software. All images were normalized to a
[0,1] range before feature extraction.

Radiomics Feature Extraction
Feature extraction was performed with the PyRadiomics (version
3.0) (24) package in Python (3.7.6). For each patient, 3D shape
features (n = 14) were extracted from the VOI. First-order
March 2022 | Volume 12 | Article 856359
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statistical features (n = 18) and texture features (n = 75) were
extracted from each of the following image types: (1) original T2
FLAIR images; (2) each of the three Laplacian-of-Gaussian
(LoG) filtered images (sigma = 1.0, 3.0, 5.0); and (3) each of
the eight 3D wavelet transformed image sub-bands using the
Harr wavelet. The texture features extracted in this study
included features based on the gray-level co-occurrence matrix
(GLCM), gray-level run length matrix (GLRLM), gray-level size
zone matrix (GLSZM), neighboring gray tone difference matrix
(NGTDM), and gray-level dependence matrix (GLDM). A total
of 1130 features were extracted for each patient.

Feature Selection and Radiomic
Signature Building
To remove the imbalance in the training dataset, upsampling was
performed by repeating random non-GAE patient data.

A total of 1,130 radiomic features were extracted for each
patient; however, dealing directly with so many features would
limit the robustness and effectiveness of the model. Thus, we
used a heuristic approach to reduce the feature dimensions and
select the appropriate features for radiomics model building.
First, all features were divided into seven subgroups according to
their category, such as shape, first order, and texture. For each
subgroup, a scout model was built with features in the subgroup
using the training dataset. The best scout model for each
subgroup was selected according to its performance in 10-fold
cross-validation over the training cohort. When the optimal
scout model’s area under the receiver operating characteristic
curve (AUC) on cross-validation was >0.6, all features in the
model were used for the final model building. Otherwise, all
features in the subgroup were discarded.

To build the scout model, all features were normalized to the
range of [0, 1]. Thereafter, Pearson correlation coefficient (PCC)
values were calculated between all feature pairs, and if the PCC
value between two features was >0.99, one of them was removed.
Frontiers in Oncology | www.frontiersin.org 3
To determine the best number of features to be retained in the
model, three feature selectors were compared: recursive feature
elimination (RFE), which repeatedly builds the model and
eliminates the least important feature each time; relief, which
calculates a feature score for every feature and ranks them
accordingly; and the Kruskal–Wallis test (KW), which
eliminates the most likely feature from the same distribution in
both GAE and non-GAE samples. For the classifier, we
compared the performance of the linear support vector
machine (SVM), logistic regression (LR), and random forest
(RF) classifiers due to their good interpretability and
performance in diagnosis based on medical imaging.

To find the best model for each subgroup, we tested different
combinations of feature selectors and classifiers. Therefore, nine
models (3 feature selectors and 3 classifiers) were built for the
scout models, and the one with the best cross-validation AUC
was used. Multimodel building and comparison were
implemented semiautomatically with the open-source software,
FeAtureExplorer (FAE, version 0.4.0) (25), which uses scikit-
learn (version 0.23.2) as the backend for machine learning.

As mentioned above, the features retained in the qualified
scout models were used to build a radiomics model. The process
of model building for radiomics was similar to that used in scout
model building, but without PCC-based dimension reduction,
due to the relatively small number of input features.

Development of the
Clinic-Radiological Model
Clinical characteristics including sex, age, and tumor grade were
studied. The semantic radiological characteristics were assessed
by a radiologist (BJ) with 15 years of experience and included
hemorrhage (yes or no), cystic components (yes or no), necrosis
(yes or no), edema degree (no/slight/middle/obvious), tumor
location (left or right hemisphere, frontal, occipital, parietal,
temporal, insular, thalamus, lateral ventricle or multilobe),
FIGURE 1 | Radiomics workflow.
March 2022 | Volume 12 | Article 856359
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and tumor components involving the cerebral cortex (edema/
tumor/both/none). We established a clinical model using only
clinic-radiological signs for distinguishing GAE from non-GAE.

