
Carbohydrate Recognition by an Architecturally Complex
a-N-Acetylglucosaminidase from Clostridium perfringens
Elizabeth Ficko-Blean1, Christopher P. Stuart1, Michael D. Suits1, Melissa Cid1, Matthew Tessier2,

Robert J. Woods2,3, Alisdair B. Boraston1*

1 Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada, 2 Complex Carbohydrate Research Center, University of Georgia, Athens,

Georgia, United States of America, 3 School of Chemistry, National University of Ireland, Galway, Ireland

Abstract

CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic
activity of this exo-a-D-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-b-D-glucosamine-a-
1,4-D-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89
glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32
carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates.
Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules
(CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding
carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-b-D-glucosamine-a-1,4-D-galactose,
which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this
disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this
sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the
structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional
CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to
highly specific regions within the gastrointestinal tract.
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Introduction

Mucins are heavily O-glycosylated glycoproteins that act to

protect the epithelia from harmful bacteria by forming a

biophysical barrier to infection as well as supporting innate and

adaptive immunity [1]. A heavily hydrated and highly viscous

protective mucosal layer can be found lining the surface of the

major entry points to our body, including the eyes, the naso-

pharynx, the genito-urinary tract and the gastrointestinal tract.

Within the gastrointestinal tract the mucin layer can vary from

700 mm deep in the stomach to 150–300 mm deep in the small

intestine [2]. Pathogens of the gastrointestinal tract, such as

Clostridium perfringens, must find ways to subvert or somehow

challenge this protective mucosal barrier in order to set up

infection.

C. perfringens’ niche environment is in the gut of animals,

including humans, where it may reside harmlessly; however,

infection with a pathogenic strain can cause gastroenteritis and, in

serious cases, substantial intestinal tissue destruction associated

with necrotic enteritis. Among the enzymes that C. perfringens

employs to cope with the mucosal surface are the glycoside

hydrolases, which have varying catalytic specificities that reflect

the diversity in host glycans; these include, but are not limited to,

neuraminidases (GH33)[3,4], exo- and endo-b-N-acetylglucosami-

nidases (GH84 and GH85)[5,6,7], an endo-a-N-acetylgalactosa-

minidase (GH101)[8,9], as well as CpGH89, which is an exo-a-N-

acetylglucosaminidase [10,11]. Due to the significant genome

content of genes encoding carbohydrate-active enzymes with

known or suspected specificity for complex glycans, such as those

found on the mucosal surface, it has been postulated that these

enzymes play an important role during colonization and/or

infection. Indeed, enzymatic preparations of C. perfringens, in

combination with mild acid hydrolysis, have previously been used

to help partially ‘‘untangle’’ the complex carbohydrate surface

lining the gut supporting the concept that the structure of

gastrointestinal mucosa can be influenced by these bacterial factors

[12].

Within the gastric mucosa there are two types of mucous cells,

surface mucous cells and the deeper gland mucous cells, producing

two different mucins which combine together to form a stratified

surface mucous layer [13]. Class III mucins are produced normally

by the gastric gland mucous cells, duodenal Brunner’s gland

mucous cells, and the mucous cells of the accessory glands of

pancreaticobiliary tract but also in certain tissues exhibiting gastric

metaplasia or adenocarcinoma [14–23]. The class III mucins,

discharged by gland mucous cells in the gastric pits [13], are

somewhat distinct in that they are specifically decorated with

peripheral a-GlcNAc (a-N-acetyl-D-glucosamine) residues forming
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GlcNAc-a-1,4-Gal-b-R (N-acetyl-b-D-glucosamine-a-1,4-D-galac-

tose) motifs [19,22,24]. The biological relevance of this carbohy-

drate motif is at present not clear; however, terminal a-linked

GlcNAc has been implicated as a host defense mechanism against

colonization of the gastric mucosa by Helicobacter pylori [25] by

blocking production of CGL (cholesteryl-a-D-glucopyranoside), an

important component of this bacterium’s cell wall.

C. perfringens is unusual in its ability to process the GlcNAc-a-1,4-

Gal motifs found in class III mucin. CpGH89 (EC 3.2.1.50,

CPF_0859), also referred to as AgnC [11], is a family 89 a-N-

acetyl-D-glucosaminidase that has been shown to specifically

release terminal a-linked GlcNAc from the disaccharide

GlcNAc-a-1,4-Gal and demonstrated to liberate GlcNAc from

crude class III porcine gastric mucin [10,11]. Using a cpgh89

mutant of C. perfringens the activity of CpGH89 has been linked to

the ability of C. perfringens to grow on mucin bearing this rare

carbohydrate motif [11].

Two remarkable features of CpGH89 are its overall size (2095

amino acids) and its extensive multimodularity. Overall, the

enzyme comprises a glycoside hydrolase family 89 (GH89)

catalytic module, four FIVAR (found in various molecular

architectures) modules, an unknown module, a C-terminal

fibronectin type III-like (FN3-like) module, and six putative

carbohydrate-binding modules (CBMs) (Figure 1). CBMs are

generally defined as non-catalytic modules that bind carbohy-

drates and are found within the modular architectures of

carbohydrate-active enzymes [26], thus distinguishing these

modules from lectins and carbohydrate-specific antibodies. CBMs

are presently classified into over 60 amino acid sequenced based

families; the CBMs from CpGH89 all belong to CBM family 32,

which is one of the most diverse CBM families [7].

Based on truncation studies of the enzyme and structural

analyses of the N-terminal modules, the catalytic activity of the

enzyme allowing it to release GlcNAc from class III mucin is

attributed to its GH89 module [10,11]. Similar truncation

studies that focused solely on CBM32s 2 to 6 revealed one or

more of these CBMs to be able to bind mucin [11]. Notably,

constructs of CpGH89 lacking the three most C-terminal CBMs

had reduced activity on mucin suggesting an important role for

the CBMs in substrate recognition. Thus, CpGH89 possesses a

complex multimodular architecture where the composite mod-

ules function together to efficiently act on components of mucin.

Though it is clear that the CBMs are able to bind mucin what

remains unknown is what carbohydrate motifs displayed on

mucin, particularly the unique GlcNAc-a-1,4-Gal motif, may be

recognized by the CBM32s and what the molecular bases of

these interactions are. Here we address these questions through

structural and functional analyses of the CBMs from CpGH89.

Overall, these studies reveal the specificity of three of CBM32s

and, through X-ray crystal structures, how two of the CBMs

accommodate their ligands, which includes the first GlcNAc-

a-1,4-Gal binding specificity for a protein other than an

antibody.

