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SUMMARY

Impacts of genetic and non-genetic intra-tumor heterogeneity (ITH) on tumor phenotypes and 

evolvability remain debated. We analyze ITH in lung squamous cell carcinoma at the levels of 

genome, transcriptome, and tumor-immune interactions and histopathological characteristics by 

multi-region bulk and single-cell sequencing. Genomic heterogeneity alone is a weak indicator of 

intra-tumor non-genetic heterogeneity at immune and transcriptomic levels that impact multiple 

cancer-related pathways, including those related to proliferation and inflammation, which in turn 

contribute to intra-tumor regional differences in histopathology and subtype classification. Tumor 

subclones have substantial differences in proliferation score, suggestive of non-neutral clonal 

dynamics. Proliferation and other cancer-related pathways also show intra-tumor regional 

differences, sometimes even within the same subclones. Neo-epitope burden negatively correlates 

with immune infiltration, indicating immune-mediated purifying selection on somatic mutations. 

Taken together, our observations suggest that non-genetic heterogeneity is a major determinant of 

heterogeneity in histopathological characteristics and impacts evolutionary dynamics in lung 

cancer.
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In Brief

Sharma et al. show that in non-small-cell lung cancer, genetic heterogeneity is moderate and does 

not sufficiently reflect the extent of non-genetic heterogeneity at immune and transcriptomic 

levels, which contributes to regional differences in histopathological characteristics. Non-genetic 

heterogeneity also influences subclonal dynamics, shaping the trajectory of tumor evolution.

INTRODUCTION

Despite growing from a single, renegade somatic cell, by the time of detection, a tumor 

typically comprises of billions of cells that show considerable genetic and non-genetic 

differences among them, a phenomenon known as intra-tumor heterogeneity (ITH). Genetic 

and non-genetic ITH appear to be hallmarks of nearly all types of malignancies, providing 

substrates for evolvability and emergence of drug resistance and leading to unpredictable 

prognosis (Brock et al., 2009; Marusyk et al., 2012; McGranahan and Swanton, 2017). 

Emerging data show that certain patterns of genetic heterogeneity, as measured by the 

number of clones and presence of subclonal genetic alterations, predict poor survival in 

multiple cancer types (Andor et al., 2016; Jamal-Hanjani et al., 2017). Similarly, patterns of 

transcriptomic and immune heterogeneity appear to change with tumor subtyping, 

differentiation hierarchy, and response to treatment (Dalerba et al., 2011; Karaayvaz et al., 

2018; Patel et al., 2014; Thorsson et al., 2018). Recent studies (Jia et al., 2018; Rosenthal et 

al., 2019) have suggested that immune editing influence both lung cancer evolution and 
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survival, pointing toward complex interplay between the tumor and microenvironment. 

However, it is not well understood whether genetic and non-genetic ITH correlate and 

synergistically impact phenotypic variations and tumor evolution (De and Ganesan, 2017; 

Jia et al., 2018; Karaayvaz et al., 2018; Li et al., 2016; Patel et al., 2014; Suda et al., 2018; 

Zhang et al., 2018). In particular, there is a major gap in understanding the inter-relation 

between genetic, transcriptomic, and immunogenic heterogeneity and their contribution in 

tumor evolution and variability in clinically relevant phenotypic characteristics in lung 

squamous cell carcinomas.

RESULTS

We investigated patterns of intra-tumor spatial heterogeneity in 9 surgically resected stage I–

IIIB lung squamous cell carcinoma specimens at genomic, transcriptomic, and tumor-

immune cell interactions and histological characteristics by multi-region profiling (Figure 

1A) and supplemented that with an analysis of single-cell sequencing data from an 

additional 5 samples, as described later. For each tumor, 3–6 geographically distant regions 

were profiled (pathological purity: 40%–80%). For each patient, tumor-proximal 

pathologically normal lung tissue was included as control. In total, 42 biopsies (10 normal 

and 32 tumor) were processed in this study. Clinical and pathological attributes of the 

samples are provided in STAR Methods section, and representative H&E staining images are 

shown in Figure S1.

Landscape of Genomic Changes in the Tumor Samples

We identified 120–1,606 somatic exonic single-nucleotide variatnts (SNVs) in the tumors 

(Figure 1B; Data S1). The frequency of detectable somatic mutation (2/Mb–26/Mb) was 

comparable to that reported elsewhere (Alexandrov et al., 2013) (Figure S1). A range of 

34%–91% somatic SNVs were “ubiquitous” across all regions in a tumor, while 2%–55% 

SNVs were “shared” among multiple tumor regions, and a relatively small proportion of the 

somatic SNVs (0.8%–10%) was “unique” to any single region. The proportion of inferred 

genome-wide copy number alterations (CNAs; Data S1) that were ubiquitous was generally 

smaller than the corresponding proportion of SNVs. This is in line with observations that 

nearly half of the somatic mutations in tumor genomes likely arise in progenitor cells prior 

to tumor development (Tomasetti et al., 2013), while CNAs in pre-neoplastic tissues are rare 

(Aghili et al., 2014; De, 2011). Inferred telomere length varied across different regions 

within tumors, but overall, a majority of the tumor regions had shorter inferred telomere 

length than matched pathologically normal regions (Figure 1C).

Cancer genes PTPRS, KMT2D, FT4, ALK, ASXL2, ZNF521, and ARID1A had ubiquitous, 

potentially pathogenic somatic SNVs in P2, P3, P5, and P6 (Data S1). SOX2, HOXC13, 
PAX3, TERT, and TP63 were amplified in multiple samples, while tumor suppressor genes, 

such as POU5F1, NTRK3, and GRIN2A, were deleted in either all or some regions in 

different tumor samples (Data S1). A majority of the oncogenic events were ubiquitous and, 

therefore, probably arose reasonably early during tumor development. However, there are 

exceptions, e.g., in P2 potentially pathogenic mutation in KMT2D, a histone methyl-

transferase implicated in non-small-cell lung cancer (Ardeshir-Larijani et al., 2018) was only 
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found in regions R2 and R3. Inferred CNA estimates were consistent with gene expression 

changes. For instance, amplification of SOX2 was accompanied by higher SOX2 expression 

in tumors relative to matched non-malignant tissue (Figure S1; Data S2). Deep targeted 

sequencing covering 257 cancer-related genes from multiple regions from two samples (P8 

and P9) did not change the assignment of the existing catalog of somatic mutations in P8, 

and no additional oncogenic drivers were identified.

Patterns of Genetic Heterogeneity

To estimate the extent of intra-tumor genetic heterogeneity, we constructed dendrograms 

(Figure 1B; also see STAR Methods) for every patient based on variant allele frequencies for 

somatic SNVs across different regions, such that branch lengths in the dendrograms indicate 

the extent of genetic divergence among the tumor and normal regions in a patient. Overall, 

intra-tumor regional genetic heterogeneity was small compared to tumor-paired normal 

tissue differences. Patient samples P1, P3, P4, and P6 showed conservative patterns of 

genetic ITH, whereas patient samples P2, P5, P7, and P8 showed relatively high levels of 

ITH, with a subset of tumor regions harboring either substantially less tumor mutation 

burden (TMB) (R1 of P2) or an excess of low-frequency variations compared to other 

regions (R4 of P5 and R2 of P7).

