OPEN 8 ACCESS Freely available online

@PLOS ‘ ONE

Desmosomal Cadherins Are Decreased in Explanted
Arrhythmogenic Right Ventricular Dysplasia/
Cardiomyopathy Patient Hearts

Alexia Vite'?, Estelle Gandjbakhch'?3, Catherine Prost*®, Veronique Fressart®, Pierre Fouret'’, Nathalie
Neyroud'?, Frangoise Gary'?, Erwan Donal®, Shaida Varnous?, Guy Fontaine?, Paul Fornes®, Frangoise
Hidden-Lucet®, Michel Komajda'23, Philippe Charron'23, Eric Villard"*

1 UPMC, University Paris Hopital Pitié-Salpétriére, Paris, France, 2 Institut National de la Sante et de la recherche Medicale UMR_S956, ICAN, Hépital Pitié-
Salpétriere, Paris, France, 3 Institut de Cardiologie (AP-HP), Hopital Pitié-Salpétriére, Paris, France, 4 Laboratoire d’histologie et de thérapie génique, University
Paris XllIl, Bobigny, France, 5 Département de Pathologie, University Paris V, Hopital Necker enfants malades, Paris, France, 6 Service de Biochimie
Métabolique, Unité de Cardiogénétique, Hopital Pitié-Salpétriere, Paris, France, 7 Service d’Anatomie Pathologique, Hopital Pitié-Salpétriére, Paris, France,

8 Département de Cardiologie, Hopital Pontchaillou, Rennes, France, 9 Département de Pathologie, Hopital Universitaire, F-51092, Reims, France

Abstract

Aims: Arrhythmogenic right ventricular Dysplasia/cardiomyopathy (ARVD/C) is an autosomal dominant inherited
cardiomyopathy associated with ventricular arrhythmia, heart failure and sudden death. Genetic studies have
demonstrated the central role of desmosomal proteins in this disease, where 50% of patients harbor a mutation in a
desmosmal gene. However, clinical diagnosis of the disease remains difficult and molecular mechanisms appears
heterogeneous and poorly understood. The aim of this study was to characterize the expression profile of
desmosomal proteins in explanted ARVD/C heart samples, in order to identify common features of the disease.

Methods and Results: We examined plakophilin-2, desmoglein-2, desmocollin-2, plakoglobin and B-catenin protein
expression levels from seven independent ARVD/C heart samples compared to two ischemic, five dilated
cardiomyopathy and one healthy heart sample as controls. Ventricular and septum sections were examined by
immunoblot analysis of total heart protein extracts and by immunostaining.

Immunoblots indicated significant decreases in desmoglein-2 and desmocollin-2, independent of any known
underlying mutations, whereas immune-histochemical analysis showed normal localization of all desmosomal
proteins. Quantitative RT-PCR revealed normal DSG2 and DSC2 mRNA transcript levels, suggesting increased
protein turn-over rather than transcriptional down regulation.

Conclusion: Reduced cardiac desmoglein-2 and desmocollin-2 levels appear to be specifically associated with
ARVD/C, independent of underlying mutations. These findings highlight a key role of desmosomal cadherins in the
pathophysiology of ARVD/C. Whether these reductions could be considered as specific markers for ARVD/C requires
replication analysis.
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Introduction

Arrhythmogenic right ventricular dysplasia/cardiomyopathy
(ARVD/C) is a rare inherited cardiomyopathy characterized by
progressive  sub-epicardial fibro-fatty  replacement  of
myocardial tissue, mostly in the right ventricle [1,2,3]. The
typical clinical presentation associates right ventricular
arrhythmias with right ventricular morphological (dilatation
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and/or wall motion abnormalities) and electrocardiographic
abnormalities (epsilon wave, T wave inversion and parietal
block in right precordial leads). Left ventricular involvement is
not rare ranging from 10 to 28% [4,5]. In a small number of
subjects, the worsening of the right or biventricular dysfunction
can lead to end-stage heart failure needing heart
transplantation [5]. Diagnosis is based on a composite score
calculated from electrocardiographic and morphological
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recordings as well as the familial disease pattern, histology and
genetic screening results [6]. However, ARVD/C is clinically
heterogeneous, and despite carefully selected criteria,
diagnosis remains difficult, especially in moderate or borderline
forms of the disease. This clearly highlights the need for an
improved understanding of the mechanisms leading to the
disease and more selective diagnostic criteria [7].