Results and Discussion

Analysis of a galactose binding CBM
Of the six putative CBM32s in CpGH89 CBM32-5, the fifth

CBM, has the highest similarity with modules known to have

carbohydrate-binding function (,43% amino acid sequence

identity with the CBM32 from the large sialidase NanJ, also from

C. perfringens). Furthermore, the strict conservation of residues

involved in galactose recognition suggested that CBM32-5 belongs

to the galactose binding group of family 32 CBMs [7,27,28].

CBM32-5 was initially screened for carbohydrate binding on

glycan microarrays. Binding was generally quite weak; however,

two galactose terminating N-glycans, one tri-antennary and the

other tetra-antennary, gave significant binding signal (Figure 2A).

Likewise, two glycans terminating with GalNAc, one a-1,4-linked

and the other b-1,3-linked, also gave good signals. Though this did

not conclusively single out a single carbohydrate ligand it is

generally consistent with predictions of galactose specificity based

on amino acid sequence similarity. This suggested binding to

terminal galactose and GalNAc residues, which was used as a

guide to quantitatively assess binding to carbohydrate ligands.

The addition of galactose or GalNAc to CBM32-5 perturbed

the UV absorption of this protein in a manner consistent with the

involvement of tyrosine residues in carbohydrate binding

[29](Figure 2B). This signal was used in a quantitative manner

to assess binding to a variety of carbohydrate ligands (Figure 2C

and Table 1). The association constants of CBM32-5 binding to

ligands containing galactose or GalNAc were in the range of 2–

56103 M21 (Figure 2B, 2C and Table 1), and thus quite weak, but

of the same magnitude observed for other family 32 CBMs

[3,27,30–32]. The CBM displayed little to no preference for either

galactose or GalNAc and did not appear to significantly favor

common disaccharide motifs that terminate in galactose or

GalNAc over the monosaccharides (Table 1).

The structural basis for what appears to be a general selectivity

for terminal galactose residues was examined by determining the

X-ray crystal structure of CBM32-5 in complex with carbohy-

drate. The 1.55 Å resolution structure of the CBM binding

galactose revealed the b-sandwich fold with structural metal ion, in

this case modeled as a Ca2+, which is common to the family

(Figure 3A). The galactose residue was well-ordered in the crystal

structure providing clear electron density (Figure 3B). The site

accommodating this carbohydrate is a shallow cleft marked by two

solvent exposed aromatic side chains, F1483 and Y1395

(Figure 3C), which is present in the loops at the edges of the b-

sandwich (Figure 3A). The C6-OH group of galactose fits into a

corner of the binding site made up by F1483 and Y1395, whose

aromatic rings are at nearly right angles to one another (Figure 3C

and 3D). A series of hydrogen bonds involve the side chains of four

amino acids in the carbohydrate-binding site (Figure 3D). With the

exception of E1376, which makes hydrogen bonds with the C3

hydroxyl group of galactose, all of the interactions are highly

conserved with other known galactose binding CBMs (Figure 3E).

Indeed, the interactions made by the five residues H1392, Y1395,

Figure 1. Schematic representation of the modular structure of CpGH89. CBM32 denotes family 32 carbohydrate-binding modules, GH89
represents the family 89 catalytic module, F denotes the predicted FIVAR (Found In Various Architectural Regions) modules and FN3 refers to a
fibronectin type III domain. Modular boundaries used in this study are given above and below the schematic.
doi:10.1371/journal.pone.0033524.g001

Carbohydrate-Binding by GH89
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R1423, N1428, and F1483 make up the canonical galactose-

binding motif in the family 32 CBMs [7,27,32]. CBM32-5,

therefore, possesses a galactose-binding site; however, it is also

capable of binding GalNAc equally well. Furthermore, the analysis

of the CBM32 from NagJ, indicated that the recognition of longer

glycans by CBM32s can involve additional subsites [27]. The

structures of CBM32-5 in complex with other potentially

biologically relevant ligands, GalNAc, the Tn-antigen, and

GalNAc-b-1,3-Gal (Figure 4A, 4B and 4C) show the recognition

of terminal GalNAc residues to be identical to that of galactose,

with the addition of a water mediated hydrogen bond involving

the acetamido group of the carbohydrate and the backbone

nitrogens of K1427 and N1428 (Figure 4D). This limited

additional interaction appears to provide little to no favorable

energy to binding. Likewise, the galactose of the GalNAc-b-1,3-

Gal extended away from the protein surface and made no

Figure 2. Analysis of carbohydrate binding by CBM32-5. (A) Glycan microarray analysis of carbohydrate binding by CBM32-5. The
carbohydrates giving the most significant signals are numbered and their structures are shown schematically to the immediate right. The
fluorescence intensities measure for the glycans are shown with the structural schematics. The reported error represents the standard error of the
mean for quadruplicate measurements. A legend to symbols representing specific monosaccharides is provided. (B) UV difference spectrum upon
CBM32-5 binding to excess galactose. Wavelengths of peaks and troughs are labeled. (C) Binding isotherm of CBM32-5 binding to galactose
generated by UV difference titrations. The squares, triangles and circles represent the values for the peak to trough height differences for the
wavelength pairs of 287.2/282.4 nm, 279.1/275.3 nm, and 279.1/282.4 nm, respectively. The error bars represent the standard deviations from
triplicate independent titrations. The solid lines show the fits to a one-site binding model.
doi:10.1371/journal.pone.0033524.g002

Table 1. Affinity of CBM32-5 for carbohydrates determined at
20uC in 20 mM Tris HCl, pH 8.0.

Carbohydrate Ka (M21)

D-galactose 1.69 (60.05)6103

D-GalNAc 5.01 (60.64)6103

Lactose (Gal-b-1,4-Glc) 2.40 (60.58)6103

Gal-b-1,3-GalNAc 3.77 (60.34)6103

GalNAc-b-1,3-Gala 3.40 (60.10)6103

athe binding constant for GalNAc-b-1,3-Gal was determined by ITC; the
remaining binding constants were determined by UV difference titrations.
doi:10.1371/journal.pone.0033524.t001

Carbohydrate-Binding by GH89
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interactions with the protein, which is consistent with the lack of

improved binding for this disaccharide over GalNAc. The same

observation was made for the serinyl group of the Tn-antigen,

even though the serine is a-linked to GalNAc. Modeling other

common a-linked carbohydrates, such as Gal-a-1,3-Gal, based on

the Tn-antigen complex suggested that these additional residues

also extend out into solvent with no capacity to make additional

interactions with the protein (not shown).

The crystallography results suggest that CBM32-5 is relatively

promiscuous in that it requires only a terminal galactose or

GalNAc residue with little preference for the sugar that precedes it.