Typically, 2–4 clonal clusters were identified for each tumor using Pyclone (Roth et al., 

2014), and a majority of the clusters were present in all or most regions in a tumor (Figure 

S2). For instance, in P6, we identified 3 prominent mutation clusters; all 3 were present in 

all regions in the tumor but at varying proportions (Figure 1D). We also applied the method 

proposed by Williams et al. (2018) to assess clonal architecture and compare that with our 

estimates. Overall, the estimated clonal makeup of the tumors is similar to that inferred by 

PyClone, with 1–2 subclones per sample (Figure S2). We further computed Shannon’s and 

Simpson’s indices for each region to quantify intra-region species richness and diversity in 

terms of abundance of different mutation clusters (Figure S2); Shannon’s and Simpson’s 

indices were comparable across regions within a tumor.

Somatic mutations carried mutation signatures for smoking, consistent with the etiology of 

lung squamous cell carcinoma (LUSC) (Jamal-Hanjani et al., 2017), as well as signatures of 

defective DNA mismatch repair, APOBEC, and 5-methylcytosine deamination (Figure 1E). 

APOBEC mutation signature was proportionally higher in non-ubiquitous mutations, 

suggesting that it probably arises late during tumor development (Jamal-Hanjani et al., 

2017). Overall, genetic heterogeneity manifested by regional differences in oncogenic 

mutations, genomic alterations, telomere length, and mutation signatures and was moderate 

in LUSC, consistent with that reported elsewhere (McGranahan and Swanton, 2017).

Landscape of Transcriptomic Heterogeneity in the Tumor Samples

An unsupervised principal-component analysis of normalized gene expression data across all 

samples showed that (1) non-malignant tissues cluster together, indicating a low level of 

between-sample variation, as expected in non-diseased tissue specimens; and (2) different 

regions from the same tumors typically cluster together, suggesting that intra-tumor 

transcriptomic variations were typically smaller than inter-individual differences (Figure 
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2A). In P5, region 4 (P5-R4) clustered separately from rest of the three regions, which is 

consistent with the extent of genetic divergence this region had relative to non-malignant 

tissue and other regions in P5. P1-R1, P1-R3, and P2-R1 were closer to the non-malignant 

samples, which might be due to low tumor purity in these regions (Figure S1).

Intra-tumor transcriptomic heterogeneity measured using dendrograms (see STAR Methods 

for details; Figure 2B) was generally lower than tumor-paired non-malignant tissue 

transcriptomic divergence. The extent of divergence of tumor regions from paired non-

malignant regions both at the genomic and transcriptomic levels was largely similar (Figure 

2C). The correlation between genomic and transcriptomic levels is not entirely due to 

regional differences in tumor purity because the correlation persisted even when adjusted for 

estimated tumor cell fraction in the cohort (Spearman partial correlation coefficient, 0.58; p 

= 4.36e-03). Overall, the topologies of the dendrograms at genomic and transcriptomic 

levels were qualitatively comparable, which is in line with convergent patterns of genetic 

and epigenetic evolution reported in other cancer types (Mazor et al., 2015).

Impact of Transcriptomic ITH on Cancer-Related Processes

Consistent with their copy number status, tumor suppressor genes like ERBB4 and HNF1A 
had low expression in all regions in P4 and P6, whereas oncogenes such as SOX2, ETV4, 
CCNE1, and TP63 had high expression in multiple tumors (Data S2). We measured 

dysregulation in key cancer-related pathways (Figure 2D; Figure S3) by using a network-

based Jensen-Shannon Divergence (nJSD) score (Park et al., 2016). The nuclear factor κB 

(NFκB) activation pathway, which is associated with cell survival, was found to be highly 

deregulated in certain regions of tumors P3-R1 and P3-R3, P4-R1, and P5-R3. On the other 

hand, pathways like G2M DNA damage checkpoint, APC/CDC20-mediated degradation of 

cyclin B, and hedgehog pathways were moderately deregulated across all regions of all 

samples, except P2-R1 region.

Gene expression changes were consistent with their perceived impact on the tumor genomes. 

Apobec family genes (e.g., APOBEC3B) had high expression in P4 and P5, which had a 

high burden of APOBEC-related mutation signatures in somatic SNVs (Figure 1E). 

Likewise, in P5, altered mismatch repair activity was consistent with high mutation burden 

and mismatch repair mutation signatures. Telomere length had a negative correlation with 

TERT expression (Spearman correlation coefficient r = −0.32, p = 3.9e-02; Figure 2E) 

across the tumor regions, which is consistent with reports that TERT expression is negatively 

regulated by the telomere position effect over long distances (TPE-OLDs) mechanism (Kim 

et al., 2016).

Altered oncogenic pathway activities are expected to impact growth characteristics of 

tumors. We determined proliferation index (PI) and apoptotic index (AI) scores for all the 

samples (see STAR Methods for details). PI score was typically high in the tumor regions 

compared to adjacent normal tissues, but there were intra-tumor regional differences, e.g., 

P2-R2, P4-R3, P4-5, and P5-R1-3 showed a higher PI score than other regions in the same 

tumors (Figure 2D). These regions also clustered away from other regions in the same 

tumors in their overall transcriptomic profile (Figure 2A) and showed different mutational 

patterns at genomic levels (Figure 1B). In general, AI and PI correlated across tumor regions 
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(Spearman correlation coefficient, 0.51), which is consistent with observations that PCNA, 
CCNB1, and Caspase 7 expression correlate significantly in the TCGA non-small-cell lung 

cancer cohorts (Figure S3). This is because replication stress is a major driver of apoptosis in 

rapidly proliferating tumors (Macheret and Halazonetis, 2015). P4 and P5 samples showed 

heterogeneity in epithelial-mesenchymal (EM) characteristic score across different regions 

(Figure 2D), with P4-R3 and P4-R4 depicting higher epithelial signature relative to other 

regions. Similarly P5-R1 and P5-R3 have a higher EM score than other regions. We also 

observed intra-tumor regional heterogeneity in gene expression signatures for multi-drug 

resistance (Wangari-Talbot and Hopper-Borge, 2013) (Figure 2D), including that for 

resistance to pemetrexed (Hou et al., 2012).

Lung tumors can be classified based on histological characteristics and associated 

expression signatures. The classical subtype is common in smokers and associated with 

xenobiotic metabolism, whereas the secretory subgroup has distinctive immune signatures, 

and the basal subgroup shows signatures of cell adhesion and epidermal development 

(Wilkerson et al., 2010). We found that two regions in P4 had basal-like characteristics, 

whereas the other three regions had more secretory type gene signatures (Figure 2D). 

