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Research in blind individuals has primarily focused for a long time on the brain
plastic reorganization that occurs in early visual areas. Only more recently, scientists
have developed innovative strategies to understand to what extent vision is truly a
mandatory prerequisite for the brain’s fine morphological architecture to develop and
function. As a whole, the studies conducted to date in sighted and congenitally blind
individuals have provided ample evidence that several “visual” cortical areas develop
independently from visual experience and do process information content regardless of
the sensory modality through which a particular stimulus is conveyed: a property named
supramodality. At the same time, lack of vision leads to a structural and functional
reorganization within “visual” brain areas, a phenomenon known as cross-modal
plasticity. Cross-modal recruitment of the occipital cortex in visually deprived individuals
represents an adaptative compensatory mechanism that mediates processing of
non-visual inputs. Supramodality and cross-modal plasticity appears to be the “yin
and yang” of brain development: supramodal is what takes place despite the lack
of vision, whereas cross-modal is what happens because of lack of vision. Here we
provide a critical overview of the research in this field and discuss the implications
that these novel findings have for the development of educative/rehabilitation
approaches and sensory substitution devices (SSDs) in sensory-impaired
individuals.
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PREAMBLE

Over the past three decades, thanks to technological advances in sensory substitution
(Bach-y-Rita et al., 1969) and functional brain imaging (Veraart et al., 1990; Sadato et al.,
1996; Büchel et al., 1998), the study of the ‘‘human blind brain’’ presented neuroscientists
with the opportunity to characterize the pivotal role of the (lack of) visual experience
in forming a representation of the external world and in shaping brain development.
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Sight has always been regarded as the most important sense
for humans to interact with the outside world. Nonetheless,
adults who are visually deprived since birth show perceptual,
cognitive and social capacities that are often similar to those
found in sighted individuals.

Historically, the blind brain has been primarily investigated
from the perspective of the compensatory ability of early visual
areas to process non-visual information (Sadato et al., 1996;
for reviews see Frasnelli et al., 2011; Kupers and Ptito, 2011;
Renier et al., 2014). At the same time, several experiments have
been conducted to understand to what extent visual experience
is a mandatory prerequisite for the human brain to develop
its morphological and functional architecture (Ricciardi et al.,
2014a). So far, several behavioral, structural and functional pieces
of evidence have been collected in congenitally, early and late
blind populations to characterize the distinct cross-modal plastic
adjustments occurring after sensory deprivation on one hand,
and the sensory-independent supramodal cortical organization
on the other hand.

While supramodality and cross-modal plasticity often are
thought of as being competing, mutually excluding explanations
for the structural and functional organization in the blind brain,
they are likely to represent ‘‘two sides of the same coin’’ or, to
better underline their mutual interaction, the ‘‘yin and yang’’
of brain development. As a matter of fact, a great deal of the
development of the brain architecture seems programmed to
occur despite the absence of any visual experience, leading to a
cortical organization able to process specific features of visual
as well as of non-visual sensory information. At the same time,
the lack of visual experience causes a cross-modal reorganization
within portions of those brain areas that are deprived of their
normal visual inputs, and start responding to non-visual stimuli.

As detailed below, the fact that brain areas may either respond
to a specific information independently from the modality
conveying the sensory input (i.e., supramodality) or adapt
to respond to alternative non-visual inputs (i.e., cross-modal
plasticity) represents the neural mechanism that should be
taken into account for the appropriate planning of non-visual
educational/rehabilitative programs or for shaping novel
sensory-substitution devices (SSDs) in blind individuals.

THE YIN OF CROSS-MODAL PLASTICITY

In cases of congenital absence or late-onset loss of sight, the
deafferented subcortical and cortical structures, as well as their
constitutive white matter tracts undergo substantial structural
and functional reorganization (Ptito et al., 2008; Cecchetti et al.,
2016; Reislev et al., 2016). These anatomical modifications
are associated with the cross-modal functional recruitment of
‘‘visual’’ cortical areas during several non-visual perceptual (e.g.,
Watkins et al., 2013) and cognitive (e.g., Bedny et al., 2015)
tasks. In addition, congenital, but not late, loss of sight is
associated with an increased functional connectivity between
primary auditory cortex and ‘‘visual’’ occipital regions, which
relies on direct pathways (i.e., heteromodal connections), rather
than on feedback inputs from associative brain areas (Collignon
et al., 2013).