The glycan microarray results, however, suggested a strong

interaction with a unique carbohydrate, GalNAc-a-1,4(Fuc-a-

1,2)-Gal-b-1,4-GlcNAc. This interaction was reproducible on

glycan microarrays, even when using CBM that was directly

labeled by chemically coupling the fluorophore to primary amines

on the CBM (not shown). To our knowledge, this glycan has not

been identified in any mammalian tissues; however, this synthetic

carbohydrate was clearly the top ligand from the array analysis

suggesting that an analysis of the interaction of CBM32-5 with this

carbohydrate may provide insight into the recognition of more

complex but as yet unstudied glycans. A molecular dynamics

approach was used to study the potential interaction of GalNAc-a-

1,4(Fuc-a-1,2)-Gal-b-1,4-GlcNAc-OMe with CBM32-5. The re-

sulting analysis gave an ensemble of ten structures with each

structure representing a group of similar, energy-minimized

structures (Figure 4E). Overall, the carbohydrate in the ten

structures adopts an array of potential conformations, though the

terminal GalNAc residue and the preceding Gal residue are

somewhat constrained in their positions. A representative of the

lowest energy group of models shows the carbohydrate to adopt a

conformation that, by virtue of the bent conformation imparted by

the a-1,4-linkage between the GalNAc and Gal, bends around

Y1395 and allows the reducing-end portion of the glycan to rest

against the protein surface with only a very small number of

additional hydrogen bonds made (Figure 4F). Free energy

Figure 3. Structural analysis of the interaction between CBM32-5 and galactose. (A) A cartoon representation of the structure of CBM32-5
bound to galactose (blue sticks) determined by X-ray crystallography to 1.55 Å resolution. The bound calcium atom is shown as a pink sphere. (B)
Electron density for galactose within the binding site of CBM32-5. Electron density maps are maximum-likelihood/sA [59] -weighted 2Fobs-Fcalc

contoured at 1 s (both maps at 0.45 e2/Å3) produced by refinements prior to modeling the sugar (green) and with the monosaccharide included
(blue). (C) Surface representation of the CBM32-5 binding site with the bound galactose shown as blue sticks. The aromatic amino acids providing the
hydrophobic binding platform are shown as sticks and labeled while the surface they contribute to the active site is coloured magenta. (D) Divergent
stereo view of the key interactions between the binding site of CBM32-5 and galactose. Hydrogen bonds are shown as dashed black lines. (E)
Comparison of the binding site of CBM32-5 (blue) with the CBM32 from C. perfringens GH84C (grey; PDB code 2J1E) and the CBM32 from C.
perfringens NanJ (yellow; PDB code 2V72) reveals the canonical galactose-binding site. Conserved amino acid side chains and bound carbohydrates
are shown as sticks.
doi:10.1371/journal.pone.0033524.g003

Carbohydrate-Binding by GH89
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Figure 4. Structural analysis of CBM32-5 with additional carbohydrates. (A) Electron density for GalNAc shown as maximum-likelihood/sA

[59] -weighted 2Fobs-Fcalc maps contoured at 1 s (both maps at 0.31 e2/Å3) produced by refinements prior to modeling the sugar (green) and with
the sugar included (blue). (B) Electron density for serinyl-Tn antigen shown as maximum-likelihood/sA [59] -weighted 2Fobs-Fcalc maps contoured at 1
s (both maps at 0.45 e2/Å3) produced by refinements prior to modeling the sugar (green) and with the sugar included (blue). (C) Electron density for
GalNAc-b-1,3-galactose shown as maximum-likelihood/sA [59] -weighted 2Fobs-Fcalc maps contoured at 0.8 s (both maps at 0.34 e2/Å3) produced by
refinements prior to modeling the sugar (green) and with the sugar included (blue). (D) Divergent stereo view of the key interactions between the
binding site of CBM32-5 and GalNAc. This also represents the mode of interaction between the CBM and the serinyl-Tn antigen and GalNAc-b-1,3-
galactose, which all have identical hydrogen bonding patters. Hydrogen bonds are shown as dashed black lines. (E) Models of CBM32-5 in complex
with GalNAc-a-1,4(Fuc-a-1,2)-Gal-b-1,4-GlcNAc-OMe produced by molecular dynamics simulations. An ensemble of ten energy minimized models is
given with each model representing a group of energetically similar models. Relevant residues in the binding site are shown as grey sticks with the
backbone of the protein shown as a Ca-ribbon. (F) A surface representation of the lowest energy model of CBM32-5 bound to the tetrasaccharide
(GalNAc is shown in green, fucose in pink, galactose in yellow, and GlcNAc in blue). The surfaces contributed by Y1395 and F1483 are shown in
magenta and additional hydrogen bonds made outside of the primary galactose binding site shown as dashed lines.
doi:10.1371/journal.pone.0033524.g004

Carbohydrate-Binding by GH89
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decomposition shows the increased affinity of this ligand for

CBM32-5 results from the increased van der Waals and non-polar

solvation interactions that is imparted by the complementary

interacting surface areas of this unique carbohydrate ligand and

the CBM surface. This interaction is specifically enhanced by

interactions between the fucosyl residue and residues Y1395 and

N1396 of CBM32-5 (Figure S1). Though GalNAc-a-1,4(Fuc-a-

1,2)-Gal-b-1,4-GlcNAc may not be a biologically relevant ligand

for CBM32-5 its mode of interaction with this CBM suggests that

other high affinity ligands, perhaps not represented on the

carbohydrate microarrays, may be possible provided they adopt

a conformation that maximizes the interacting surface areas.

Carbohydrate-binding modules with unique specificity
Though CpGH89 has at least one functional CBM its specificity

(i.e. galactose and GalNAc) is clearly mismatched with the

specificity of the catalytic module. Furthermore, this CBM is an

outlier among the CpGH89 CBMs as it has higher amino acid

sequence identity with CBMs from other enzymes than it does

with the remaining CBMs from CpGH89. In contrast, CBM32-2,

CBM32-3, and CBM32-4 form a distinct cluster in the

phylogenetic analysis of the CBM32 family [7]. Indeed,

CBM32-3 and CBM32-4 share 63% amino acid sequence identity

and CBM32-2 has ,30% amino acid identity with these two

CBMs (Figure 5). These putative CBMs have very low amino acid

sequence identity with CBM32-5 and other known CBM32s

suggesting they may represent a new functional class of CBM32s.