Development of the Radiomics Nomogram
Incorporating the radiomics signature and characteristics in the
clinic-radiological model (age, sex, and tumor grade), a
combined model was built using the logistic regression
method. To provide clinicians with an individualized and easy-
to-use tool for the preoperative prediction of the occurrence of
epilepsy in glioma patients, the combined model was visualized
as a radiomics nomogram.

Performance Evaluation of the Models
The receiver operating characteristic (ROC) curve and AUC
were used to evaluate the classification performance of the
models for each cohort. The accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) were also calculated at a cutoff value that maximized the
value of the Youden index in the training cohort. The calibration
curves and decision curve analyses (DCAs) (26) were used to
assess the clinical usefulness of the clinic-radiological model,
radiomic signature, and combined model. Calibration curves and
the Hosmer–Lemeshow test were used to assess the agreement
between the nomogram prediction probabilities of the GAE and
the actual outcomes. To assess the performance difference among
during the radiomics model, nomogram, and clinic-radiological
model, the DeLong test and McNemar tests were performed.

Statistical Analysis
To illustrate differences in the location of tumors for GAE and
non-GAE patients, we superimposed the segmented VOIs of all
patients in a group to obtain a 3D frequency map. Each map
shows the frequency of occurrence of tumors at the voxel level in
the template space. We then color-coded the frequency for
visualization using Python (version: 3.7.6).

Age is reported as the mean and range, and its difference
between the GAE and non-GAE groups was assessed by a two-
sided t-test. The other clinical and radiological characteristics are
reported as frequencies and proportions, and differences between
the GAE and non-GAE groups were assessed by Fisher’s exact
test. Statistical analysis was performed using SPSS software
(version 22.0; IBM, Armonk, New York), and p < 0.05 was
used as the threshold for significance.
RESULTS

Demographics
The main clinical and radiological characteristics of all 380
patients are listed in Table 1. According to their clinical
preoperative diagnose, the enrolled patients included 210 with
epilepsy and 170 with no epilepsy. The dataset was randomly
split into a training cohort (n = 266, epilepsy/no epilepsy = 147/
119) and a testing cohort (n = 114, epilepsy/no epilepsy = 63/51).

In all cohorts, there was a significant difference in sex between
the GAE and non-GAE groups (male/female = 134/76, 82/88; p =
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0.003), with male patients with glioma having a higher risk of
epilepsy. Another basic clinical feature, patient age, was also
significantly different between the GAE and non-GAE groups
[(43 ± 13)/(50 ± 12), mean ± SD, p < 0.001], and according to the
clinic-radiological model, age had a higher negative coefficient
(-2.78) second to tumor location; thus, younger patients had a
higher risk of epilepsy.

Performance of the
Clinic-Radiological Model
There were significant differences between the GAE and non-
GAE groups with respect to age, sex, glioma grade, and glioma
type (Table 1). Younger, male, and LGG patients had a higher
risk of experiencing GAE (Table 1). Regarding radiological
characteristics, the GAE group was more likely to have no
cystic components or hemorrhage. Furthermore, the tumor
location of the non-GAE group tended to be close to the
anterior commissure, and glioma involving the bilateral brain
lobes was associated with a lower risk of GAE. Tumors in the
GAE group tended to be in the left hemisphere, especially in the
left frontal lobe (Figure 2).

The clinic-radiological model for GAE prediction is listed in
Table 2, with AUC values of 0.878 and 0.823 for the training and
testing cohorts, respectively. The sensitivity, specificity, and
accuracy of the clinic-radiological model are summarized in
Table 3. ROC curves and waterfall plots are shown in
Figures 3A, B.

Performance of the Radiomics Signature
A prediction model utilizing logistic regression was constructed
by integrating the 17 key radiomic features (Table 2) obtained
with the training cohort. The AUC, sensitivity, specificity, and
accuracy of the radiomic signature are presented in Table 3.
ROC curves and waterfall plots are shown in Figures 3C, D.

The radiomic signature demonstrated favorable calibration
with the training and testing cohorts (Figure 4A). The p-values
of the Hosmer–Lemeshow test for the predictive classification
ability of the radiomic signature were 0.264 and 0.017,
respectively. DCA showed that using the radiomic signature to
predict epilepsy type added more benefit than either the treat-all-
patients scheme or the treat-none scheme (Figure 4B).