Similarly, one region in P5 (current smoker) had signatures of secretory subgrouping, and 

others were classified as classical. P5 also showed amplification and high expression of the 

TP63 gene, which is another key characteristic of the classical subgroup. Samples such as P1 

or P2, or regions therein, such as P4-R1, P4-R2, P4-R5, and P5-R4, which had enrichment 

for the secretory subgroup, also showed a high immune score. As we later show, these 

expression signatures correlated with their histopathological characteristics and phenotypic 

heterogeneity. Taken together, regional patterns of transcriptomic heterogeneity impacted 

molecular signatures of proliferation, EM characteristics, and ultimately clinically relevant 

subtype classification.

Comparative Assessment of Genomic and Transcriptomic ITH

Despite similarities between the topologies of dendrograms at genetic and transcriptomic 

levels (Figures 2B and 2C), there were important ITH differences at these two levels. We 

calculated Ω score, the ratio of ITH to tumor non-malignant tissue divergence for each tumor 

at genomic and transcriptomic levels (Ωg and Ωt, respectively), and compared them to study 

differences in ITH patterns between the two levels. Ω was generally higher at the 

transcriptomic level than that at the genetic level (Figure 2F). Interestingly, Ωt/Ωg was 

associated with histological subtyping and phenotypic characteristics; P1, P2, and P4 

showed secretory characteristics, with low mean proliferative, apoptotic, and EM scores 

compared to P3, P5, and P6 (Figure 2G). Tumors with secretory subtype had modest 

proliferative characteristics and showed substantial transcriptional heterogeneity beyond that 

appreciated at the genomic level.

Heterogeneity in Immune Cell Infiltration and Associated Signatures

The extent of immune cell infiltration differed within and across tumors. P1, P2, and P4 

samples had higher immune infiltration (Figure 3A), whereas P5 showed regional immune 

heterogeneity marked by higher immune infiltration in R4. CD4+ and M2 macrophages 

were present consistently across all tumor regions, whereas CD8+ T cells showed more 
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regional variations (Figure 3A). Dendrograms constructed using estimated proportions of 

different immune cell types indicated overall high intra-tumor immune heterogeneity (Figure 

3B). Multiple potential T cell clonotypes were detected based on T cell receptor status 

(Shugay et al., 2015), but few of them were ubiquitous (Figure S4).

Next, we analyzed both histocompatibility leukocyte antigen (HLA) and somatic mutation 

status (see STAR Methods for details) to determine tumor neo-epitope burden (TNB) (Table 

S1) and found that TNB varied 8–341 per region (Figure 3C), of which ~10% were 

classified as high-affinity neo-epitopes (Figure S4). A total of 55%–100% of the neo-

epitopes were present in only one tumor region and only up to 7% were ubiquitous (Figure 

3D). Even though TMB and TNB correlate (Spearman correlation coefficient, 0.82; p = 

2.1e-06; Figure S4), this observation indicates that TNB has a high level of intra-tumor 

regional heterogeneity, unlike that observed at the level of somatic mutations (Figures 1B 

and 3D). Reduction in the burden of ubiquitous neo-epitopes relative to that observed for 

somatic mutations is suggestive of immune-mediated negative selection purging tumor cells 

carrying mutations that could elicit immune response. In agreement with that reported earlier 

(Rosenthal et al., 2019), we observed that TNB negatively correlated with immune 

infiltration (Spearman correlation coefficient, −0.85; Figure S4) and was high in samples 

with low immune infiltration (P3, P5, and P6). This was not biased by mutation burden, and 

the negative correlation was significant even after adjusting for TMB (Spearman partial 

correlation coefficient, −0.57; p = 5.1e-03). The samples with low immune infiltration also 

showed low anti-PD1 favor score (Figure 3C; Figure S4). These observations together with 

the absence of ubiquitous, dominant T cell clonotypes suggest that these appear to be cold 

tumors in terms of their potential to elicit response to immunotherapy. Both TMB and T cell 

inflamed gene expression profile are needed to elicit a strong immune response (Cristescu et 

al., 2018), and LUSC is known to generally escape immune surveillance (Thorsson et al., 

2018).

We computed Shannon’s and Gini-Simpson’s indices for each region to quantify intra-region 

species richness and diversity in terms of abundance of different immune cell populations 

(Figure S4). These intra-region diversity and richness measures at the level of immune 

features have higher values and showed greater regional variation than that observed at the 

genetic level (Figure S2), which is consistent with recent reports (Jia et al., 2018). In 

general, ITH patterns at the levels of immune cell abundance were high and less similar to 

the genomic and transcriptomic ITH patterns than the latter were to one another. We 

compared the extent of divergence of tumor regions from paired normal regions and found 

that immune divergence weakly correlates with genomic divergence (Spearman correlation 

coefficient, 0.5; p = 0.01; Figure 3E). In a similar note, by comparing Ω between genomic, 

transcriptomic, and immune levels, we found no strong correlation between heterogeneity 

patterns at immune and other levels (Figure S4).

In general, the abundance of immune cell types showed ITH higher than that at other levels, 

and joint patterns of regional variations in immune cell infiltration and neo-epitopes suggest 

that immunological pruning of tumor cell populations by neo-epitope depletion impose 

negative selection during tumor evolution, an emerging theme observed elsewhere as well 

(Jia et al., 2018; Zhang et al., 2018).
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Meta-Heterogeneity and Regional Difference in Histopathological Characteristics

Overall, regional differences at genomic, transcriptomic, and immune levels appear to be 

broadly consistent and collectively impact clinically relevant histopathological 

characteristics. As an example, we showcase patient P4, a male, 56-year-old exsmoker with 

a stage IIIA malignancy (Figure 4A). The five geographically distant regions profiled from 

the patient had regional differences in histological characteristics and immune infiltration, 

which were reflected in gene-expression-based classification, with R1, R2, and R5 

designated as secretory and R3 and R4 designated as basal subtype. R3 and R4 also had a 

higher proliferative potential than the other regions and more epithelial-like features, which 

corroborated with their basal subtype classification. This observation for P4 is in line with 

the comparative analyses of ITH at multiple levels in Figures 2 and 3, where we observe that 

transcriptomic and immune-level heterogeneity rather than genetic heterogeneity correlate 

with intra-tumor regional differences in histopathological characteristics. Furthermore, 

immune infiltration negatively correlates with mutation burden at the genetic level. These 

observations show that ITH at different levels are related and impact phenotypic 

characteristics (Figure 4B; Figure S1); yet, their complex inter-relation may not be 

sufficiently captured by assessment at any one level.