ARVD/C usually presents with an autosomal dominant mode
of inheritance and incomplete penetrance [8,9,10]. A major
breakthrough in elucidating the molecular pathogenesis of
ARVD/C resulted from the identification of causative
heterozygous mutations in genes encoding the cardiac
desmosomal proteins; plakophilin-2 (PKP2), desmoglein-2
(DSG2), desmocollin-2 (DSC2), plakoglobin (JUP) and
desmoplakin (DSP) [11]. Desmosomal mutations were firstly
described in Naxos disease and Carvajal syndrome due to
mutations in JUP and DSP, associating ARVD/C with
palmoplantar keratosis and woolly hair [12,13]. Overall,
mutations have only been identified in 40-60% of ARVD/C
patients and, due to incomplete penetrance, do not completely
solve the clinical diagnostic challenge. Despite these significant
advances in the genetics basis of ARVD/C, how the mutant
proteins contribute to the disease physiopathology remains
largely unexplained.

Desmosomes are multi-protein complexes expressed in
epithelial and cardiac tissues. They ensure strong cell-to-cell
adhesion via homophilic and heterophilic interactions between
the desmosomal cadherins DSG2 and DSC2 [14,15]. Such
interactions are reported to stabilize the cadherins at the
membrane [16,17]. Cadherins also interact with partners
belonging to the armadillo protein family, such as catenins and
plakophilins, described as mediators of intracellular signaling
[18]. A few studies have implicated plakoglobin and Wnt/beta-
catenin signaling in ARVD/C-related adipogenesis and
fibrogenesis, two characteristic histological features of the
disease [19,20,21]. In addition, transgenic animal models,
which at least partially recapitulate the disease phenotype,
have also confirmed a possible role for plakoglobin signaling in
ARVD/C [19,22].

More than 40% of the mutations found in ARVD/C are
nonsense or frame-shift, indicating that haploinsufficiency is a
likely mechanism leading to the disease. Moreover, ARVD/C
heart samples reproducibly exhibit smaller desmosomes with
increased intermembranous space on electron-micrograph,
perhaps resulting from an overall reduction in the length and
adhesive properties of the desmosomes [23] [21]. Additional
support for this theory comes from recent studies frequently
reporting reduced plakoglobin levels at the intercalated discs in
ARVD/C cardiac biopsies [24,25]. Based on these
observations, we hypothesized that decreased desmosomal
protein levels at intercalated disks could be a common feature
of ARVD/C. We performed systematic immunolabeling and
immunoblotting to assess levels and localization of intercalated
disk proteins (JUP, PKP2, DSG2, DSC2 and B-catenin) in a
collection of seven heart samples from patients with clinically
confirmed ARVD/C. We identified a marked and specific
decrease in the expression of cardiac desmosomal cadherins.
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Materials and Methods

2.1: Ethics statement

All patients have signed a written informed consent form
enabling the use of their tissue for this study. This project was
given the approval number 35-06 by the CCPPRB (Comité
Consultatif de Protection des Personnes dans la Recherche
Biomédicale) on behalf of the PHRC (Programme Hospitalier
de Recherche Clinique).

2.2: Tissue samples

Cardiac tissue samples were collected between 2006 and
2009 from patients with confirmed ARVD/C (referred to as:
ARVD/C 1 to 7) according to validated diagnostic criteria [6,26],
and who underwent cardiac transplant. The control samples
were derived from the explanted hearts of two patients with
ischemic- and five with idiopathic-dilated cardiomyopathy
(DCM), and from one donor with no documented heart disease
(normal control). All except one of the DCM cases used as
controls displayed biventricular dilatation. The remaining case
had ischemic DCM and did not present into right ventricular
dilatation.