Performance of the Radiomics Nomogram
The radiomics signature, age, sex, and tumor grade were used in the
development of the combined model, which reached the highest
AUC (training cohort, 0.911 [95% CI, 0.878–0.942]; testing cohort,
0.866 [95% CI, 0.790–0.929], Table 3 and Figures 3E, F) among all
the models. The DeLong tests indicated that the difference between
the clinic-radiological model and the combined model in the testing
cohorts (p = 0.207) was not statistically significant, as shown in
Table 4. The radiomics nomogram for visualizing the combined
model is shown in Figure 5. The calibration curves of the radiomics
nomogram demonstrated satisfactory agreement between the
predictive and observational possibility of the occurrence of GAE
for both the training and testing cohorts (p = 0.820 and 0.023,
respectively, Hosmer–Lemeshow test).
March 2022 | Volume 12 | Article 856359
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DISCUSSION

This study developed a quantitative and individualized
combined radiomics model for predicting seizures in patients
with WHO grade II–IV glioma using T2 FLAIR radiomic
features relevant to GAE. To the best of our knowledge, this
is the first study to construct a clinic-radiological model for
GAE prediction in patients with WHO grade II–IV grade
glioma (19–22). The results demonstrate that the T2 FLAIR-
based combined radiomics model successfully stratified
patients according to the occurrence of GAE. The radiomics
nomogram, as an easy-to-use and powerful clinical tool, could
be used to help clinicians assess the occurrence of GAE in
patients with glioma.

Radiomics is said to reveal hidden patterns potentially
associated with tumor phenotypes that are difficult to observe
with the naked eye (27). However, the clinic-radiological model
that used imaging signs detected by the naked eye demonstrated
a performance in predicting GAE comparable to that of the
radiomics model (p = 0.937). This result suggests that
comprehensive and precise imaging signs identified by the
naked eye from conventional MRI sequences are highly
Frontiers in Oncology | www.frontiersin.org 5
relevant in the diagnosis of GAE and should be utilized in the
future, preferably in an automated manner. Although the model
based on these imaging signs achieved similar performance as
the radiomics model, identifying these signs required high reader
expertise and workloads. Radiomics based on automatic
segmentation, especially radiomic nomogram that combined
radiomic features and simple clinical information, offers an
easy, precise, convenient, and objective tool for clinicians to
assess the occurrence of GAE in patients with glioma.

Although glioma located in any part of the brain may be
associated with GAE, those located in the parietal and frontal
lobes were linked to a higher risk of seizures, which is consistent
with previous studies (1, 28). Tumors involving the bilateral
brain lobes always coexist with wide white matter breaking,
which limits the origination and propagation of epileptic
discharges. Thus, tumors involving the bilateral brain lobes,
especially those close to the anterior commissure, have a lower
risk of GAE, which is consistent with the findings by of Yang
(29), Akeret (30), and Lee (31). A higher risk of GAE was
associated with glioma in the left hemisphere, especially when
the left frontal lobe was involved, which is inconsistent with
Akeret (30), Lee (31), and Polin (32) but consistent with studies
TABLE 1 | Patients’ clinical and radiological characteristics by univariate analyses for glioma-associated epilepsy grouping.

Characteristics Training cohort (n=266) Testing cohort (n=114)

Non-GAE group GAE group p-value Non-GAE group GAE group p-value

Sample size 119 147 – 51 63 –

Male/female 57/62 90/57 0.030b 25/26 44/19 0.024b

Age
Mean ± SD (range)

50 ± 12 (11–74) 44 ± 13 (12–75) <0.001a 50 ± 12 (17–73) 41 ± 12 (7–69) 0.002a

Glioma location 1
(Left/right/both)

48/57/14 77/63/7 0.039b 19/11/21 30/4/29 0.055b

Glioma location 2 0.026b 0.379b

Frontal lobe 44 69 24 29
Occipital lobe 9 5 2 2
Parietal lobe 13 24 6 7
Temporal lobe 29 26 7 10
Insular lobe 6 6 4 4
Thalamus 7 0 1 0
Lateral ventricle 4 1 3 0
Multilobe 7 16 4 11
Glioma grade
(WHO II/III/IV)