Heterogeneity Analysis at Single-Cell Resolution

We further analyzed single-cell RNA sequencing (RNA-seq) data from tumors of 5 non-

small-cell lung cancer patients (Figure 5A). A total of 1,472–18,496 single cells were 

profiled from the core, middle, and edge regions per tumor by using the 10X Genomics 

platform (Lambrechts et al., 2018) (Figure 5B). Somatic CNA status and tumor clonal 

architecture inferred from RNA-seq data (see STAR Methods for details) indicated that the 

tumors had a small number of distinct subclonal clusters, with minor differences among the 

cells within those subclones, as evident from the branch lengths of the inferred tumor 

phylogenetic tree (Figure 5C). Significant differences in proliferation rate among the 

subclones in a tumor would be suggestive of non-neutral evolution. We calculated the 

pathway-level score for proliferation-related genes, as before, and then compared the 

distributions of the score among sets of tumor cells grouped by their subclonal membership 

and/or tumor location. Most subclones were ubiquitous, i.e., had presence in tumor core, 

middle, and margin regions, but in a majority of the tumors there were significant 

differences between the subclones in their proliferation scores, and these differences were 

generally consistent across the tumor regions (Figures 5D and 5E; nested ANOVA p values 

are listed in Table S2). This observation provides support for the difference in growth rates 

between subclones in these tumors. Proliferation scores for the subclones were typically 

lower in the core relative to that in the tumor periphery (Figure 5F), which is consistent with 

the fact that much of the tumor growth occurs near the tumor margin. Similar regional 

differences were observed for apoptosis (Figure S5) and other pathways as well. This 

suggests that regional contexts can affect proliferative characteristics and growth dynamics 

within a tumor, beyond that attributed to subclonal differences. Although the tumors were 

genetically well-mixed, i.e., most major subclonal clusters had sufficient presence in all 

regions in a tumor (Figure 5F), we found large intra-tumor regional differences in the overall 

burden of infiltrating immune cells (Figure 5G), and the abundance of different immune cell 

types therein (Figure 5H). This corroborates the observation made using bulk sequencing 
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data that genetic heterogeneity does not sufficiently capture the extent of intra-region non-

genetic heterogeneity.

DISCUSSION

In this study, we investigated ITH patterns in lung squamous cell carcinoma at levels of 

genomic, transcriptomic, and tumor-immune cell interactions and histological characteristics 

by multiregion profiling and single-cell data analysis to compare ITH at different levels. 

Despite the high somatic mutation burden, data from others and us showed that the spatial 

pattern of genetic ITH in lung squamous cell carcinoma is moderate, which might be due to 

spatial mixing of tumor subclones. In contrast, trancriptomic and immune ITH were higher, 

indicating non-genetic sources of variation (Sharma et al., 2018), and they impacted key 

cancer-related pathways, subtype characteristics, and proliferative potential. Even though the 

extent of overall ITH differed between genetic and non-genetic levels, regional differences 

were biologically consistent at the meta-heterogeneity level, as evident from copy-number-

mediated expression changes, association between TERT expression and telomere length, 

and immune-mediated selection on neo-epitope burden. Notably, phenotypic heterogeneity 

in terms of histopathological characteristics was not effectively captured at any one level; 

rather, ITH at different levels synergistically impacted tumor histological features.

Multi-level ITH assessment found multiple lines of evidence for non-neutral tumor 

evolution. For instance, proliferation rate varied between subclones and also within the same 

subclone depending on the tumor microenvironment in different tumors. Intra-tumor 

immune heterogeneity patterns suggested that tumor-immune cell interactions impose 

negative selection by pruning the tumor cells carrying neo-epitopes that elicit a strong 

immune response. Immunological pruning of tumor cell populations by neo-epitope 

depletion likely imposes negative selection on genetic variations during tumor evolution (Jia 

et al., 2018; Zhang et al., 2018). Regional differences in subclonal growth characteristics due 

to non-genetic heterogeneity can influence the overall clonal makeup of a tumor with time. 

Overall, our study shows that despite having coherent patterns of ITH at different genetic 

and non-genetic levels, a multi-level assessment of heterogeneity is necessary to identify the 

determinants of phenotypic heterogeneity in clinically relevant characteristics and to 

appreciate the roles the microenvironment plays in influencing the mode of tumor evolution.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new reagents. Further information and requests for resources and 

reagents should be directed to and will be fulfilled by the Lead Contact, Subhajyoti De 

(sd948@cinj.rutgers.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples—We obtained surgically resected, fresh frozen tumor and matched 

normal tissue specimens from 9 de-identified, stage I-III lung squamous cell carcinoma 

patients under an IRB approved protocol (CINJ # 001709; approval date: 4/2017; PI: 

Subhajyoti De; Institution: Rutgers Cancer Institute of New Jersey). Details of the samples 
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are provided as in the table below. For each tumor 3-6 different regions that were 

geographically distant were identified, and biopsied to obtain tissue sections. When possible, 

H&E staining of tumors was done to identify tumor rich regions in order to take biopsies. In 

total, 42 biopsies (10 normal and 32 tumor) were processed in this study. Pathological tumor 

purity was 40%-80%. DNA and RNA were co-extracted from 29 biopsies (6 normal and 23 

tumors) using TRizol method and were further processed for exome and RNA sequencing. 

For 8 other biopsies (2 normal and 6 tumors – from 2 patients) only DNA was isolated using 

QIAGEN DNeasy kit and exome sequencing was performed. For 8 other samples (1 normal 

and 3 tumor regions each from 2 patients) only DNA was isolated and targeted panel 

sequencing (Agilent SureSelect run on a HiSeq) was performed for 257 genes. Details of all 

samples are provided in the table below. Exome and RNA sequencing (rRNA depletion) 

were performed on Illumina HiSeq 2000 using 150bp paired-end protocol. Single cell 

RNaseq data for 5 non-small cell lung tumors were obtained from the study published by 

Lambrechts et al. (2018) (E-MTAB-6149 and E-MTAB-6653). Tumor and non-tumor cells 

from the core, middle, and edge regions from each tumor were profiled using 10X Genomics 

single cell RNaseq platform.

Summary of the human samples

Sample Gender Age Smoker Grade Stage Metastasis
Survival
(days)

No. of 
tumor
biopsies Data Tumor

P1 - - Non-
smoker

- - - NA 3 Exome + 
RNA

LUSC

P2 - - - - - - NA 3 Exome + 
RNA

LUSC

P3 Male 69 Ex-
smoker

2 IIIB - NA 4 Exome + 
RNA

LUSC

P4 Male 56 Ex-
smoker

2 IIIA Yes 274 5 Exome + 
RNA

LUSC

P5 Female 69 Current 
Smoker

2 IIIA - 129 4 Exome + 
RNA

LUSC

P6 Male 61 Ex-
smoker

2 IIIA - 161 4 Exome + 
RNA

LUSC

P7 Female 85 - Grade2-
moderately 
differentiated

T2a No NA 3 Exome LUSC

P8 Male 61 - Grade3-
poorly 
differentiated

T2a No NA 3 Exome + 
targeted 
panel 
sequencing

LUSC

P9 Female 85 - Moderately 
differentiated

T2a No NA 3 Targeted 
panel 
sequencing

LUSC

scP1 Female 70 Current 
Smoker

pT2bN0M0 IlA - - 3 scRNaseq LUSC

scP2 Male 80 Ex-
smoker

pT2bN0M0 lB - - 3 scRNaseq LUSC

scP3 Male 68 Ex-
smoker

pT4N2M0 lllB - - 3 scRNaseq LUAD

scP4 Female 64 Ex-
smoker

pT2aN1M0 llB - - 3 scRNaseq LUAD
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Sample Gender Age Smoker Grade Stage Metastasis
Survival
(days)