Interestingly, brain reorganization is not limited to cortical
regions. Indeed, congenitally blind subjects encounter significant
volumetric reductions of the whole thalamus, and particularly
of the lateral geniculate nuclei. In sharp contrast, no volumetric
changes were observed in the superior colliculus (Cecchetti et al.,
2016). Consistently, congenital and early blind individuals, but
not sighted controls, show a crossmodal recruitment of the
‘‘visual’’ midbrain (i.e., superior colliculus) during an auditory
task (Coullon et al., 2015).

Early and prolonged lack of visual input leads to an adaptative
reshaping of the brain that spreads beyond the visual areas.
For instance, Noppeney et al. (2005) found an increase in the
size of somatosensory and motor white matter fibers in early
blind subjects, whereas others reported a thickening of the
cingulate and frontal cortical areas, together with a thinning
of the somatosensory and auditory cortex (Park et al., 2009).
On the other hand, functional studies revealed a substantial
reorganization within primary ‘‘non-visual’’ cortices of blind
subjects, such as an expansion of the cochleotopic portion
of the auditory cortex (Elbert et al., 2002) and enlarged
somatotopic representation of the fingers in multifinger Braille
blind readers (Sterr et al., 1998). This form of ‘‘intramodal’’
plasticity may depend on the multisensory tuning that occurs
during development and that is shaped by specific perceptual
learning and experience (Proulx et al., 2014).

Although a significant number of studies have investigated
which mechanisms drive the crossmodal reorganization in
the blind brain and to what extent its plastic reshaping
has functional and behavioral advantages, an unequivocal
answer to these questions is not yet available. For instance,
if volumetric properties of the occipital lobe can predict
behavioral accuracies in pitch discrimination (Voss and Zatorre,
2012), or if the recruitment of ‘‘visual’’ cortex during Braille
reading is modulated by blindness onset (Burton et al.,
2002), correlations between performance and crossmodal
recruitment of deafferented cortical areas has also been
demonstrated in a variety of other tasks, such as olfactory
(Renier et al., 2013), auditory (Ross et al., 2003; Voss
et al., 2008; Renier et al., 2010) and tactile (Kupers et al.,
2006).

THE YANG OF A “SUPRAMODAL
MECHANISM”

There is now ample evidence that the development of the
morphological and functional architecture of the human brain
is to a large extent independent from visual experience
(Pietrini et al., 2004; Ricciardi and Pietrini, 2011; Ricciardi
et al., 2014a,b,c). Supramodal (or metamodal, with a Latin
or a Greek root, respectively) responses do not depend
on a specific sensory modality, but rather on the distinct
content to respond. Some authors therefore refer to ‘‘task-
specific sensory-independent’’ activity (e.g., Heimler et al.,
2015) to indicate how supramodal brain areas respond
to a given perceptual information or task, independently
from the sensory modality that conveys the input to the
brain.
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Supramodal processing within the ‘‘visual’’ extrastriate system
has been studied in both sighted and congenitally blind
individuals. In particular, research has been conducted on form
recognition, motion discrimination, spatial and navigational
processing, using visual and non-visual sensory tasks in both
congenitally blind and sighted individuals (e.g., Sathian et al.,
1997; Zangaladze et al., 1999; Amedi et al., 2001; Hagen et al.,
2002; James et al., 2002; Merabet et al., 2004; Pietrini et al.,
2004; Cate et al., 2009; Kitada et al., 2009, 2014). These
studies have demonstrated that neural responses in ‘‘visual’’
areas during non-visual processing are not merely related to
visual imagery, and that visual experience is not a mandatory
prerequisite for the functional specialization within the visual
system (Pietrini et al., 2004; for a review see Ricciardi and Pietrini,
2011).