26/22/71 78/29/39 <0.001b 10/10/31 32/14/16 <0.001b

Glioma genotype <0.001b <0.001b

IDHw/IDHm 1p19q intact/IDHm 1p19q codeletion 80/21/18 52/42/51 37/7/7 23/20/19
Involved cortex 0.014b 0.129b

Edema/tumor/both/none 1/97/0/21 3/133/2/9 2/40/0/9 3/56/1/3
Cystic <0.001b 0.001b

Yes/no 93/26 68/79 41/10 32/31
Necrosis 0.073b 0.674b

Yes/no 97/22 106/41 39/12 46/17
Edema degree <0.001b 0.097b

No/mild/moderate/severe 5/46/41/27 8/92/34/13 3/24/10/14 4/38/15/6
Hemorrhage <0.001b 0.279b

Yes/no 38/81 18/129 15/36 13/50
March 2022
 | Volume 12 | Article
IDHw, IDH wild type; IDHm, IDH mutation type.
p value < 0.05 was considered as a significant difference.
aTwo-sided t-tests.
bPearson chi-square test.
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FIGURE 2 | Color frequency map illustrates the location of and number of patients with glioma-associated epilepsy and non-GAE. Images are displayed in
neurologic display convention.
TABLE 2 | Selected features and the coefficients of features in the clinic-radiological and radiomic signature for predicting glioma-associated epilepsy.

Clinic-radiological model Radiomic signature

Features Coefficients of LR Features Coefficients of LR

Originated in the parietal lobe 5.676631 Wavelet LHL GLRLM run variance 6.383190937
Originated in the frontal lobe 5.367907 Wavelet HLH GLCM ICM2 4.798755709
Originated in the occipital lobe 4.79728 Wavelet HHL GLSZM gray-level variance -4.1547
Originated in the insular lobe 4.568124 Wavelet LHL GLSZM small area low gray level emphasis 3.80425
Originated in the temporal lobe 4.502959 Original first-order kurtosis 3.548193
Originated in the lateral ventricle 2.970133 Wavelet HHL GLDM low gray-level emphasis -2.73834
Age -2.78469 Wavelet HHH first-order kurtosis 2.392724
Edema involved cortex 1.932897 Wavelet LHL GLSZM gray-level non-uniformity -2.34516
Edema degree -1.73233 Original GLRLM long-run high gray-level emphasis 2.183297
Cyst -1.60373 LoG sigma 3.0 mm 3D GLDM low gray-level emphasis 1.643264
Hemorrhage -1.33371 Wavelet HHL GLCM correlation 1.414969
Pathological grade -1.12885 Wavelet HHL large dependence low gray-level emphasis -1.40935
Bilateral brain lobes involved -0.76147 Wavelet LHL GLCM correlation 1.199208
Left hemisphere involved 0.692024 Wavelet HLL GLCM correlation 0.966634
Tumor involved cortex 0.608529 LoG sigma 3.0mm 3D GLDM dependence non-uniformity normalized -0.77698
Both edema and tumor involved cortex -0.59825 Wavelet LHL GLSZM low gray-level zone emphasis 0.613669
Necrosis 0.479448 Original GLSZM low gray-level zone emphasis -0.50718
Gender -0.40985
Originated in the thalamus -0.3556
Right hemisphere involved 0.069447
Frontiers in Oncology | www.frontiersin.org
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GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; HLL, HHL, LHL, HLH considering
L and H to be a low-pass (i.e., a scaling) and a high-pass (i.e., a wavelet) function; LoG, Laplacian-of-Gaussian; ICM2, informational measure of correlation 2.
12 | Article 856359

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jie et al. Radiomics Nomogram Prediction Epilepsy Gliomas
A B

C D

E F

FIGURE 3 | ROC curves of the training and testing cohorts, the waterfall plot of the distribution of prediction probability on the testing cohort. (A, B) Clinic-radiological
model. (C, D) Radiomic signature. (E, F) Combined model.
TABLE 3 | The performance of all models in predict glioma-associated epilepsy in training and testing cohort.

Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Clinic-radiological model Training 0.878 (0.836–0.917) 0.805 0.789 0.824 0.847 0.780
Testing 0.823 (0.739–0.895) 0.745 0.714 0.784 0. 804 0.690

Radiomic signature Training 0.891 (0.852–0.924) 0.812 0.823 0.798 0.835 0.785
Testing 0.820 (0.733–0.893) 0.754 0.746 0.765 0.797 0.709

Combined model Training 0.911 (0.878–0.942) 0.827 0.742 0.933 0.932 0.745
Testing 0.866 (0.790–0.929) 0.798 0.746 0.863 0.870 0.733
Frontiers in Oncology | www.fron
tiersin.org
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AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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from Yang (29) and Huang (33). This inconsistency may be
attributed to the relatively small size of our sample or to
ethnic differences.

In regard to the imaging signs, patients with glioma with
peritumoral edema involving the cortex, a lower edema degree,
no cystic components, and no hemorrhage had a higher risk of
experiencing GAE. The region with peritumoral edema shows
changes in the metabolism of the microenvironment; in
particular, the pH is significantly elevated when peritumoral
edema involves the cortex, which could cause seizures to arise
electrographically from this region (34). A lower edema degree
indicates a lower glioma grade; in particular, WHO grade II LGG
has a greater association with GAE than high-grade glioma
(HGG) (35, 36). Thus, there is no contradiction between
peritumoral edema involving the cortex and a lower edema
degree. Cystic components and hemorrhage are typical signs of
large, rapidly growing tumors and have been shown to be
associated with lower rates of seizures than smaller and slower-
growing tumors (1).

Three of the clinical characteristics were included in the
radiomics nomogram: sex, age, and glioma grade. In particular,
patient age has been shown to be related to GAE (20), and in our
study, age was an important factor in the clinic-radiological
model. Age, serving as an indicator of the complex changes that
Frontiers in Oncology | www.frontiersin.org 8
occur in humans over time, is an important factor in many
diseases. LGG patients are mostly young adults and have a higher
risk of GAE than HGG (3). Change of metabolism, neuronal
plasticity, and homeostasis between neurotransmitters are all
highly correlated with the occurrence of epilepsy. All these
factors are influenced by the age of the patient (37–39) and the
characteristics of gliomas (5, 40, 41). Thus, age may be combined
with other factors that are recognized or unrecognized
temporari ly by researchers . Sex is a complex and
comprehensive influencing factor, and this is the first study to
describe sex differences in the incidence of GAE. Patients with
epilepsy experience complex changes in hormone secretion (42)
given the complex interaction between hormones and epilepsy.
Although the incidence of glioma is different in men and women
(43), how sex influences GAE remains not clear (44).

There are some limitations to the present study. First, patients
were recruited from a single center, and a multicenter research
with a larger sample size would be promising for developing a
better prediction model. Second, a single sequence was used, and
multiple sequences may improve model accuracy. Third, an
epidemiological study with a large sample is needed to test and
verify the association between GAE and patient age and sex.

In summary, the radiomics nomogram developed in this study
predicted the occurrence of epilepsy in patients with glioma in a
A B

FIGURE 4 | Calibration curve of testing cohort (A) and DCA curves (B).
TABLE 4 | Comparison of the performance of models in the testing cohort.

Comparison Cohort McNemar testa (p value) DeLong’s testb (p value)

Combine model vs. radiomic signature Train 0.862 0.051
Test 0.132 0.010
All 0.547 0.001

Combine model vs. clinic-radiological model Train 0.465 0.312
Test 0.200 0.207
All 0.782 0.135

Radiomic signature vs. clinic-radiological model Train 0.622 0.360
Test 0.855 0.937
All 0.808 0.381
March 2022 | V
p value <0.05 indicated a statistically significant difference.
aTest for comparison the difference of accuracy.
bTest for comparison the difference of AUC.
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non-invasive, simple, and practical manner. Comprehensive
clinic-radiological imaging signs detected by the naked eye have
reasonable and non-discriminatory performance in the prediction
of GAE with respect to radiomics models.
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