All tissues were immediately frozen in liquid nitrogen or
isopentane at -80°C. Mutational screening of the five
desmosomal genes PKP2  (NM_004572.3), DSG2
(NM_001943.3), DSC2 (NM_024422.3), DSP (NM_004415.2)
and PG (NM_021991.2) was performed in all ARVD/C patients
as previously described [8]. Briefly, genomic DNA was
extracted from blood cells of each patient and subjected to
PCR amplification of each exon and intron- exon junctions from
the five genes screened. Sequencing of PCR products was
performed using BigDye dideoxy-terminator chemistry
(PerkinElImer) on an ABI 3830 DNA sequencer (Applied
Biosystems). Analysis of the chromatograms was performed
with SeqScape (PE Applied Biosystems). The exons of the five
genes were thoroughly analyzed even when a mutation was
identified in a given gene. A control group of 300 healthy and
unrelated subjects (600 alleles) with Caucasian origin were
genotyped as controls to check that mutations were not
frequent polymorphisms. Moreover, absence of the identified
mutations was also ascertained in the ESV server (URL:http://
evs.gs.washington.edu/EVS/).

2.3: Protein extraction and immunoblot analysis

Snap frozen tissues were homogenized in SDS-Urea buffer
(1% SDS, 8 mM Urea, 10 mMTris pH7.5, 140 mMNaCl, 5 mM
EDTA, 2 mM EGTA) supplemented with a cocktail of protease
inhibitors (1:1000) (Sigma-Aldrich®, MO, USA). Proteins were
loaded on 9 or 10% polyacrylamide gels and, following
electrophoresis, were transferred to nitrocellulose membranes.
They were then blocked for two hours in 5% non-fat milk in
PBS with 0.1% Tween (PBS-T). Blots were incubated with
primary antibodies overnight at 4°C, rinsed and incubated with
secondary antibodies conjugated to the infra-red dyes 680LT or
800CW (LI-COR® Biosciences, NE, USA). Blots were imaged
using the Odyssey® Imager (LI-COR® Biosciences). Protein
signal intensities were quantified with the ImageJ freeware
(version 1.41, NIH, Bethesda, MD, USA, http://rsb.info.nih.gov/
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ij/). For each measurement, the target protein density ratio was
calculated using either a-actinin-2 (ACTN2) or cardiac myosin-
binding protein C (cMyBP-C) as loading controls. Western blots
were performed in duplicate for each heart compartment (ie.
septum, left and right ventricles) and for each subject. Two to
three independent protein extractions were performed to
determine the average relative protein level per compartment
and per subject.

2.4: Immunofluorescent labeling

Frozen heart samples were cut into 5 pm sections, and fixed
with 4% paraformaldehyde for 10 min at room temperature
(RT), followed by incubation in 100% methanol for 10 min at
-20°C. Tissues were permeabilized with 0.2% Triton X-100 in
phosphate buffered saline (PBS) for 5 minutes at RT, then
blocked for 30 min with 5% bovine serum albumin and 0.01%
Triton X-100 in PBS, and finally incubated with primary
antibodies overnight at 4°C (Table S1). Samples were washed
in PBS and labeled with Alexa Fluor® conjugated secondary
antibodies (Fisher Scientific, MA, USA) for 1 hour at RT. Tissue
sections were imaged with the Olympus® IX50 microscope
(Olympus®, Tokyo, Japan), and 3D deconvolution performed
using the Metamorph software (Roper Scientific®, NJ, USA),
by two independent investigators, who were blinded to the
sample origin.