The fact that specialized subregions of the ‘‘visual’’ system
are supramodally recruited has been confirmed using several
protocols that conveyed the same information (i.e., shape
form, spatial layout, etc.) across different non-visual sensory
modalities and demonstrated overlapping neural responses in
both sighted and blind samples. Equally, sensory-independent
responses can be impaired by transcranial magnetic stimulation
(TMS)-induced lesions in task-specific ‘‘visual’’ areas (e.g.,
Noppeney, 2007 ; Collignon et al., 2011; Frasnelli et al., 2011;
Kupers and Ptito, 2011; Kupers et al., 2011). More recently,
the employment of multivariate pattern recognition approaches
offered a novel tool to demonstrate a shared coding of specific
stimulus content, such as shape, motion and action, in both
sighted and congenitally blind individuals across different
sensory modalities (Pietrini et al., 2004; Mahon et al., 2009;
Ricciardi et al., 2013; Dormal et al., 2016; Handjaras et al.,
2016). Noteworthy, the homologies in the neural patterns of
stimulus representation obtained with multivariate approaches
are not typically limited to a mere overlap in the spatial
localization of ‘‘activated’’ regions, but actually do involve
the intrinsic content of the neural responses, suggesting that
sensory-independent representations are somehow (hard)-coded
at a neural level (Ricciardi et al., 2013; Handjaras et al.,
2016).

WHAT DID WE LEARN FROM
SENSORY-SUBSTITUTION STUDIES?

Recent studies using SSDs also support the concept of
supramodality. An SSD typically converts visual into non-visual
information, and relies on the response of the same brain
region that would have selectively processed that ‘‘specific
visual information’’. Consequently, the sensory content provided
through SSDs is processed in a task-specific manner by
supramodal cortical areas both in sighted and blind individuals.
For instance, SSDs that translate ‘‘what’’ (i.e., shape) and ‘‘where’’
(i.e., location) properties of a visual stimulus into auditory
information recruit the ventral and dorsal visual pathways in
congenitally blind people, respectively (Striem-Amit et al., 2012b;
see also Ptito et al., 2012).

Within the extrastriate ‘‘visual’’ cortex, SSDs recruit
functional modules tuned to process motion, body-parts

and shape information. The motion-sensitive middle temporal
cortex (hMT+) is recruited by motion information conveyed by
a visual-to-tactile SSD (VTSSD) in sighted and in congenitally
blind individuals (Matteau et al., 2010). Similarly, perception of
body shapes through a sensory-substitution algorithm in blind
subjects is mediated by recruitment of the extrastriate body
area (EBA; Striem-Amit and Amedi, 2014). Likewise, a portion
of the lateral occipital complex (LOtv) is activated in a shape
recognition task using a visual-to-auditory (VASSD) or a VTSSD
(Amedi et al., 2007; Ptito et al., 2012). Blind individuals can even
process shape and color features by means of SSD-generated
auditory stimuli (Abboud et al., 2014). Also, blind individuals
recruit the visual word form area (vWFA), a specific brain region
that is thought to process the visual representation of letters,
when reading through a visual-to-auditory SSD (Striem-Amit
et al., 2012a). Of note, the observation that VWFA is also
recruited in blind individuals via tactile recognition (Reich
et al., 2011) and by sighted subjects during Braille reading
(Siuda-Krzywicka et al., 2016), along with the predetermined
cortico-cortical wiring of this region with superior temporal
and inferior frontal regions in preschoolers (Saygin et al., 2016)
confirms the hypothesis of modality-independent processing of
information in supramodal regions.