No. of 
tumor
biopsies Data Tumor

scP5 Male 60 Ex-
smoker

pT1cN0M0 IA3 - - 3 scRNasea Large 
cell

METHOD DETAILS

Genomic data analysis

FastQC (v0.11.7) was used for initial quality checks, and low-quality reads and PCR 

duplicates were removed. Next, we used BWA-mem (Li and Durbin, 2009) (v0.7.17-r1188) 

to map the reads onto human genome (GRCh38), and call variants using var-Scan2 (Koboldt 

et al., 2012) (mapping quality > 40, base quality > 20). The average sequencing depth 

ranged from ~50-191x for exome-seq. Variants present in dbSNP or those with strand bias 

were excluded, and only ‘high confidence’ somatic variants with tumor allele frequency > 

5% at least in one tumor region and normal allele frequency < 1% were selected. A vast 

majority of the reported somatic variants had no read support in matched normal tissues. For 

each somatic variant deemed as high confidence variant in at least one tumor region, we 

queried the corresponding base-position in other tumor regions in that tumor specimen, and 

if the variant allele was supported by reads with mapping quality > 20 and base quality > 25 

and variant allele frequency > 2%, it was included. All identified somatic mutations were 

annotated with SnpEff (Cingolani et al., 2012) (v4.3t). Missense, nonsense, frameshift, or 

splicing mutations in known COSMIC cancer genes with high-predicted impact were 

marked.

We used desonstructSigs (Rosenthal et al., 2016) to identify patterns of mutational 

signatures on somatic variants. Mutational signatures were inferred for ubiquitous and non-

ubiquitous (shared + unique) variations separately, also all variations together (ubiquitous + 

shared + unique). Also, analysis was done both using all 30 signatures as well as selected 

signatures relevant to lung cancer biology (Alexandrov et al., 2016).

Copy number variation analysis was done using FACETS (Shen and Seshan, 2016) based on 

exome-sequencing data. Reads with mapping quality > 15 and base quality > 20 were 

considered for CNV analysis, and genomic regions with inferred duplication, deletion, or 

LOH were identified. Whole genome duplication and ploidy-level changes were inferred 

based on chromosome-wide, haplotype-aware copy number inferences.

To infer telomere length in the tumor regions, we used TelSeq (Ding et al., 2014), which 

considers the reads with > = 7 TTAGGG/CCCTAA repeats to provide an estimate of 

telomere length. Telomere length was estimated for both tumor regions (TTL: Tumor 

Telomere Length) as well as normal (NTL: Normal Telomere Length). We reported telomere 

length for different tumor regions relative to their matched normal region from the same 

donor as log2 of fold change between tumor and normal [log2 (TTL/NTL)].

Targeted sequencing was done for two samples (P8 and P9) for 257 genes (ABL1, AKT1, 

AKT2, AKT3, ALK, APC, AR, ARAF, ARID1A, ARID2, ATM, ATR, ATRX, AURKA, 

Sharma et al. Page 11

Cell Rep. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AURKB, AXL, BAP1, BARD1, BCCIP, BCL2, BCL2L2, BCL6, BCOR, BCR, BLM, 

BRAF, BRCA1, BRCA2, BRIP1, BTK, CBFB, CCND1, CCND2, CCND3, CCNE1, 

CDC73, CDH1, CDK12, CDKN1B, CDKN2a, CDKN2B, CDKN2C, CHEK1, CHEK2, 

CHD1L, CHD4, CIC, CREBBP, CRKL, CRLF2, CSF1R, CTCF, CTNNA1, CTNNB1, 

DAXX, DDR2, DNMT3A, DNMT3B, DNMT1, DOT1L, EGFR, EMSY- c11orf30, EP300, 

EPHA3, EPHA5, EPHB1, ERBB2, ERBB3, ERBB4, ERG, ESR1, ETV1, ETV4, ETV5, 

ETV6, EWSR1, EZH2, AMER1, FAM46C, FANCA, FANCB, FANCC, FANCD2, FANCE, 

FANCF, FANCG, FANCL, FBXW7, FGF10, FGF14, FGF19, FGF23, FGF3, FGF4, FGF6, 

FGFR1, FGFR2, FGFR3, FGFR4, FLT1, FLT3, FLT4, FOXL2, GATA1, GATA2, GATA3, 

GID4, GNA11, GNA12, GNAQ, GNAS, GPR124, GRIA1, GRIN2A, GRM1, GRM2, 

GRM3, GSK3B, HGF, HRAS, HSP90AA1, IDH1, IDH2, IGF1R, IKBKE, IKZF1, IL7R, 

INHBA, IRF4, IRS2, JAK1, JAK3, JAK3, JUN, KAT6A, KAT5, KDM5A, KDM5C, 

KDM6A, KDR, KEAP1, KIT, KLHL6, KRAS, LRP1B, LYN, MAP2K1, MAP2K2, 

MAP2K4, MAP3K1, MCL1, MDM2, MDM4, MED12, MEF2BNB-MEF2B, MEN1, MET, 

MITF, MLH1, KMT2A, KMT2D, MPL, MRE11A, MSH2, MSh6, MTAP, MTOR, 

MUTYH, MYC, MYCL1, MYCN, MYD88, NF1, NF2, NFE2L2, NFKBIA, NKX2-1, 

NOTCH1, NOTCH2, NPM1, NRAS, NTRK1, NTRK2, NTRK3, NUP93, PAK3, PALB2, 

PAX5, PBRM1, PDGFRA, PDGFRB, PDK1, PIK3CA, PIK3CG, PIK3R1, PIK3R2, 

PPM1D, PPP2R1A, PRDM1, PRKAR1A, PRKDC, PTCH1, PTEN, PAXIP1, RAD51C, 

PTPN11, RAF1, RARA, RB1, RET, RICTOR, RNF43, ROS1, RPTOR, RUNX1, SETD2, 

SETD3, SF3B1, SMAD2, SMAD4, SMARCA4, SMARCA5, SMARCB1, SMO, SOCS1, 

SOX10, SOX2, SOX9, SPEN, SPOP, SRC, STAG2, STAT3, STAT4, STK11, SUFU, TERT, 

TET2, TGFBR2, TMPRSS2, TNFAIP3, TNFRSF14, TOP1, TP53, TP53BP1, TRIM24, 

TRIM28, TRIM33, TSC1, TSC2, TSHR, VHL, WISP3, XPO1, YES1, ZNF217, ZNF703). 

Somatic mutations were called in different regions as described above. Heatmaps and 

dendrograms were made as described below.