Isolated CBM32-2, CBM32-3, and CBM32-4 were screened for

binding on the glycan microarrays. CBM32-3 gave statistically

meaningful binding (i.e. signal with standard errors of the mean

that indicated significant binding above background) with the top

hits terminating in GlcNAc-a-1,4-Gal (Figure 6A). Unfortunately,

the results for CBM32-2 and CBM32-4 were inconclusive;

however, the high amino acid sequence similarity between

CBM32-3 and CBM32-4 suggested that both CBMs may have

the same ligand, GlcNAc-a-1,4-Gal. Indeed, using ITC, the

association constant of CBM32-4 for GlcNAc-a-1,4-Gal was

determined to be 1.38 (60.08)6104 M21 thus showing this to be a

relatively strong interaction for a family 32 CBM (Figure 6B). The

titration of GlcNAc-a-1,4-Gal into CBM32-3 also produced a

binding isotherm consistent with carbohydrate binding and the

association constant was determined to be 2.64 (60.64)6104 M21

(Figure 6C). Thus, both CBM32-3 and CBM32-4 appear to have

binding specificity for GlcNAc-a-1,4-Gal, which is complementary

to the specificity of the catalytic module.

The ability of CBM32-3 and CBM32-4 to bind the GlcNAc-a-

1,4-Gal is unique among non-catalytic carbohydrate binding

proteins prompting the study of the molecular basis of this

interaction. Of the two CBMs, crystals were only obtained of

CBM32-4. The structure of seleno-methionine labeled CBM32-4

was determined by single anomalous dispersion to 1.55 Å

resolution. This CBM adopts a b-sandwich fold with conserved

structural metal ion, modeled as a calcium atom, which is similar

to that of CBM32-5 (root mean square deviation of 1.9 Å over 112

matched Ca) (Figure 7A). CBM32-4 was co-crystallized with

GlcNAc-a-1,4-Gal and this structure determined to 2.8 Å

resolution (Figure 7B). Both molecules of CBM32-4 in the

asymmetric unit had bound disaccharide as revealed by clear

electron density for the sugar located in the loops at the edges of

the b-sandwich core (Figure 7B, C, and D). CBM32-4 accommo-

dates the disaccharide in a shallow depression; the sugar, with its

bent conformation, lies on edge in the depression with the B-face

of the galactose residue pushed up against the planar surface of the

W1333 side chain. Though there are no aromatic residues present

on the adjacent wall of the binding site, it is at roughly right angles

to the plane of the W1333 side chain and thus well positioned to

pack against the A-face of the GlcNAc residue. Markedly few

hydrogen bonds are made between the sugar and binding site

suggesting that binding and specificity for this disaccharide is

driven primarily by hydrophobic and van der Waals forces and

accommodation of the unique carbohydrate conformation. O1 of

the galactose is completely exposed and oriented out into the bulk

solvent illustrating how the CBM might tolerate extensions on the

reducing end of the GlcNAc-a-1,4-Gal motif, which is consistent

with binding to the glycan microarrays and to the recognition of

the motif as it would naturally be displayed at the termini of

glycans on mucin. The O3 and O4 groups on the terminal

GlcNAc, though solvent exposed, lie very close to the protein

surface. It is unclear whether modification to these could be

tolerated by the CBM, thereby allowing it to recognize internal

GlcNAc-a-1,4-Gal motifs, but the proximity to the protein surface

and steric clashes that would likely ensue suggests that this is

unlikely. The C6 hydroxyl group is buried in the base of the

binding site and thus extension with additional sugar residues

would not be tolerated.

CBM32-3 was recalcitrant to crystallization preventing struc-

tural analysis by X-ray crystallography and direct examination of

its interaction with carbohydrate; however, the main residues

involved in GlcNAc-a-1,4-Gal recognition by CBM32-4 are

conserved in CBM32-3 (Figure 5). Taking further advantage of

the high amino acid sequence identity of the two CBMs, a

homology model of CBM32-3 was constructed; this revealed not

only conservation of the primary binding site residues but also the

majority of the residues lining the binding site (Figure 7F),

indicating that the mode of carbohydrate recognition by CBM32-

3 is likely extremely similar to that of CBM32-4.

To date, the structural analysis of family 32 CBMs found in

carbohydrate-active enzymes has revealed two subtypes of CBMs

within the family: the ‘canonical’ galactose binding CBM32s, such

as CBM32-5, and the unique GlcNAc binding CBM32 as

represented by the CBM from NagH, NagHCBM32-2 [31]. A

comparison of the amino acids involved in ligand binding from

CBM32-4 with the binding sites of both of these CBM32 subtypes

shows them to have no similarities in carbohydrate recognition

beyond the general placement of the active sites (Figure 7G and

7H). Thus, the GlcNAc-a-1,4-Gal binding CBMs, CBM32-3 and

CBM32-4, represent a new mode of carbohydrate recognition by

the CBM32s and continue to highlight the diversity within this

family of CBMs.

Glycan microarray binding experiments with CBM32-2 were

inconclusive, as were other low-throughput experiments to identify

potential ligands, and attempts at crystallization did not yield

crystals of sufficient quality for structure determination. To

provide some insight into the potential capacity of this module

to interact with carbohydrate a homology model based on the

structure of CBM32-4 was constructed. Though the residues in

CBM32-4 that impart carbohydrate binding function are not

conserved with CBM32-2 (Figure 5) the model reveals a pocket in

the protein surface located in loops that usually contain the

binding sites of CBM32s (Figure 8A and 8B). This pocket contains

a solvent exposed aromatic amino acid, Y1046, and a series of

exposed planar polar amino acid side chains (Figure 8B). These

features are generally consistent with the properties of carbohy-

drate binding sites in CBMs, suggesting that this module is indeed

capable of recognizing an as yet unidentified sugar.

Carbohydrate-Binding by GH89
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CBM32-1 and CBM32-6 appear to lack carbohydrate-
binding function

Despite the observation that CBM32-1 and CBM32-6 display

only 26% amino acid identity (Figure 5) they cluster together in a

phylogenetic analysis of CBM32 modules indicating that they are

more closely related to one another than to other putative CBMs

[7]. Qualitative UV difference scans on CBM32-1 and CBM32-6

did not suggest binding to any simple monosaccharides (galactose,

GalNAc, mannose, sialic acid, GlcNAc or glucose). CBM32-1 was

also screened on glycan microarrays but significant binding was

not detected. The structure of CBM32-6 was determined to

1.55 Å resolution using SAD and seleno-methionine substituted

protein (not shown). This structure compared with CBM32-1,

previously determined as part of a construct including the catalytic

module [10], gave a root mean square deviation of 1.8 Å over 119

Ca atoms. Neither CBM32-1 nor CBM32-6 have any exposed

aromatics in the region of the protein known to contain the

binding sites in CBM32 proteins (Figure 9). Furthermore, a more

thorough analysis of the surface residues of CBM32-1 and

CBM32-6 showed them both to lack features consistent with

carbohydrate binding sites. This observation, along with the lack

of experimental support for carbohydrate binding, suggest that

CBM32-1 and CBM32-6 do not function as CBMs, which

perhaps explains their somewhat outlying position in the

phylogenetic analysis of CBM32 modules [7].