SSDs have been also employed in blind individuals during
more complex tasks such as spatial navigation (Kupers et al.,
2010; Chebat et al., 2011, 2015; Proulx et al., 2015; for a
review). The ability to navigate the environment is crucial in
modern urban life, yet it represents a challenging task for
blind subjects, in particular when novel routes have to be
learned. In addition, spatial navigation strategies differ between
congenitally blind and sighted subjects, since the former rely
more on egocentric than allocentric coordinates (Pasqualotto
and Proulx, 2012; Pasqualotto et al., 2013). Using a VTSSD
(tongue display unit—TDU; Bach-y-Rita, 2004), Chebat et al.
(2011) demonstrated that congenitally blind individuals are able
to detect and avoid obstacles during a spatial navigation task.
The ability of visually-deprived individuals to detect and avoid
obstacles has been confirmed in a more recent study using
the EyeCane, a VASSD (Maidenbaum et al., 2014). Indeed,
after a brief training with the EyeCane, congenitally and late
blind subjects demonstrated a number of collisions and time to
complete a virtual and a real life-size maze, similar to sighted
participants with no blindfold (Chebat et al., 2015). For a proper
and autonomous interaction with the surrounding space, the
capability to follow a specific route and avoid obstacles should
also be associated with an active tracking and reaching of
objects. The latter abilities have been tested in blindfolded sighted
subjects while using EyeMusic (Abboud et al., 2014), a VASSD
that translates the spatial location of a target into the pitch
of musical notes. Levy-Tzedek et al. (2012) showed that using
EyeMusic, participants performed fast and accurate movements
similar to those carried out with visual feedback. Kupers et al.
(2010) used fMRI to examine the cerebral correlates of navigation
in the absence of vision. These authors reported that congenitally
blind subjects recruit the parahippocampal cortex (PHC) during
TDU-guided spatial navigation, the same area that is activated
when sighted individuals perform the same spatial navigation
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task under full vision. In addition, several other brain regions
that are supramodal in nature (Weeks et al., 2000; Ricciardi
et al., 2006; Bonino et al., 2008; Wolbers et al., 2011) and
are involved in spatial localization and representation, such as
the posterior parietal (PPC) and retrosplenial (RSC) cortices,
were activated (Figure 1). Finally, a recent report supported
the idea that different sensory modalities can produce very
similar spatial representations (i.e., supramodal) through SSDs
in sighted subjects (Pasqualotto and Esenkaya, 2016). Taken
together, the above data suggest that the recruitment of these
regions through SSD depends on sensory-independent task-
related activity, which encodes a more abstract representation of
information content.

On the other hand, stimulation protocols via SSDs provided
also a strong support to crossmodal plasticity. Therefore, it
should not be surprising that most of these SSD-mediated
protocols reported activations in the occipital cortex in blind
individuals during the use of VASSDs and VTSSDs. For instance,
using positron emission tomography (PET), Ptito et al. (2005)
demonstrated recruitment of the occipital cortex after a brief

training with TDU for congenitally blind individuals, but not
for blindfolded sighted controls (Figure 1). The recruitment
of occipital regions in blind participants was confirmed by a
later TMS experiment from the same group (Kupers et al.,
2006). In this study, it was shown that stimulation of the
occipital lobe produced tactile sensations of the tongue in blind
individuals who were proficient with the TDU. The evidence
for a similar cross-modal recruitment has been reported in
studies using VASSD in blind subjects (Arno et al., 2001;
Collignon et al., 2007; Merabet et al., 2009), and even in sighted
participants after training (Renier et al., 2005). In addition, a
more recent report suggests that occipital responses induced
by SSD in blind individuals are primarily driven by top-down
connectivity, i.e., by a specific task rather than a specific sensory
channel, and aremodulated by blindness duration (Murphy et al.,
2016).

These findings suggest that the recruitment of the occipital
cortex in proficient blind SSD users, may be mediated by
the ‘‘unmasking’’ or strengthening of pre-existing connections
(Kupers et al., 2011).

FIGURE 1 | A proof of concept for the synergistic interplay between crossmodal and supramodal brain functioning during the spatial navigation task
carried out by means of a sensory substitution device (SSD). The recruitment of both modality-independent brain regions within the “spatial navigation
network” (i.e., retrosplenial (RSC), parahippocampal (PHC) and posterior parietal cortex (PPC)) and the crossmodal activation of “visual” cortices in blind individuals
contribute to avoidance of obstacles and the identification of the correct route.
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A CONTRIBUTION TO VISUAL
REHABILITATION AND FUTURE
CHALLENGES

Several findings indicate that the topographic organization of
the brain is largely preserved in congenital blindness, and
that distinct cortical areas are able to process information
independently from the sensory modality that carries that
content to the brain. This supramodal organization is a genuine
intrinsic characteristic of the brain, as it is also present in sighted
individuals. This has important implications not only for the
understanding of how the brain works, but also for how blind
individuals form a mental representation of the external world.
Indeed, the more abstract nature of mental representations in the
brain accounts for the ability of congenitally blind individuals
to acquire knowledge and interact efficiently with a world that
they have never seen. Thus, the blind brain should not be
considered as a ‘‘disabled’’, but as ‘‘differentially abled’’ brain.
Therefore, a ‘‘sensory isolation’’ of visually-deprived individuals,
by reducing or limiting the exposure to perceptual, cognitive or
social experiences, would likely be one of the worst ‘‘educational’’
choices.