Heatmaps, genetic dendrograms, and heterogeneity estimates—Heatmaps 

depicting regional abundance of somatic SNVs were drawn using variant allele frequency 

(vaf) data for somatic SNVs across all regions of a tumor. Pairwise distance between the 

regions dij in a patient was computed as distance in terms of difference in tumor-purity-

adjusted variant allele frequency (vaf) for all detected SNVs, as dij = Skçv∣Sik-Sjk∣/V where 

sik is the vaf of kth variant in i-th region in a tumor. Then multiregional tumor trees 

(unrooted dendrograms) were drawn using this distance metric using neighbor joining. The 

dendrograms were bootstrapped using boot.phylo function in the ape R package. Distances 

between pairs of regions in the trees represent the extent similarity between different regions 

of the same tumor at the genomic SNV level. We computed = Si ≠ B li/li = B where li = B is 

the branch length of the phylogram from the healthy tissue to its nearest node, providing an 

estimate of the ratio of intra-patient regional diversity to tumor-non-malignant tissue 

divergence.

For each tumor specimen, based on the catalog of somatic mutations and copy number data 

across multiple regions variant clusters were identified using PyClone (v0.13.1) (Roth et al., 

2014). Default parameter setting was used to identify somatic mutation clusters. For 

downstream analyses we only analyzed mutation clusters of size ≥ 3 variants. Key 
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conclusions were unaffected by the choice of threshold. Intra-region diversity and richness at 

genetic levels were computed using Shannon’s and Gini-Simpson’s indices on the relative 

abundances of the mutation clusters in each tumor region.

Identification of subclones and evolutionary dynamics parameters utilizing 
Bayesian framework—We also used a Bayesian approach developed by Williams et al. 

(2018), as implemented in their SubClonalSelection.jl to draw clonal inferences from variant 

allele frequencies. Subclonal architecture of each sample was detected and the selective 

advantage (s) and time of appearance of each subclone (t) were measured simultaneously, as 

recommended by the authors. Input parameters for SubClonalSelection.jl were set as default 

and fitted with specific sample (read depth, minimum/Maximum range of VAF, minimum 

cellularity), specifically, mutation rate as the input parameter was the effective mutation rate 

per tumor doubling. All simulations were run for a 10^6 iterations.

Transcriptomic data analysis—After initial quality-checks of the raw RNA sequencing 

reads using FastQC (v0.11.7), and removal of any low quality reads, STAR aligner (v 2.6.0c) 

(Dobin et al., 2013) was used to map the remaining reads onto human genome (GRCh38). 

RSEM (v1.3.1) (Li and Dewey, 2011) was used for transcript quantification, and log2 (TPM

+1) (Transcripts per million) values were reported for different tumor regions and also 

matched non-malignant regions. Principal Component Analysis (PCA) and hierarchical 

clustering was done on log2 (TPM+1) using FactoMineR package. ESTIMATE (Yoshihara 

et al., 2013) was used for predicting tumor purity, and the presence of stromal/immune cells 

in tumor tissues.

We measured the extent of perturbation in cellular pathways using a metric called tITH 

calculated using network-based Jensen-Shannon Divergence (Park et al., 2016). nJSD was 

applied as a distance measure between two network states. For each pathway, tITH was 

defined based on two distance values, distance from tumor to non-malignant tissue (NT) and 

distance from tumor to maximally ambiguous network (TA) into a single entropy-based 

metric of pathway-level dysregulation as follows:

tITH = NT NT + TA

This metric was calculated for relevant pathways in each tumor region across all patient 

samples. Same score was used in assessing multi-drug resistance pathway activity.

We computed epithelial versus mesenchymal (EM) characteristics scores based on a 

published approach (Ramaker et al., 2017) using expression signature of 76 genes relevant 

for epithelial and mesenchymal characteristics with minor modification. Of the gene 

signatures, we could estimate gene expression [log2(TPM+1)] for 49 epithelial related genes 

(e-genes) and 11 mesenchymal related genes (m-genes) in our samples. For each gene, we 

estimate its mean (μ) and standard deviation (σ) in the 6 non-malignant tissue samples, and 

then in i-th tumor region, we computed the Z-score (Zi) corresponding to its expression, eias 

Zi = (ei - μ)/σ. Then, for each tumor region, EM score was calculated as:
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EM score = av. Z‐score of m‐genes − av. z‐score of e‐genes

EM score was compared between regions from the same tumor. Proliferation (PI) and 

apoptotic (AI) indices were calculated using a similar approach using 124 proliferation-

associated genes (Wilkerson et al., 2012)and 6 apoptosis-related genes. For each gene, Z-

scores corresponding to its expression in tumor regions were calculated based on the mean 

and standard deviation of its expression in the non-malignant samples, and then proliferation 

index (PI) and apoptosis index (AI) were defined as mean z-scores of all proliferation and 

apoptosis genes, respectively. Similar strategy was followed for calculating scores for 

hypoxia signature (Buffa et al., 2010) and Pemetrexed resistance signature.

mRNA expression based subgroups were also inferred for different regions of the same 

tumor across all samples. Predictor centroid data for different subgroups (primitive, 

classical, secretory and basal) was downloaded from Wilkerson et al., (2012). For the same 

set of genes (as centroids), Spearman correlation coefficient between expression data of 

samples and centroids was calculated. Subgroup showing the highest correlation coefficient 

(with pval < 0.01) was assigned to each sample.

Multiregional tumor trees at transcriptomic levels were constructed for every patient using 

RNA expression data for all genes across different regions, using an approach similar to that 

used at genomic level. Manhattan distance was computed between all regions of a patient 

sample using log2 (TPM+1) and then unrooted dendrograms were drawn using this distance 

metric.

Immune signature analysis—Immune cell infiltrations were inferred from molecular 

signatures of immune cell types. ESTIMATE (v1.0.13) (Yoshihara et al., 2013) was used for 

predicting the level of immune infiltration in tumor tissues. CIBERSORT (Gentles et al., 

2015) was used to estimate abundance of different immune cell populations from expression 

data. Standard LM22 signature gene file, and 1000 permutations were used to calculate 

deconvolution p values.

Class I and class II HLA types were predicted from both DNA and RNA data using 

HLAminer (Warren et al., 2012). Only most likely HLA class I alleles (Confidence (−10 * 

log10(Eval)) > = 30 and Score > = 500) were considered. HLA identified at both DNA and 

RNA levels were selected for further analysis.

MuPeXI (Bjerregaard et al., 2017) was used for predicting potential neo-epitopes (neo-

epitopes) using exome and RNA sequencing data. It uses somatic mutation calls (SNVs and 

InDels), a list of HLA types, and a gene expression profile to predict tumor specific 

peptides. For any neoantigen to be classified as potential neo-epitope, it should be expressed, 

and have a high affinity to its respective expressed HLA alleles. All predicted neo-epitopes 

were classified into two categories based on their binding affinity to predicted HLA types; 

weak binders and strong binders. Strong binders were defined as: expression > 1, mutRank < 

0.5, Priority score > 0 and difference between normal and mutRank >0.5 and weak binders 

as: mutRank <2. mutRANK is % Rank of prediction score for mutant peptides as defined by 
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netMHCpan 4.0 (Jurtz et al., 2017), which is used at backhand in MuPeXI. Based on this 

criteria weak binders and strong binders were predicted for all tumor regions across all 

samples. Further these neo-epitopes were classified into three categories based on their 

regional abundances; ubiquitous, shared and unique. This classification was done for both 

weak and strong binders separately.

