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The tumor microenvironment (TME) not only provides fertile soil for tumor

growth and development but also widely involves immune evasion as well as

the resistance towards therapeutic response. Accumulating interest has been

attracted from the biological function of TME to its effects on patient outcomes

and treatment efficacy. However, the relationship between the TME-related

gene expression profiles and the prognosis of bladder cancer (BLCA) remains

unclear. The TME-related genes expression data of BLCA were collected from

TheCancer Genome Atlas (TCGA) database. NFM algorithmwas used to identify

the distinct molecular pattern based on the significantly different TME-related

genes. LASSO regression and Cox regression analyses were conducted to

identify TME-related gene markers related to the prognosis of BLCA and to

establish a prognostic model. The predictive efficacy of the risk model was

verified through integrated bioinformatics analyses. Herein, 10 TME-related

genes (PFKFB4, P4HB, OR2B6, OCIAD2, OAS1, KCNJ15, AHNAK, RAC3, EMP1,

and PRKY) were identified to construct the prognostic model. The established

risk scores were able to predict outcomes at 1, 3, and 5 years with greater

accuracy than previously known models. Moreover, the risk score was closely

associated with immune cell infiltration and the immunoregulatory genes

including T cell exhaustion markers. Notably, the predictive power of the

model in immunotherapy sensitivity was verified when it was applied to

patients with metastatic urothelial carcinoma (mUC) undergoing
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immunotherapy. In conclusion, TME risk score can function as an independent

prognostic biomarker and a predictor for evaluating immunotherapy response

in BLCA patients, which provides recommendations for improving patients’

response to immunotherapy and promoting personalized tumor

immunotherapy in the future.
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Introduction

Bladder cancer (BLCA) is the most diagnosed malignant

tumor second only to the prostate in the genitourinary system,

and the 11th most common tumor throughout the world (Witjes

et al., 2021). There have been around 573,000 new cases diagnosed

and 213,000 deaths of BLCAworldwide in 2020 (Sung et al., 2021).

The main histologic type of BLCA is urothelial carcinoma (UC),

which constitutes more than 90% of all bladder cancers (Dick et al.,

2020). According to the invasion depth of the bladder wall, BLCA

can be divided into non-muscle invasive bladder cancer (NMIBC)

and muscle-invasive bladder cancer (MIBC). Over 70% of newly

diagnosed BLCA are NMIBC, with a high rate of recurrence but

low mortality (Kamat et al., 2016). However, up to 20–25% of

patients are identified at initial diagnosis as MIBC, accounting for

the cause of most deaths from BLCA (Knowles and Hurst, 2015).

Half of MIBC patients develop distant metastasis within 2 years,

and 60% die within 5 years, despite taking aggressive treatment

(Stein et al., 2001; Madersbacher et al., 2003; Shariat et al., 2006)

Currently, cisplatin-based chemotherapy remains the standard

first-line treatment for patients with inoperable locally advanced

or metastatic urothelial cancer (Witjes et al., 2021). Unfortunately,

almost all patients will eventually progress and die from BLCA

(Lopez-Beltran et al., 2021). Considering the high mutational

burden of BLCA, immunotherapy has become an alternative

treatment for patients with advanced or metastatic UC,

especially immune checkpoint inhibitors (ICIs). Although ICIs

targeting the programmed cell death-1 (PD-1)/programmed death

ligand-1 (PD-L1) axis show a promising result in the treatment of

UC (Sharma et al., 2017b), the rate of partial or complete response

to ICI therapy is only 20–30% in UC patients (Mariathasan et al.,

2018). Thus, it is urgently needed to identify reliable prognostic

biomarkers that can predict clinical outcomes and guide targeted

clinical therapy, so as to improve the prognosis and increase the

proportion of responders to immunotherapy in BLCA.

Recent studies have revealed the significance of the tumor

microenvironment (TME) in tumorigenesis, immune evasion,

and therapeutic response (Casey et al., 2015; Koi and Carethers,

2017; Wu and Dai, 2017; Hinshaw and Shevde, 2019). TME is

mainly composed of immune infiltrating cells, tumor-related

fibroblasts, blood vessels, as well as extracellular matrix

(ECM) and signaling molecules (Tibshirani, 2011; Kulbe et al.,

2012). Tumor cells develop in complex and dynamic TME, which

forms an immunosuppressive microenvironment and leads to

resistance to chemotherapy and targeted therapy (Whiteside,

2008; Hui and Chen, 2015). Notably, studies have shown that the

degree and proportion of tumor-infiltrating cells contribute to

the distinct prognosis of BLCA patients. Immune cells with

immunosuppressive phenotypes such as myeloid-derived

suppressor cells (MDSCs), tolerogenic DCs (tDCs), tumor-

associated macrophages (TAMs), and regulatory T cells (T

regs) accumulate in BLCA (Crispen and Kusmartsev, 2020).