The modular diversity of CpGH89 and its implications
In order to colonize the gastrointestinal tract organisms must

first infiltrate the mucosal surface. For example, the secreted

mucosal surfaces of the colon are comprised of mainly Muc2,

which forms both the thick outer mucous layer, that plays host to

many commensal microbes, and the thin inner mucous layer that

is impervious to bacteria [33,34]. GlcNAc-a-1,4-Gal is displayed

by the deeper gastric-type mucosal class III mucins, Muc5Ac and

Muc6 [19] and the catalytic activity of CpGH89 is directed at this

specific carbohydrate structure. Furthermore, two of the CBMs in

this enzyme, CBM32-3 and CBM32-4, have evolved binding

specificity complementary to the catalytic specificity. In a manner

consistent with the generally proposed role of CBMs [26],

CBM32-3 and CBM32-4 likely direct the enzyme to the secreted

class III mucins within the deep mucosa of the stomach and

duodenum, and in doing so promote substrate degradation by the

catalytic module. The presence of two CBMs with the same

specificities indicate the potential for a multivalent interaction,

thereby increasing the overall apparent affinity of the enzyme for

regions that display clusters of the GlcNAc-a-1,4-Gal motif.

Of the six CBM32-like modules that CpGH89 possesses two do

not appear to bind carbohydrate (their functions, if they have any,

remain unknown), one has putative carbohydrate-binding function

(CBM32-2), and the remaining three clearly have carbohydrate-

binding function (CBM32-3, CBM32-4 and CBM32-5). The

specificity of CBM32-5 appears to be primarily for terminal

galactose and GalNAc residues and thus does not match the

substrate preference of the catalytic module. Such mismatching

between CBMs and their cognate catalytic modules is not unusual

with C. perfringens glycoside hydrolases [3,27]. The biological

reason for the presence of the mismatched CBMs remains

speculative; however, it has been postulated that the presence of

such CBMs may allow the enzyme to remain adhered to

carbohydrate rich surfaces after the catalytic module has begun

processing the substrate. For example, after hydrolysis of the

GlcNAc-a-1,4-Gal substrate by the catalytic module of CpGH89

the remaining terminal sugar is a galactose residue and thus a

Figure 5. Amino acid sequence comparison of the CBM32 modules from CpGH89. The secondary structure is shown above (CBM32-4) and
below (CBM32-5) with arrows representing b-strands and cylinders a-helices. The purple and yellow triangles above and below the sequences
indicate the aromatic and hydrogen bonding residues, respectively, that are involved in carbohydrate binding by CBM32-4 (top) and CBM32-5
(bottom). Numbers with the triangles indicate the residue number. Residues in CBM32-2 that are highlighted by boxes are those present in the
putative binding site of this module.
doi:10.1371/journal.pone.0033524.g005
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potential ligand of CBM32-5. There then exists the potential for

multivalent interactions involving heterogeneous clusters of

ligands, such as combinations of the GlcNAc-a-1,4-Gal motif

and terminal galactose and GalNAc residues. Alternatively, it has

been hypothesized that the majority of the C. perfringens glycoside

hydrolases, including CpGH89, are either covalently or non-

covalently associated with the bacterial surface [6]. Thus, though

the intrinsic affinity of a single CBM32-5 module for terminal

Figure 6. Analysis of carbohydrate binding by CBM32-3 and CBM32-4. (A) Glycan microarray analysis of carbohydrate binding by CBM32-3.
The carbohydrates giving the most significant signals are numbered and their structures are shown schematically to the immediate right. The fluorescence
intensities measured for the glycans are shown with the structural schematics. The reported error represents the standard error of the mean for
quadruplicate measurements. The symbols representing specific monosaccharides are the same as those given for Figure 2A. (B) and (C) Representative
isothermal calorimetry titrations of CBM32-4 and CBM32-3, respectively, binding to GlcNAc-a-1,4-Gal. Top portions of each panel show the raw power data
while the bottom portions show the integrated and heat of dilution corrected data. Solid lines show the non-linear curve fits to a one site binding model.
doi:10.1371/journal.pone.0033524.g006
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Figure 7. Structural analysis of the interaction between CBM32-4 and GlcNAc-a-1,4-Gal. (A) A cartoon representation of the structure of
seleno-methionine labeled CBM32-4 determined by X-ray crystallography to 1.55 Å resolution. The bound calcium atom is shown as a pink sphere. (B)
A cartoon representation of the dimer of CBM32-4 in complex with GlcNAc-a-1,4-Gal determined to 2.8 Å resolution. The bound calcium atom is
shown as a pink sphere and the carbohydrate as blue sticks. (C) and (D) Electron density for GlcNAc-a-1,4-Gal in the binding sites of each monomer of
CBM32-4 in the asymmetric unit (panel C shows molecule A and panel D shows molecule B). In both panels the electron density is shown as
maximum-likelihood/sA [59] -weighted 2Fobs-Fcalc maps contoured at 1 s (all maps at 0.39 e2/Å3) produced by refinements prior to modeling the
sugar (green) and with the sugar included (blue). Protein is shown as solvent accessible surface with the surface contributed by W1333 shown and
labeled) colored magenta. (E) Key interactions between the binding site of CBM32-4 and the disaccharide as represented by monomer A in the
asymmetric unit. (F) An overlay of CBM42-4 in complex with the disaccharide (blue with green carbohydrate) and a Phyre2 [58] generated homology
model of CBM32-3 (yellow) showing the conservation of residues lining the binding site. (G) and (H) Superposition of CBM32-4 in complex with the
disaccharide (blue in both panels) with CBM32-5 in complex with galactose (yellow molecule in panel G) and with the GlcNAc binding CBM32 from C.
perfringens NagH (PDB code 2W1U; grey molecule in panel H). Relevant residues involved in carbohydrate recognition are shown as sticks. Only
residues in CBM32-4 are labeled.
doi:10.1371/journal.pone.0033524.g007
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galactose residues is quite low and on its own would be unlikely to

mediate significant adherence of soluble CpGH89 to terminal

galactose residues, the possible context of bacterial surface

association of the entire enzyme creates further potential for avid

binding.

Overall, the presence of at least three functional CBMs in

CpGH89, with a fourth likely, imparts diversity in the ability of

this enzyme to recognize carbohydrate substructures and potential

for increased affinity through multivalent interactions. As a

secreted enzyme this capability would enhance the overall

association of the enzyme with class III mucins. In the possible

case that CpGH89 is immobilized on the bacterial cell-surface the

enzyme’s capacity to bind carbohydrate would impart consider-

able carbohydrate-adhesive capacity to the bacterium thus

promote the tight interaction of this bacterium with its host.