TCR repertoire predictions were done on both DNA and RNA data using MiXCR (Bolotin 

et al., 2015) and VDJtools (Shugay et al., 2015). Paired-end RNA and exome fastq files for 

each sample were provided for MiXCR analysis. The exome data was analyzed using the 

default MiXCR pipeline parameters, and the RNA-seq files were analyzed using the pipeline 

and parameters recommended for RNA-seq data in the MiXCR documentation. For each 

sample, the clonotypes with the highest count (supporting reads) were selected from the 

exome data (> 3 supporting reads) and the RNA data (> 24 supporting reads). The count, 

fraction, and sequence of these clonotypes were then compared to other clonotypes from the 

same tumor to look for intratumor heterogeneity. In addition, the MiXCR output files were 

then converted to vdjtools format and analyzed using vdjtools to get basic statistics, 

spectratypes, segment usage graphs, and diversity statistics for each sample.

Anti-PD1 favor score was calculated for each tumor region using gene expression data [log2 

(TPM+1)] for 28 genes that comprise of anti-PD1 favor signature (Gibney et al., 2016). For 

each gene, Z-scores corresponding to its expression in tumor regions were calculated based 

on the mean and standard deviation of its expression in the non-malignant samples, and then 

anti-PD1 favor score was defined as mean z-scores of the genes involved.

Similar to genomic and transcriptomic data, multiregional tumor trees were also made for 

every patient to infer immunogenic heterogeneity (iITH). In this case trees were made using 

two different datasets; i) immune cell proportions from CIBERSORT (Gentles et al., 2015) 

and ii) expression of neo-epitopes predicted from MuPeXI (Bjerregaard et al., 2017). 

Expression of predicted neo-epitopes was considered zero in a region if the neo-epitope is 

not detected in that region. Manhattan distance was computed between all regions of a 

patient sample using both the datasets independently and separate unrooted dendrograms 

were drawn using respective distance metrics.

Single Cell RNA sequencing data analysis—We obtained single cell RNaseq data for 

5 non-small cell lung tumors from the dataset published by Lambrechts et al., (2018) (E-

MTAB-6149 and E-MTAB-6653). For each tumor core, middle, and edge regions were 

profiled on 10X platform, and tumor, immune, and stromal cells were annotated. For 

individual tumor cells, we used the log2CPM values to calculated proliferation, apoptosis, 

hypoxia and EMT scores as described above, after taking Alveolar Type 2 (AT2) cells from 

the same patients as control.

We then used single cell gene expression data to infer copy number and clonal clusters using 

HoneyBadger (Fan et al., 2018). In brief, the inference is drawn by considering that copy 

number gain or loss would result in systematic increase or decrease in expression of genes 

that are co-localized in the genome, and cells that are within the same subclonal clusters 

would show more similarities than those that are distant in the clonal phylogeny. Under 
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default setting HoneyBadger first explicitly infers per-cell copy number gain or loss from 

expression-based raw copy number log2 ratios, before making clonal architecture inference, 

which is unsuitable for large datasets. So we used raw copy number log2 ratios inferred from 

gene expression data by HoneyBadger directly to make clonal architecture inference, 

bypassing per-cell explicit copy number calling. Single cell profiling allows, in principle, 

complete phylogenetic reconstruction, but in practice, sparse single cell RNaseq data makes 

deep branching inferences unreliable. So, we compared top 4 major subclonal clusters down 

the phylogenetic hierarchy for systematic differences in proliferation and other cancer-

related pathways.

The extent of immune infiltration was calculated based on the number of different types of 

immune cells in each region (core, middle, edge) as annotated by Lambrechts et al. (2018). 

Nested anova was used to test the statistical) significance of the difference in growth rates 

and other tumor associated features in both clusters and regions.

Histopathological screening of H&E stained slides—High-resolution digital images 

of Hematoxylin and Eosin (H&E) stained sections were evaluated by a board certified 

pathologist blinded to genomic data. Each image was scored for percent tumor nuclei and 

for the presence of lymphocytes on a scale of 1 (minimal) to 3 (robust) over the entire 

section.

MetaITH pipeline—metaITH - a computational pipeline (https://github.com/sjdlabgroup/

metaITH) provides an interface to perform meta-analysis of intra-tumor heterogeneity 

patterns across different levels, and for estimating transcriptomic signatures of disease-

relevant biological processes. Heterogeneity-related utilities include heatmaps, dendrograms, 

and measures of intra-tumor divergence and diversity at different levels. Signature-related 

utilities include geneset signatures for proliferation, apoptosis, hypoxia, multi-drug 

resistance, anti-PD1 favor, but those could be also used to estimate other user-defined 

signatures as well.

QUANTIFICATION AND STATISTICAL ANALYSIS

All graphs and statistical analyses, exome sequencing, RNaseq, scRNaseq data analysis were 

performed using R version 3.4.0. Statistical significance was assessed using paired Wilcoxon 

rank sum test and nested ANOVA test as applicable.

DATA AND CODE AVAILABILITY

The Sequence Read Archive (SRA) accession number for the raw data from the exome 

sequencing and RNaseq datasets reported in this paper is PRJNA574648. metaITH - a 

computational framework generated in this study has been made available at: https://

github.com/sjdlabgroup/metaITH.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Lung squamous cell carcinoma has a moderate level of intra-tumor genetic 

heterogeneity

• Transcriptomic heterogeneity impacts cancer pathways, driving phenotypic 

heterogeneity

• Neo-epitope burden negatively correlates with immune infiltration

• Non-genetic heterogeneity influences tumor evolutionary dynamics
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Figure 1. Assessment of Genetic Heterogeneity in Lung Squamous Cell Cancer
(A) Schematic representation of the study design showing multi-dimensional analysis of 

intra-tumor heterogeneity based on multi-region profiling of tumor specimens.

(B)Heatmap shows regional variation in allele frequency of somatic single nucleotide 

variants (SNVs) for 8 patient samples. Somatic variants below detection threshold (<2% 

allele frequency) are marked in gray. Variations are categorized into three categories: 

ubiquitous, present in all regions (blue); shared, present in multiple regions but not all 

(yellow); and unique, present in single region (orange). Dendrograms represent genetic 

similarity (represented by branch length) between different regions within a tumor for each 

patient sample based on variant allele frequency of somatic SNVs. Numbers on the nodes 

represents bootstrap values.

(C) Regional differences in inferred telomere length in tumor regions, relative to matched 

normal tissue.
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(D) Relative abundance of somatic mutation clusters identified in different tumor regions for 

P6.