Inflammatory cancer-associated fibroblasts (iCAFs) have

proliferative properties and are significantly associated with a

poor prognosis of BLCA (Chen et al., 2020). The proportion of

CD8+ T cells is significantly associated with the tumor stage of

BLCA and decreases with increasing tumor stage. The increased

level of CD8+ T cells leads to a longer survival time (Wang et al.,

2020), implying that infiltration of immune cells affects the

prognosis of BLCA and may help develop the method to

evaluate the immunotherapy response.

Taken together, these results indicate that acquiring a better

understanding of TME and clarifying the underlying mechanism

is of great significance in evaluating the prognosis and guiding

the treatment of BLCA patients. Consequently, in this study, we

aimed to design a risk signature based on TME-related genes to

predict the response to immunotherapy in BLCA patients.

Materials and methods

Data collection and preprocessing

The RNA-seq (FPKM values) and somatic mutation data

(MuTect2) of BLCA patients were obtained from the TCGA data

portal (https://portal.gdc.cancer.gov/) and the FPKM values were

transformed into TPM values. The clinicopathological

characteristics of the TCGA-BLCA samples were curated from

the cBioportal for Cancer Genomics database (https://www.

cbioportal.org/). The microarray mRNA expression profile of

GSE13507 was downloaded from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/), which was

used as the external validation cohort to verify the reliability of

the TCGA data. The IMvigor210 cohort consisting of mUC

patients treated by ICIs, was obtained through the R package

“IMvigor210CoreBiologies” and was used to predict the
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immunotherapy response in BLCA patients. TME-related genes

were obtained from previous studies (Newman et al., 2015;

Rooney et al., 2015; Becht et al., 2016; Chifman et al., 2016; Li

et al., 2016; Tirosh et al., 2016; Aran et al., 2017), which, after

summarizing, provided 4,061 genes (Supplementary Table S1).

Identification of TME-related differentially
expressed genes

Based on the expression level of the TME-related genes in

TCGA-BLCA cohort, the R package “limma”was used to identify

the differentially expressed genes (DEGs) between tumor tissues

and normal tissues (Ritchie et al., 2015), with criterion set as the

absolute value of log2fold change (|log2FC|) >1 and false

discovery rate (FDR) < 0.05. Heatmap and volcano plots of

DEGs were constructed using the “pheatmap” and “ggplot2” R

package.

Consensus molecular clustering of the
TME-related DEGs by NMF

A total of 1018 TME-related DEGs were gained and a

univariate Cox analysis was performed to select prognostic

genes of TCGA-BLCA cohort (p < 0.01). The consensus

clustering method was applied to classify patients into distinct

molecular patterns according to the prognostic gene expression

matrix. The R package “NMF” under the method of the

brunet algorithm, with nruns setting at 100 and rank from 2 to

10, was conducted to determine the number of clusters and

guarantee the stability of clustering (Gaujoux and Seoighe, 2010).

Estimation of immune cell infiltration

The deconvolution approach- CIBERSORT (http://cibersort.

stanford.edu/), a widely used method of characterizing the cell

composition of complex tissues via an LM22 gene signature

matrix (Newman et al., 2015), was applied to quantify the relative

proportion of 22 distinct immune cell types in the tumor

microenvironment of TCGA-BLCA samples. The sum of

relative percentages of immune cells in each tumor sample is

equal to 1. The results of immune cell infiltration were obtained

through the “CIBERSORT R script v1.03” (CIBERSORT.R).

Construction of the prognostic TME-
related gene signature

The expression data of TME-related DEGs from the TCGA-

BLCA cohort was used in the process of model training. Firstly,

70% of the TCGA-BLCA samples were randomly selected as the

train cohort, and the remaining 30% were selected as the internal

test cohort. The R package “survival” was used to perform the

univariate Cox regression analysis to select the candidate genes

that were significantly related to the prognosis of the train cohort.

Based on the R package “glmnet”, LASSO Cox regression analysis

was performed to minimize the number of the candidate genes

and to avoid overfitting of the model (Friedman et al., 2010;

Tibshirani, 2011). The genes selected by LASSO regression

analysis were under further analysis. Finally, the candidate

genes above were subjected to multivariate Cox regression

analysis and screened out 10 TME-related genes that

construct the best prognostic gene signature. The risk score of

each sample was calculated with the optimized genes based on

the following formula: Risk score � ∑n
i�1Coefi*Xi, where Coefi

is the risk coefficient of each factor calculated by the multivariate

Cox model, and Xi is the expression level of each TME-related

genes.

Establishment and assessment of the
nomogram

Univariate and multivariate Cox regression analyses were

also used to calculate the hazard ratios and pick out independent

prognostic factors. The nomogram combining the significant

factors was plotted using R package “rms” (Zhang and Kattan,

2017). Calibration curve was plotted to evaluate the performance

of the nomogram (Vickers et al., 2019). Moreover, decision curve

analysis (DCA) was employed to measure the clinical utility of

the nomogram compared to different decision strategies (Vickers

and Holland, 2021). The x-axis indicates the percentage of

threshold probability, and the y-axis represents the net benefit.