Materials and Methods

Cloning, protein production and purification
Gene fragments encoding desired CBMs from CpGH89 (locus

tag CPF_0859) were PCR amplified from C. perfringens ATCC

13124 genomic DNA using oligonucleotide primers (see Table 2)

with engineered 59 and 39 NheI and XhoI restriction endonuclease

sites, respectively, incorporated into the ends of the primers. The

following gene fragments were cloned into pET28a(+) through

standard molecular biology procedures: CBM32-1 (nucleotides

76–462), CBM32-2 (nucleotides 2752–3171), CBM32-3 (nucleo-

tides 3187–3603), CBM32-4 (nucleotides 3616–4029), CBM32-5

(nucleotides 4066–4479), CBM32-6 (nucleotides 4486–4863). All

of the resulting gene fusions encoded an N-terminal six-histidine

tag fused to the protein of interest by an intervening thrombin

protease cleavage site. Bidirectional DNA sequencing was used to

verify the fidelity of each construct.

All of the proteins were produced recombinantly in E. coli

BL21(DE3) and purified by immobilized metal affinity chroma-

tography and size exclusion chromatography (SEC) using

methodologies described in detail previously [5]. Seleno-methio-

nine-labeled CBM32-4 and CBM32-6 was produced as above

using E. coli B834 (DE3) as the expression strain (Novagen). The

media containing seleno-methionine was prepared according to

the instructions of the manufacturer (Athena Enzyme). Protein

concentrations were determined at 280 nm using calculated

extinction coefficients [35] as follows: CBM32-1,

20340 M21 cm21; CBM32-2, 17780 M21 cm21; CBM32-3,

13940 M21 cm21; CBM32-4, 15220 M21 cm21; CBM32-5,

16500 M21 cm21; CBM32-6, 15220 M21 cm21.

Glycan microarray screening
Glycan microarray screening was performed by Core H of the

Consortium for Functional Glycomics (www.functionalglycomics.

Figure 8. Homology model of CBM32-2 generated with Phyre2
[58]. (A) Architecture of the putative carbohydrate binding site with
residues possibly involved in sugar recognition shown as sticks. (B)
Solvent accessible surface of the putative binding site revealing its
contours.
doi:10.1371/journal.pone.0033524.g008

Figure 9. Structural analysis of CBM32-6. A cartoon representation
of the structure of CBM32-6 determined by X-ray crystallography to
1.55 Å resolution. Amino acid side chains found in what is normally the
carbohydrate-binding site of family 32 CBMs are shown in stick
representation. This reveals the lack of side chains normally associated
with carbohydrate binding, particularly a lack of aromatic amino acid
side chains.
doi:10.1371/journal.pone.0033524.g009
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org/). CBMs were labeled by coupling to Alexa FluorH 488

labeled streptavidin via a biotin-NTA:Ni2+ linker using methods

identical to those described previously [36]. Labeled proteins were

desalted using PD-10 columns (GE Healthcare) and used to probe

the printed glycan arrays according to the standard procedures of

Core H of the Consortium for Functional Glycomics.

Binding studies
Qualitative UV difference scans were performed using methods

identical to those described previously [31]. Quantitative UV

difference titrations were also performed using methods already

described [27]. The concentration of protein used for the titrations

was 31.5 mM in 20 mM Tris-HCl pH 8.0. The concentrations of

carbohydrate stocks used to titrate into protein varied between

,40 mM and 45 mM and were prepared by mass in 20 mM Tris-

HCl pH 8.0. Experiments were performed at 25uC in triplicate.

Isothermal Titration Calorimetry was performed as described

previously using a VP-ITC (MicroCal, Northampton, MA)[27].

Proteins were filtered and degassed prior to use. Carbohydrate

solutions were prepared by mass in buffer saved from dialysis of

the appropriate protein. These solutions were also filtered and

degassed prior to use. The proteins concentrations used varied

from ,100 mM to ,550 mM. However, in no case could a protein

concentration be used that exceeded the Kd by more than five-fold

(i.e. C-values were less than 5), thus, data was fit with a single

binding site model using MicroCal Origin software (version 7.0)

with the stoichiometry (n-value) fixed at 1. Experiments using

CBM32-5 were performed in 20 mM Tris-HCl, pH 8.0, and those

with CBM32-3 and CBM32-4 in 50 mM HEPES, pH 7.5.

Experiments were performed at 25uC in triplicate.

Crystallization
Prior to crystallization, CBMs generally required overnight

treatment with thrombin followed by re-purification by SEC to

remove the 6-histidine tag. The complex of CBM32-4 with

GlcNAc-a-1,4-Gal, however, was obtained with protein still

having the 6-histidine tag. All crystallization experiments were

performed at 18uC using the hanging drop vapour diffusion

method.

Seleno-methionine labeled CBM32-4 at 15 mg/ml crystallized

in 0.2 M KSCN, 22% polyethylene glycol (PEG) 3350, 0.1 M

Tris-HCL pH 7.5. 20% ethylene glycol in crystallization solution

was used as a cryoprotectant. Unlabeled CBM32-4 (20 mg/ml) in

complex with GlcNAc-a-1,4-Gal (at 2 mM) crystallized in 0.1 M

ZnOAc, 0.1 M Bicine pH 8.0, 18% PEG 3350, 4 mM CrCl; 20%

ethylene glycol in this crystallization solution was used as a

cryoprotectant.

All crystals of CBM32-5 were obtained using the protein at

20 mg/ml. Complexes were obtained by co-crystallization of the

protein with the carbohydrate under the following conditions: the

galactose (10 mM) and GalNAc (10 mM) complexes crystallized in

0.1 M Bis-Tris pH 5.5, 20% PEG 4000, and 0.2 M LiSO4; the

GalNAc-b-1-3Gal (10 mM) complex crystallized in 0.1 M NaCi-

trate pH 5.6, 20% PEG 3350, and 0.2 M MgOAc; the Tn

Antigen [10 mM; N-acetyl-a-D-galactosaminyl-1-O-serine (V-

labs)] complex crystallized in 0.1 M NaCitrate pH 5.6, 20%

PEG 3350, and 0.1 M ZnOAcetate. In all cases the crystals were

cryoprotected using the crystallization solution supplemented with

15% glycerol.

Seleno-methionine labeled CBM32-6 (20 mg/ml) was crystal-

lized in 0.1 M Bis-Tris pH 6.5, 29% PEG 3350, 0.05 M CaCl2

and 20% ethylene glycol in crystallization solution was used for

cryoprotection.