(E) COSMIC mutational signatures inferred from somatic base changes in tumors 

corresponding to the mutations that are ubiquitous (U) and non-ubiquitous (NU; i.e., shared 

and unique). Signature 1, mutational process initiated by spontaneous deamination of 5-

methyl cytosine; signature 2, mutational process due to APOBEC activity; signature 3, 

mutational process due to homologous recombination defect; signature 4, mutational process 

due to smoking; signature 6, mutational process due to defective DNA mismatch repair; 

signature 13, mutational process due to APOBEC activity; signature 15, mutational process 

due to defective DNA mismatch repair; signature 26, mutational process due to defective 

DNA mismatch repair; and signature 29, mutational process due to tobacco chewing habit.
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Figure 2. Assessment of Intra-tumor Transcriptomic Heterogeneity in Lung Squamous Cell 
Cancer
(A) Principal-component analysis (PCA) plot showing the extent of transcriptomic variation 

within and across tumor and non-malignant tissue regions from the patients. Non-malignant 

tissues from different patients are shown in black, whereas tumor tissues from different 

patients are shown in other colors. The proportion of variation explained by the first and 

second principal components are 46.53% and 16.35%, respectively.
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(B) Dendrograms represent similarity (represented by branch length) between different 

regions for each patient sample based on gene expression profiles for all genes. Numbers on 

the nodes represent bootstrap values.

(C) Scatterplot comparing the extent of transcriptomic and genomic divergence for different 

tumor regions from their respective matched non-malignant tissues. Color codes are same as 

in (A).

(D) Heatmaps showing the extent of pathway disruption activity measured using nJSD, 

proliferative score, apoptosis score, epithelial-mesenchymal score, TERT expression, 

hypoxia score, multi-drug-resistant pathway disruption activity, and histological subtype 

score based on expression of published biomarker genes for different tumor regions.

(E) Scatterplot showing inverse association between TERT expression and telomere length 

estimates. Spearman correlation coefficient and p value are shown at the top.

(F) Scatterplot comparing the extent of transcriptomic and genomic intra-tumor 

heterogeneity for the tumor samples. The color code is same as in (A).

(G) Oncoprint plot showing histological subtype (secretory characteristics), proliferative 

score, apoptotic score, and epithelial versus mesenchymal characteristics score for the tumor 

samples ranked according to their ratio of transcriptomic ITH over genetic ITH.
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Figure 3. Assessment of Intra-tumor Immune Heterogeneity in Lung Squamous Cell Cancer
(A) Estimated immune score (top panel), relative proportion of different immune cell types 

including M2 macrophages, plasma cells, CD4, and CD8 T cells (bottom panel).

(B) Dendrograms represent similarity (represented by branch length) between different 

regions for each patient sample based on estimated immune cell fractions in different 

regions.

(C) Neo-epitope (total) burden, as predicted using mutation and expression data, in different 

regions of all patient samples (top panel), and anti-PD1 favor score, a measure of 

responsiveness against anti-PD1 therapy, in different regions of all patient samples (bottom 

panel).

(D) Somatic mutations in the tumor samples and those that are designated as neo-epitopes 

are grouped as ubiquitous, shared, and unique depending on their regional presentation. An 

excess of unique epitopes relative to the patterns observed for all somatic variants is 

indicative of negative selection on the neo-epitopes.

(E) Scatterplot comparing the extent of immune and genetic divergence (left panel) and the 

extent of immune and transcriptomic divergence (right panel) for different tumor regions 

from their respective matched non-malignant tissues. Color codes are same as Figure 2A.
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Figure 4. Impact of Multi-level Intra-tumor Heterogeneity
(A) As an example, multi-level intra-tumor heterogeneity in patient P4, a 56-year-old male 

exsmoker patient with stage IIIA tumor, is presented. Regional variations in histological 

characteristics and immune cell infiltration correlate with predicted subtype characteristics 

and immune scores. Furthermore, the tumor shows regional variations in proliferation and 

apoptosis scores, indicating coherence in multi-level intra-tumor heterogeneity. H&E stained 

slides for different regions of P4 are shown with scale bars of 50 μm at bottom right corners.
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Figure 5. Intra-tumor Heterogeneity at Single-Cell Resolution
(A) Clinical information of 5 patients for which multi-region single-cell sequencing data was 

performed by Lambrechts et al. (2018).

(B) tSNE plots show the transcriptomic heterogeneity of the tumor cell populations and also 

non-malignant cell populations for reference. Tumor cells from different regions, namely, 

core, middle, and edge, of each tumor are colored with red, green, and blue, respectively, 

whereas all non-malignant cells are shown in gray.

(C) Tumor clonal architecture inferred from single cell RNA-seq data-guided copy number 

variation calls. For each tumor, 4 major subclonal clusters are numbered C1, C2, C3, and 

C4, marked with different colors.

(D) Boxplots showing distribution of proliferation scores of all tumor cells grouped by their 

subclonal cluster membership.

Sharma et al. Page 28

Cell Rep. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(E) Boxplots showing distribution of proliferation scores of all tumor cells grouped by 

different geographical regions—core (C), middle (M), and edge (E).

(F) Boxplots showing distribution of proliferation scores of all tumor cells grouped by 

different geographical regions and cluster identifier. Color codes are consistent between (B), 

(E), and (F) and also between (C) and (D).

(G) Proportion of immune cells out of total cells isolated for each patient.

(H) Proportion of different tumor relevant immune cell populations out of total immune cells 

for each tumor.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human tumor and normal samples Biospecimen Repository and Histopathology 
Service, Rutgers-CINJ and LCBRN - University of 
Virginia

https://www.cinj.org/research/biospecimen-
repository-and-histopathology-service http://
lungbio.sites.virginia.edu

Chemicals and tools

TRIzol reagent Life Technologies Cat# 15596026

DNeasy Blood & Tissue Kits QIAGEN Cat# 69504

Brain Punch Tissue Set Leica Biosystems Cat# 39443001

Deposited data

Exome sequencing files This paper PRJNA574648

RNaseq files This paper PRJNA574648

single cell RNaseq files Lambrechts et al., 2018 E-MTAB-6149 and E-MTAB-6653

Software & Algorithms

BWA v0.7.17-r1188 Li and Durbin, 2009 PMID: 19451168

VarScan2 Koboldt et al., 2012 PMID: 22300766

SnpEff v4.3t Cingolani et al., 2012 PMID: 22728672

deconstructSig Rosenthal et al., 2016 PMID: 26899170

FACETS Shen and Seshan, 2016 PMID: 27270079

TelSeq Ding et al., 2014 PMID: 24609383

PyClone V0.13.1 Roth et al., 2014 PMID: 24633410

STAR Aligner v 2.6.0c Dobin et al., 2013 PMID: 23104886

RSEM V1.3.1 Li and Dewey, 2011 PMID: 21816040

ESTIMATE v1.0.13 Yoshihara et al., 2013 PMID: 24113773

nJSD Park et al., 2016 PMID: 27883053

CIBERSORT Gentles et al., 2015 PMID: 26193342

HLAminer Warren et al., 2012 PMID: 23228053

MuPeXI Bjerregaard et al., 2017 PMID: 28429069

MiXCR Bolotin et al., 2015 PMID: 25924071

VDJtools Shugay et al., 2015 PMID: 26606115

HoneyBADGER Fan et al., 2018 PMID: 29898899
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