2.5: Electron microscopy procedure

Right and left ventricle samples from the ARVD/C patient
(ARVD/C 6) were fixed in 2% glutaraldehyde in 0.1M
phosphate buffer, pH 7.4at 4° for 4 hours, then incubated in
0.6% glutaraldehyde in phosphate buffer at 4°. Samples were
post fixed in 1% osmium tetroxyde in cacodylate buffer during 1
hour, and then colored with uranyl-acetate for 1 hour. Tissues
were then dehydrated in a series of alcohol baths from 30% to
100% then in 100% propylene oxyde and embedded in

2.5. RNA extraction Epon 812 resin before electron
microscopy imaging (HITACHI 120kV HT 7700). and
quantitative RT-PCR

Total mRNA was isolated from snap frozen hearts with
TRIzol (Life Technologies®, CA, USA) and concentrated with
the RNeasy® minikit (Qiagen®, Hilden, Germany). cDNA was
synthesized from 500 ng of total mMRNA with oligo[dT],.qs
priming and the SuperScript™ Il reverse transcriptase (Life
Technologies™). Quantitative real-time PCR (RT-PCR) was
performed using the LightCycler® 480 System (Roche
Diagnostics, IN, USA) and the Brilliant I| SYBR® Green gPCR
Master Mix (Agilent technologies, CA, USA), according to the
manufacturer’s instructions. Specific primers were designed to
amplify DSG2, DSC2 and ACTN2 cDNAs (DSG2-F: 5
atgacggctaggaacaccac3’; DSG2-R: 5 gggtcagtttgtggctgact3’;
DSC2-F: 5 ttggagcatcaaacaaaggtc3d’; DSC2-R: 5
atagttttgggccgtgtcagld’; ACTN2-F: 5 cagaggaagaccttcactgcd’;
ACTNZ2-R: 5’ caattttgtggaaccgcatt3’). All data were normalized
to ACTN2 mRNA level using the 22T method [27].

2.6: Statistics

Differences between the two groups (ARVD/C and controls)
were analyzed using the non-parametric Mann-Whitney Rank
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Sum test. A p value < 0.05 was considered as statistically
significant. Data are expressed as the mean value + standard
error (SEM).

Results

3.1: Patient characteristics

Patient clinical and genetic details are presented in Table 1.
All seven ARVD/C patients displayed severe disease with
multifocal ventricular tachycardia and severe right ventricular or
biventricular heart failure. They underwent cardiac
transplantation at ages ranging from 14 to 74 years old. The
presence of extensive fibro-fatty myocyte replacement,
predominantly seen in the right ventricle, but also in the left
ventricle, confirmed the ARVD/C diagnosis in all patients
(Figures S1 and S2). Three of the patients (ARVD/C1, 2 and 6)
carried heterozygous DSG2 mutations as previously described
(Table 1) [8]. No causative mutations were identified in the
remaining four ARVD/C patients.

3.2: Immunoblot quantitation

An immunoblotting study was performed on left and right
ventricle, and in septum heart samples to identify potential
ARVD/C-specific cardiac protein expression patterns.

As shown in Figure 1, total B-catenin, JUP and PKP2 protein
levels were similar in ARVD/C and controls heart samples (all
compartment together). There was neither any statistical
difference in any compartments when assessed independently
(data not shown). Conversely, the total DSG2 level was
significantly decreased in all ARVD/C samples, compared to
controls and normal heart, regardless of the disease-causing
mutation (Figure 2a). Replicated densitometric measurement
revealed an overall 74% decrease of desmoglein-2 signal in
ARVD/C compared to controls samples, the ratio of DSG2 to a-
actinin-2 (ACTN2) was 17.2 + 6.6 in ARVD/C, 67.1 = 9.8 in
DCM samples (p<0.001, Mann Whitney Test) and 84.9 in the
normal heart sample. Decreased DSG2 was observed for all
patients (Figure S3) and in all cardiac compartments examined,
but was more drastic in the left and right ventricles compared to
the septum (Figure 2a).

Additionally, using electron microscopy on ARVD/C 6 patient,
we have observed a clear reduction in desmosomal dense
material at intercellular junctions; this was observed in both
ventricles. Moreover we also observed opening inter-
membrane vacuoles suggesting cellular disjunction (Figure 3).

Total DSC2 protein was also measured by immunoblot in the
septum and right ventricle of only four ARVD/C patient samples
due to the limited quantity of available tissue. The total DSC2
protein level was decreased (-43%) compared to controls. The
ratio of DSC2 to ACTN2 was 38.7 + 13.8 in ARVD/C, 68.1
12.9 in controls samples (p<0.001, Mann Whitney Test) and
122.8 in the normal heart sample (Figure 2b). This decrease
was statistically significant only in the right ventricle.