Data collection, Structure Solution and Refinement
Diffraction data were collected at 100 K at the National

Synchrotron Light Source (NSLS) beamline X8-C, the Stanford

Synchrotron Radiation Laboratories (SSRL) beamline BL 9-2, or

a home source comprising a Rigaku R-AXIS IV++ area detector

coupled to a MM-002 X-ray generator with Osmic ‘‘blue’’ optics

and Oxford Cryostream 700 as indicated in Tables 3 and 4. Data

were processed using d*trek or MOSFLM [37,38].

The structures of CBM32-4 and CBM32-6 were solved by

single-anomalous dispersion (SAD) experiments optimized for

selenium (see Table 4 for wavelengths at which SAD data were

collected). The heavy atom substructures were determined from

the SAD data using the program ShelXC/D, while phasing was

performed using ShelxE [39]. CBM32-4 crystallized with a single

molecule in the AU; three of its potential four selenium sites were

found and used for phasing. CBM32-6 crystallized with a two

molecules in the AU with each monomer having two potential

selenium sites; only one selenium site per monomer was found and

used for phasing. Density modification with the program DM

[40,41] was used to improve the phases prior to model building.

Table 2. Oligonucleotide primers used for amplification and cloning.

Oligonucleotide Sequence Used to amplify and clone

CBM32-1F CAT ATG GCT AGC GGT GTT GAA ATT ACG GAA G CBM32-1

CBM32-2F CAT ATG GCT AGC GAA AGA GTT AAT ATT GCT CBM32-2

CBM32-3F CAT ATG GCT AGC GAA GAT GAG TAT ACT AAC G CBM32-3

CBM32-4F CAT ATG GCT AGC GCT AAT TAT GTA AAT ATA G CBM32-4

CBM32-5F CAT ATG GCT AGC GCA TTA CCT CAA GGA AAT CBM32-5

CBM32-6F CAT ATG GCT AGC GAA AAC CTA GCT ATG AAA G CBM32-6

CBM32-1R GAA TTC CTC GAG TTA ACC AAA TAC ATT TAT TTC CBM32-1

CBM32-2R GAA TTC CTC GAG TTA ATA TAC CAT TAT TTC TGC CBM32-2

CBM32-3R GAA TTC CTC GAG TTA TGA CAT GGC CTT TAC TTC CBM32-3

CBM32-4R GAA TTC CTC GAG TTA ACT CAT AGC TTT AAT TTC CBM32-4

CBM32-5R GAA TTC CTC GAG TTA TGC AAA TAC ATT TAA TTC CBM32-5

CBM32-6R GAA TTC CTC GAG TTA TCC TTT ATA AAT TTT GAT CBM32-6

doi:10.1371/journal.pone.0033524.t002
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ARP/wARP [42] was able to build almost complete models,

which were completed by manual model building with COOT

[43]. Structural refinement of CBM32-6 (selenium derivative) was

performed with PHENIX [44] refine using simulated annealing

interspersed with manual building in COOT [43]. REFMAC [45]

was used to refine CBM32-4. The structure of CBM32-4 in

complex with GlcNAc-a-1,4-Gal was solved by molecular

replacement using PHASER [46] to find the two molecules in

the asymmetric unit. The model was completed by manual

building with COOT and refinement with REFMAC; TLS

parameters were included in the final refinement cycles of this

structure.

The structure of CBM32-5 in complex with galactose was

solved by molecular replacement using CpCBM32C from

CpGH84C as a search model (PDB id 2j1e [27]) and MOLREP

[47] to find the single molecule in the asymmetric unit. Automated

model building was carried out with ARP/wARP followed by

manual completion with COOT. This structure was used as a

starting point to solve the structures of CBM32-5 in complex with

other sugars. All refinements were carried out using REFMAC.

In all cases, waters were added using COOT:FINDWATERS.

In all datasets 5% of the observations were flagged as ‘‘free’’ and

used to monitor refinement progress. Final models were validated

with MOLPROBITY [48]. Tables 3 and 4 show the data

collection, refinement and final model validation statistics.

Modeling the CBM32-5 tetrasaccharide complex
A 50 ns molecular dynamics (MD) simulation of the tetrasac-

charide, GalNAca1-4(Fuca1-2)Galb1-4GlcNAcb with a reducing

terminal methyl, was performed using the pmemd module of the

AMBER11 software package [49]. The GLYCAM06g [50] force

field was used for the tetrasaccharide parameters while the initial

geometry was obtained from the GLYCAM carbohydrate 3D

structure web tool [51]. The tetrasaccharide was explicitly solvated

with 1724 TIP3P waters [52] and no ions. Minimization was

performed for 20,000 steps, half of which used the conjugate

gradient method followed by the steepest descent method. A

10.050 ns constant pressure MD (NPT) was used to ensure water

and glycan equilibration in which the first 50 ps were used to heat

the system from 5 K to 300 K. The final frame from equilibration

Table 3. X-ray data collection and model refinement statistics for CBM32-5.

Data collection statistics
CBM32-5
galactose

CBM32-5
galNAc

CBM32-5
TnAg

CBM32-5
galNac-b-1,3-gal

Wavelength 1.5418 1.5418 1.5418 1.5418

Beamline MM-002 MM-002 MM-002 MM-002

Space group C2 C2 P212121 P212121

Resolution 20.00-1.55 (1.59-1.55) 30.00-1.90 (1.95-1.90) 20.00-1.70 (1.74-1.70) 20.00-1.75 (1.80-1.75)

Cell dimension
a, b, c (Å)

65.27, 38.32, 53.88
90.00 90.64 90.00

65.82, 37.27, 57.41
90.00,103.51,90.00

31.80, 59.26, 67.43
90.00, 90.00, 90.00

33.80, 56.31, 70.66
90.00, 90.00, 90.00

Rmerge 0.061 (0.0244) 0.067 (0.323) 0.059 (0.314) 0.064 (0.378)

Completeness (%) 99.6 (99.5) 99.3 (97.8) 97.5 (95.2) 97.9 (98.0)

,I/sI. 13.0 (2.1) 11.6 (3.9) 12.0 (3.5) 10.7 (3.2)

Redundancy 3.1 (2.5) 6.1 (6.0) 4.3 (3.8) 4.4 (4.1)

Total reflections 66379 66214 61394 63956

Unique reflections 21421 10778 14287 14448

Refinement statistics

R (%) 18.6 20.4 18.8 19.9

Rfree (%) 22.4 26.5 22.2 24.6

RMSD

Bond lengths (Å) 0.013 0.014 0.012 0.015

Bond angles (u) 1.415 1.380 1.801 1.716

Average B-factors (Å2)

Protein Chain 13.6 28.3 16.4 24.5

Water molecules 28.7 35.5 31.4 33.9

Ligand molecules 15.3 29.0 17.6 58.5

Number of atoms

Protein atoms Chain A 1081 1076 1077 1063

Water molecules 273 141 227 155

Ligand molecules 12 15 21 26

Ramachandran statistics

Most favored (%) 97.9 96.5 96.4 99.3

Additional allowed (%) 1.4 3.5 3.6 0.7

Disallowed (%) 0.7 0 0 0

doi:10.1371/journal.pone.0033524.t003
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was used to start the 50 ns NPT production simulation of the

tetrasaccharide. In all tetrasaccharide simulations an 8.0 Å van

der Waals cutoff was employed, particle mesh Ewald summation

(PME)[53] was used for long range electrostatics, 1,4-scaling

factors were set to unity, and a dielectric of 1.0 were employed.