As above-mentioned, the specific content of information
could be conveyed through non-visual sensory modalities. More
importantly, supramodal organization and crossmodal plasticity
following lack of vision may both contribute to the rapid
adaptation when using SSDs. On the other hand, the relationship
between the proficiency in performing a specific task through the
use of SSDs and the crossmodal plastic phenomena described in
blind individuals is still to be fully exploited, as some authors
found no behavioral differences between sighted and blind
individuals (Abboud et al., 2014; Maidenbaum et al., 2014).

From an epidemiologic perspective, it should be pointed out
that the increase of life expectancy in Western societies has
led to an increase in the number of visual impairments due
to chronic eye diseases and aging (World Health Organization,
2007). In light of this, the proportion of people losing sight at
later stages of life is growing and the study of rehabilitation
protocols tailored to meet the needs of ‘‘late-blind’’ individuals
are assuming more and more socioeconomic relevance. The
research on rehabilitation and neuroprosthetic tools should
seriously account for this. In particular, some authors reported
that the degree of compensatory changes following loss of sight
is influenced by the age of blindness onset and is reflected by
the extent of cross-modal recruitment within ‘‘visual’’ occipital
areas (Voss et al., 2008; Bedny et al., 2012; Collignon et al., 2013).
Thus, late blind individuals could provide a fundamental model
to exploit the potential of SSDs in sighted individuals who lost
vision later in their lives.

Which kind of information should future SSDs convey?
On the one hand, recent studies demonstrated that object
recognition through VASSD is affected by capacity and
resolution limitations related to the processing of auditory
stimuli (Brown et al., 2014; Brown and Proulx, 2016). On the
other hand, the description of supramodal responses recently
moved from simpler perceptual to more cognitive stimuli,
such as actions or events, to emotion and social functioning
(Bedny et al., 2009; Ricciardi et al., 2009; Klinge et al., 2010;
Mahon et al., 2010). These more complex cognitive tasks
rely on distributed brain networks, and are not limited to
functionally specialized cortical clusters involved in processing
simple sensory features of stimuli. Consequently, at which level
(e.g., localized area or network) and how does the supramodal
representation of information occur for more complex cognitive
tasks? We recently demonstrated that circumscribed brain areas
retain a modality-dependent processing of simple unisensory
information, whereas larger networks are able to integrate
the semantic content of sensory information and to generate
a modality-independent representation that matches language
and retains the most precise definition of concepts (Handjaras
et al., 2016). This supramodal mechanism of distinct levels of
stimulus processing may explain how information progresses
from a sensory-based towards a more abstract conceptual
representation (Mahon and Caramazza, 2011; Ricciardi and
Pietrini, 2011; Ricciardi et al., 2013; Handjaras et al., 2016).
From a translational perspective, we can ask how rehabilitative
approaches or SSDs (which typically dissect and reproduce
definite spatio-temporal features of sensory stimuli) will evolve
from processing simple sensory information to processing more
complex stimuli, including emotional and affective ones. This
would indeed represent a major challenge for future translational
research.

To conclude, rehabilitation in visually-deprived individuals
should be considered as a complex educational and learning
process. Rehabilitation is not limited to the ‘‘simple’’ acquisition
of a perceptual/cognitive strategy or of the skills needed to
utilize an external aid. An innovative and proper rehabilitation
strategy comprehends several intimate and socio-environmental
aspects of the blind individual—particularly in late-onset
blindness—that aim at an autonomous and efficient interacting
with the surrounding world.
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Marchewka, A., et al. (2016). Massive cortical reorganization in sighted Braille
readers. Elife 5:e10762. doi: 10.7554/eLife.10762

Sterr, A., Müller, M. M., Elbert, T., Rockstroh, B., Pantev, C., and Taub, E. (1998).
Perceptual correlates of changes in cortical representation of fingers in blind
multifinger Braille readers. J. Neurosci. 18, 4417–4423.