3.3: Intercalated disc protein Localization

To delve further into the characterization of the cadherin
protein reduction, we performed immunohistochemical studies
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Figure 1. Quantitative immunoblotting of selected intercalated disk proteins; plakophilin-2, plakoglobin and -
catenin. Representative immunoblots obtained for (a) plakoglobin (left Ventricle), (b) B-catenin (septum) and (c) plakophilin-2

(septum). Bar graphs indicate the mean + SEM following quantification of protein signals from all blots from the seven patient tissue
samples and all compartments after normalization to the cardiac protein a-actinin-2 (ACTN2) or cardiac myosin-binding protein C
(cMyBP-C) and to the control with the strongest signal level. NS for p>0.05, Mann Whitney test.

doi: 10.1371/journal.pone.0075082.g001

on the left and right ventricles (Figure 4). In addition to four
desmosomal proteins found mutated in ARVD/C, (PKPZ2,
DSG2, DSC2 and JUP), we also labeled B-catenin because of
its possible functional implication in ARVD/C [28,29]. To control
for tissue quality and localize cardiomyocytes, immunolabeling
for ACTN2 or cardiac myosin-binding protein C (cMyBP-C) was
also performed. All desmosomal proteins (PKP2, JUP, DSG2
and DSC2) and p-catenin showed normal localization at
intercalated disks in both ARVD/C and control samples (Figure
4). Using the limit dilution of 1/300 for the antibody directed
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against DSG2, we observed a complete loss of immunolabeling
for the 3 samples displaying the weakest amount of DSG2 on
immunoblot (ARVD/C 1, 5 and 6, Figure S3), suggesting a
correlation between the two measurement techniques (Figure
S4).

3.4. DSG2 and DSC2 mRNA transcripts in ARVD/C.
cadherins observed in
be the consequence of

The decrease in desmosomal
ARVD/C samples could either
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Figure 2. Quantitative immunoblotting of desmosomal cadherins desmoglein-2 and desmocollin-2. Representative images
of western blots obtained for desmoglein-2 (a) and desmocollin-2 (b) in the right ventricle. Bar graphs indicate the mean expression
+ SEM for each heart compartment from the seven patients, following normalization to the cardiac protein a-actinin-2 (ACTN2) and
the control with the strongest signal level. *p<0.001, Mann Whitney Test.

doi: 10.1371/journal.pone.0075082.g002

transcriptional down-regulation or increased protein turnover.
To answer this question, we studied DSG2 and DSC2 mRNA
transcript level in four ARVD/C patient right ventricle samples
(ARVD/C1 to 4) and in six septum samples (all patients except
ARVD/C 3) by quantitative RT-PCR. ACTN2 expression was
used to standardize for cardiomyocyte specific mMRNA input. As
shown in Figure 5, there was no significant difference in DSG2

PLOS ONE | www.plosone.org

and DSC2 mRNA transcript level in ARVD/C compared to
DCM control samples. This indicated that reduced levels of
DSG2 and DSC2 in ARVD/C are not a consequence of mRNA
down-regulation, but rather suggest an increased degradation
or translation defect.
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Figure 3. Electron microscopy of heart samples from
ARVD/C 6. The electronic microscopy study of heart tissue
from the p.Arg46Trp mutation-carrier (ARVD/C6) showed the
presence of small desmosomes (white arrows) associated with
abnormal inter-membrane vacuoles (black stars) in both
ventricles (LV; left ventricle, RV; right ventricles).

doi: 10.1371/journal.pone.0075082.g003

Discussion

We characterized desmosomal protein expression in heart
tissue samples from end-stage ARVD/C patients with or
without mutations in desmosomal protein genes. We observed
a significant decrease in DSG2 and DSC2 protein levels in all
ARVD/C samples, regardless of the genetic status, but no
mislocalization of desmosomal proteins, in comparison to the
seven controls.