The Berendsen thermostat was used with a coupling constant of

1.0 ps. Pressure was maintained at 1 atm with a relaxation time of

0.1 ps. The SHAKE [54] algorithm was used to restrain the bonds

to hydrogens reducing the time between steps to 2 fs. Production

frames were collected at every ps and only the production run was

used for further analyses.

The crystal structure of GalNAc-b-Serine bound to the

CBM32-5 was used as a template for modeling the tetrasaccharide

onto the complex. The GalNAc-b from the template crystal

structure and the non-reducing terminal GalNAc-b from the MD

simulation were aligned on the ring atoms (C1, C2, C3, C4, C5

and O5) using the alignment algorithm in VMD [55]. Then the

MD trajectory of the entire tetrasaccharide was combined together

with the template protein coordinates resulting in 50,000

snapshots of the solution tetrasaccharide bound to the crystal

protein coordinates. Clashes were removed using a 2,000 step

minimization, half conjugate gradient and half steepest descent,

for each of the 50,000 complexes where the FF99SB force field

[56] was used for the protein. The modified Onufriev, Bashford

and Case generalized Borne implicit solvent was used [57] to

approximate solvent effects in minimization. All minimizations in

developing the CBM-tetrasaccharide complexes used mixed 1,4-

scaling, which set van der Waals and electrostatic scaling factors to

1.2 and 2.0, respectively, for the protein (consistent with FF99SB)

and unity for the tetrasaccharide (consistent with GLYCAM06).

Additionally, a 12.0 Å long-range van der Waals cutoff was

employed with PME being used for long-range electrostatics.

The final net energy (including GB solvation contributions) of

the CBM-tetrasaccharide complex was used to identify complexes

within 15 kcal/mol of the lowest energy complex. This resulted in

the selection of 42 complexes, which were further minimized using

Table 4. X-ray data collection and model refinement statistics for CBM32-4 and CBM32-6.

Data collection statistics
CBM32-4
Seleno-Methionine

CBM32-4
glcNAc-a-1,4-gal

CBM32-6
Seleno-Methionine

Wavelength 0.9796 1.5418 0.9790

Beamline NSLS X8C MM-002 SSRL BL9-2

Space group P43212 P21212 P43

Resolution 20.00-1.55 (1.64-1.55) 20.00-2.80 (2.87-2.80) 30.00-1.55 (1.63-1.55)

Cell dimension
a, b, c (Å)

53.20, 53.20, 110.60
90.0, 90.0, 90.0

90.0, 90.0, 90.0
89.71, 49.89, 63.17

90.0, 90.0, 90.0
48.81, 48.81, 98.18

Rmerge 0.107 (0.403) 0.143 (0.329) 0.048 (0.377)

Completeness (%) 99.9 (99.8) 93.4 (90.5) 100.0 (100.0)

,I/sI. 18.9 (7.6) 5.6 (2.5) 30.6 (7.6)

Redundancy 16.3 (16.6) 3.6 (3.8) 15.2 (15.2)

Total reflections 389006 25312 505862

Unique reflections 23846 6965 33325

Refinement statistics

R (%) 12.8 28.6 19.6

Rfree (%) 17.3 31.8 23.9

RMSD

Bond lengths (Å) 0.018 0.006 0.011

Bond angles (u) 1.649 1.053 1.294

Average B-factors (Å2)

Protein Chain A 11.1 24.9 22.7

Protein Chain B N/A 19.6 29.6

Water molecules 30.7 23.7 32.5

Ligand N/A 69.5 (A); 33.1 (B) N/A

Number of atoms

Protein atoms Chain A 1064 1097 1017

Protein atoms Chain B N/A 1103 982

Water molecules 261 111 174

Ligand N/A 52 N/A

Ramachandran statistics

Most favored (%) 95.7 92.6 96.9

Additional allowed (%) 4.3 6.3 1.3

Disallowed (%) 0 1.1 1.8

doi:10.1371/journal.pone.0033524.t004

Carbohydrate-Binding by GH89

PLoS ONE | www.plosone.org 13 March 2012 | Volume 7 | Issue 3 | e33524



10,000 steps of conjugate gradient and 10,000 steps of steepest

descent minimization. These new complexes were then ranked

according to their overall system energy and grouped together

using a 1.0 Å cutoff in root mean squared deviation of the heavy

atoms. The models were grouped such that reference structures

were selected starting from the lowest energy and ending at the

highest energy models. Structures grouped from the lowest energy

clusters were excluded from subsequent root mean square

deviation grouping analyses meaning any single representation

could only belong to one group. Ten clusters were identified in

which 60% of the complexes were in the two lowest energy

groupings, 33% in the lowest energy group. Energy decomposition

was performed on these ten clusters using the MMGBSA.py

application in AMBER using the same implicit solvent model as in

the minimizations.

Homology modeling of CBM32-3 and CBM32-2
Structural models of CBM32-3 and CBM32-2 were prepared

using the one-to-one threading function of the Phyre2 server [58].

In both cases, the 1.55 Å resolution structure of CBM32-4 was

used as a template.

Accession Codes
Coordinates and structure factors have been deposited in the

protein data bank with the following accession codes: 4a3z for

CBM32-4 (seleno-methionine labeled), 4a6o for CBM32-4 in

complex with GlcNAc-a-1,4-Gal, 4a41 for CBM32-5 in complex

with galactose, 4aax for CBM32-5 in complex with GalNAc,

4a45 for CBM32-5 in complex with GalNAc-b-1,3-Gal, 4a44 for

CBM32-5 in complex with the Tn Antigen, and 4a42 for

CBM32-6 (seleno-methionine labeled).

Supporting Information

Figure S1 The energy decomposition profiles of resi-
dues within 5.0 Å of the tetrasaccharide, GalNAc-a-
1,4(Fuc-a-1,2)-Gal-b-1,4-GlcNAc, modeled onto the crys-
tal structure of CBM32-5. The non-polar contributions (top),

polar contributions (middle), and net binding contributions

(bottom) are shown on a per-residue basis. While the predominant

interaction is between the protein and GalNAc, the fucose adds

significant non-polar contributions to the binding through residues

Y1395 and N1396.
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