Striem-Amit, E., and Amedi, A. (2014). Visual cortex extrastriate body-selective
area activation in congenitally blind people ‘‘seeing’’ by using sounds. Curr.
Biol. 24, 687–692. doi: 10.1016/j.cub.2014.02.010

Striem-Amit, E., Cohen, L., Dehaene, S., and Amedi, A. (2012a). Reading with
sounds: sensory substitution selectively activates the visual word form area in
the blind. Neuron 76, 640–652. doi: 10.1016/j.neuron.2012.08.026

Striem-Amit, E., Dakwar, O., Reich, L., and Amedi, A. (2012b). The large-scale
organization of ‘‘visual’’ streams emerges without visual experience. Cereb.
Cortex 22, 1698–1709. doi: 10.1093/cercor/bhr253

Veraart, C., De Volder, A. G., Wanet-Defalque, M. C., Bol, A., Michel, C.,
and Goffinet, A. M. (1990). Glucose utilization in human visual cortex
is abnormally elevated in blindness of early onset but decreased in
blindness of late onset. Brain Res. 510, 115–121. doi: 10.1016/0006-8993(90)
90735-t

Voss, P., Gougoux, F., Zatorre, R. J., Lassonde, M., and Lepore, F. (2008).
Differential occipital responses in early- and late-blind individuals during a
sound-source discrimination task. Neuroimage 40, 746–758. doi: 10.1016/j.
neuroimage.2007.12.020

Frontiers in Systems Neuroscience | www.frontiersin.org 7 November 2016 | Volume 10 | Article 89

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Cecchetti et al. Supramodality and Crossmodality in the Blind

Voss, P., and Zatorre, R. J. (2012). Occipital cortical thickness predicts
performance on pitch and musical tasks in blind individuals. Cereb. Cortex 22,
2455–2465. doi: 10.1093/cercor/bhr311

Watkins, K. E., Shakespeare, T. J., O’Donoghue, M. C., Alexander, I., Ragge, N.,
Cowey, A., et al. (2013). Early auditory processing in area V5/MT+

of the congenitally blind brain. J. Neurosci. 33, 18242–18246. doi: 10.
1523/JNEUROSCI.2546-13.2013

Weeks, R., Horwitz, B., Aziz-Sultan, A., Tian, B., Wessinger, C. M., Cohen, L. G.,
et al. (2000). A positron emission tomographic study of auditory localization in
the congenitally blind. J. Neurosci. 20, 2664–2672.

Wolbers, T., Klatzky, R. L., Loomis, J. M., Wutte, M. G., and Giudice, N. A. (2011).
Modality-independent coding of spatial layout in the human brain. Curr. Biol.
21, 984–989. doi: 10.1016/j.cub.2011.04.038

World Health Organization. (2007). Global Initiative for the Elimination of
Avoidable Blindness. Geneva: World Health Organization.

Zangaladze, A., Epstein, C. M., Grafton, S. T., and Sathian, K. (1999). Involvement
of visual cortex in tactile discrimination of orientation. Nature 401, 587–590.
doi: 10.1038/44139

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Cecchetti, Kupers, Ptito, Pietrini and Ricciardi. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution and reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org 8 November 2016 | Volume 10 | Article 89

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive

	Are Supramodality and Cross-Modal Plasticity the Yin and Yang of Brain Development? From Blindness to Rehabilitation
	PREAMBLE
	THE YIN OF CROSS-MODAL PLASTICITY
	THE YANG OF A ``SUPRAMODAL MECHANISM''
	WHAT DID WE LEARN FROM SENSORY-SUBSTITUTION STUDIES?
	A CONTRIBUTION TO VISUAL REHABILITATION AND FUTURE CHALLENGES
	AUTHOR CONTRIBUTIONS
	REFERENCES