Correlation between gene and protein expression

Mutations were not identified in the coding sequences of
desmosomal genes (PKP2, DSG2, DSC2, DSP and JUP) in
four ARVD/C cases, suggesting that the observed desmosomal
cadherin decrease is an indicator of ARVD/C which is
independent of the causative mutation. Nevertheless, it still
remains unexplained why DSG2 from transplanted ARVD/C
subjects seems more frequently mutated in our patients (three
of seven) compared to that which has been reported in
previous ARVD/C screens (around 10% [8,30]), and to PKP2,
the major gene in ARVD/C (around 30% [8]). It may be that
DSG2 mutations are associated with a more severe phenotype,
thus requiring transplantation, as has already been reported by
our team in a clinical analysis of 135 genotyped ARVD/C
patients [8]. Confirming this observation with a larger study
would be of great interest in defining phenotype-genotype
correlations in ARVD/C.

Specificity of desmosomal cadherin decrease in
ARVD/C

DSG2 and DSC2 were the only desmosomal proteins shown
to be significantly reduced by immunoblot in our study. This
result suggests that desmosomal cadherin decrease is a
specific feature of late-stage ARVD/C, rather than a general
marker of cardiomyopathy-induced cardiac remodeling. None
of the desmosomal proteins appeared altered by
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immunohistochemistry, suggesting no abnormal relocalization
of them.

Although it was not our intention to quantify the signal on
tissue immunostaining, we did not observe systematic
decreased intensity of any specific desmosomal protein in all
ARVD/C patients compared to controls. In order to increase our
sensitivity to detect a decreased signal specific for DSG2 we
applied a dilution protocol for the antibody directed against
DSG2 as proposed by Asimaki et al. [24]. At maximum dilution
only 3 out of 6 ARVD/C samples showed clear loss of
fluorescent signal (Figure S4). Interestingly, these samples
correlated to ARVD/C samples 1, 5 and 6 which display the
most drastic decrease in DSG2 as measured by
immunoblotting (Figure S3). Therefore this suggests a
correlation between immunoblotting and immunolabeling that
was only partial due to a threshold effect and insufficient
sensitivity of our antibody. We also anticipated a reduced
plakoglobin labeling, as described by Asimaki et al. [24].
However our immunolabeling protocol was slightly different and
perhaps the primary antibody dilution we used may not have
been adequately sensitive [24]. Therefore, the described
decrease of plakoglobin at intercalated discs of ARVD/C
cardiomyocytes, together with our immunoblot results, showing
stable overall levels of plakoglobin protein, suggest a
relocalization of the protein rather than a degradation, as was
proposed by Asimaki et al. [24,25].

We also observed that among the desmosomal proteins
tested, only cadherins were specifically decreased. This result
is partly supported by another study performed on an isolated
case with compound heterozygous mutations in DSC2 and
DSG2, showing decreased DSG2 expression with unchanged
plakoglobin and PKP2 [31]. Compare to DSG2, the decrease in
DSC2 was less significant and restricted to right ventricle. This
is possibly correlated with increased severity of the phenotype
in this compartment which is primarily altered in ARVD/C.
Similar observation was made by Gehmlich et al. reporting a
complete DSG2 extinction associated with a strong but
incomplete decrease in DSC2 in a single explanted heart from
a human ARVD/C case carrying a heterozygous DSG2 null
mutation [32].

We studied samples with advanced forms of ARVD/C from
patients carrying DSG2 or other undetected mutations. It
remains to be determined if the desmosomal cadherins
decrease, particularly of DSG2, is also observed in patients
with mutations in genes encoding desmosomal proteins other
than cadherin, and if this reduction is discernible in earlier
forms of ARVD/C.

Physiopathological mechanisms of desmosomal
cadherin decrease in ARVD/C

Desmosomal cadherin decrease is likely due to increased
protein degradation or to translational defects, as the levels of
DSG2 and DSC?2 transcripts were similar to those measured in
controls. Normal levels of cadherin mRNA in the right ventricle
of ARVD/C patients has also been previously reported [33].
This is correlated with electronic microscopy studies on
ARVD/C biopsies [23,30,34] which clearly indicate a
progressive decrease in desmosomal length associated with

September 2013 | Volume 8 | Issue 9 | e75082



‘ Control

Plakophilin 2
+ cMyBPC

B-catenin
+ a-Actinin2

Plakoglobin
+ cMyBPC

Desmoglein 2
+ cMyBPC

/ K F )
he ’

Desmocollin 2
+ a-Actinin2

Figure 4. Representative immunolocalization of

disrupted intercellular junctions. In our study, desmosomal
cadherins appear central to the pathophysiological mechanism
of ARVD/C. However, the exact mechanism of the reduction
remains unclear, and needs to be confirmed in larger studies.
An attractive hypothesis could be that non-functional
desmosomes (either due to mutant protein incorporation acting
through a dominant negative effect, or to decreased expression
of key structural components such as PKP2), are internalized
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green). Cardiac myosin-binding protein C (cMyBP-C) and a-actinin-2 (both red labeling) were used as cardiomyocyte specific
markers. The figure shows heart tissue from two patients with ARVD/C compared to a representative (non ARVD/C) control.
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ARVD/C patient right

with subsequent selective degradation of the cadherins, while
other desmosomal components are recycled. Accordingly, via
electron microscopy we observed such reduction in
desmosomal materials in one of our studied explanted tissue
(ARVD/C6). Such a mechanism is observed for desmoglein-3
in the life-threatening dermatosis pemphigus vulgaris, where
the inhibition of cadherin adhesion (resulting from interaction of
anti-cadherin auto-antibodies) leads to cadherin internalization
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and degradation, while plakoglobin steady state levels remain
unaltered [16,35].

Altogether, our results suggest that a key aspect of ARVD/C
pathophysiology could be increased degradation of cardiac
cadherins, leading to desmosomal disorganization and
disrupted cardiomyocyte junctions, and which may be a marker
of ARVD/C. In order to gain insight into ARVD/C
physiopathology, further studies are required to confirm this
finding and identify the downstream pathways affected by
desmosomal cadherin loss.

Study limitations

Decreased cadherin expression is observed in all end-stage
ARVD/C patient heart samples and not in the normal heart or
dilated cardiomyopathy samples. We had access to seven
heart tissue samples from ARVD/C patients and only one
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normal heart, low numbers which weaken our conclusions.
Additionally, mutations in desmosomal genes have been
recently reported in 5% of DCM cases [36], and we cannot
exclude that the explanted DCM heart samples originated from
donors carrying desmosomal gene mutations. However, given
the low prevalence, the probability that one DCM donor carried
a desmosomal gene mutation is small.

Finally, we cannot exclude that patients with no identified
mutations, may carry undetected genetic abnormalities such as
large deletions in DSG2 and DSC2, or mutations in unknown
genes which could affect DSC2 and DSG2 expression.

Supporting Information

Figure S1. Representative histology images of right
ventricles from ARVD/C1-4. Hematoxylin and eosin-stained
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section of the right ventricular myocardium showing mostly fatty
replacement in all ARVD/C patients. Two magnifications are
represented (2X and 10X).

(TIF)

Figure S2. Representative histology images of right
ventricles from ARVD/C5-7. Hematoxylin and eosin-stained
section of the right ventricular myocardium showing mostly fatty
replacement in all ARVD/C patients. Two magnifications are
represented (2X and 10X).

(TIF)

Figure S3. Quantitative immunoblotting of desmoglein-2
in all ARVD/C and control patients. Representative images
of western blots obtained for desmoglein-2 in the right, left
ventricle and septum for each patient. Bar graphs indicate the
mean + SEM following normalization to the cardiac protein a-
actinin-2 (ACTN2).

(TIF)

Figure S4. Representative images of immunofluorescent
staining in ARVD/C and control patients after maximum
dilution of anti-desmoglein-2 antibody. Immunofluorescent
staining of desmoglein-2 (DSG2) was performed in all ARVD/C
and control samples as described in the material and methods
section of the manuscript. We used the maximum dilution
(before total extinction of the signal in controls) of anti-DSG2
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