Comparison of different BLCA prognostic
models

Besides comparing the prognostic value of the TME-related

gene signature with other clinical parameters, we also

downloaded four prognostic gene signatures of BLCA from

the previous literature to demonstrate that the model had a

better clinical utility. Then, the concordance index (C-index) and

restricted mean survival (RMS) curve were used for the

estimation of our model compared with the other gene

signatures.

Gene Set Enrichment Analysis

GSEA was performed to explore different pathways between

the high and low-risk groups. Gene ontology gene sets “c2.

cp.kegg.v7.4. symbols.gmt” were downloaded from Molecular

Signatures Database (MSigDB, https://www.gsea-msigdb.org/
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gsea/msigdb/index.jsp) for enrichment analysis. The enriched

gene sets with p-value less than 0.05 were considered to be

statistically significant.

Prediction of immunotherapy sensitivity

The immunophenoscore (IPS) of TCGA-BLCA was

downloaded from The Cancer Immunome Atlas (TCIA,

https://tcia.at/home). The TIDE score of each sample was

calculated after submitting the normalized expression data to

the website of tumor immune dysfunction and exclusion (TIDE,

http://tide.dfci.harvard.edu/). The immunotherapy response of

patients could be inferred by the TIDE score and IPS. In general,

a higher IPS and lower TIDE score are considered as a better

response to immunotherapy. The number of predicted

neoantigens of TCGA-BLCA samples was gained from a

published article (Rooney et al., 2015). Moreover, an

independent anti-PD-L1 immunotherapy cohort,

IMvigor210 was applied to confirm the predictive value of the

TME-related gene signature.

Statistical analysis

The statistical analyses in our study were performed using R

(version 4.1.0) software. Statistical significance was set at a

probability value of p-value<0.05. For comparisons of the two

groups, Wilcoxon test was used as a nonparametric method.

Spearman’s correlation test was applied to evaluate relationships

between two variables. The Kaplan-Meier survival curves were

built to evaluate survival differences based on the R package

“Survminer”. The receiver operating characteristic (ROC) curve

was generated to assess the prognosis classification performance

of the TME-related model, and the area under the curve (AUC)

was calculated using R package “timeROC”. The C-index and

RMS cure were performed using the “survival” and “survcomp”

packages. In terms of each test, a p-value <0.05 suggested a

significant difference. *p-value <0.05, **p-value <0.01, and

***p-value <0.001 express statistically significant characteristics.

Results

Identification of TME-related DEGs in
TCGA-BLCA

The flow chart describing our study is shown in

Supplementary Figure S1. A total of 1018 TME-related genes

were identified as DEGs in tumor tissues when compared with

normal tissues (Supplementary Table S2). The heatmap and

volcano plots were made (Supplementary Figures S2A, B).

Among the TME-related DEGs, 773 genes were found to be

significantly up-regulated, while 245 genes were found to be

significantly down-regulated.

Recognition of different molecular
clusters mediated by TME-related genes

In the expression matrix of the whole TCGA-BLCA samples

with 1,018 genes, 105 prognostic TME-related genes were

obtained by univariate Cox analysis. We included the

prognostic genes to stratify samples with different TME

clustering properties using consensus clustering analysis of the

NMF algorithm. As shown in Supplementary Figures S3, S4, two

clusters could achieve the best clustering efficacy. Accordingly,

we identified two distinct molecular patterns, involving 191 cases

in cluster 1 and 214 cases in cluster 2 (Figure 1A). Between the

two clusters, cluster 1 exhibited a prominent survival advantage

in OS and PFS, whereas cluster 2 had a bad prognosis in the

TCGA-BLCA cohort (log-rank test, both of p < 0.001;

Figures 1B,C).

Additionally, immune subtypes (C1-C6) based on the

transcriptomic profiles of TCGA database, a new global immune

classification of solid tumors (Thorsson et al., 2019), were used to

observe the subtype distribution between the above two clusters. The

alluvial diagram showed the distribution of cases between immune

subtypes and two clusters (Figure 1D). To visualize the immune cell

infiltration in the TME, we compared the TME composition of two

distinct TME clusters to clarify the differences between the two

clusters. The infiltration levels of CD8+ T cells, follicular helper

T cells, and activated dendritic cells were significantly higher in

cluster 1. Patients in cluster 1 were characterized by a significantly

higher infiltration level of resting memory CD4+ T cells, non-

activated Macrophages (M0) and anti-inflammatory

Macrophages (M2), and resting mast cells (Figure 1E).

Establishment of the prognostic TME-
related gene signature

The TCGA-BLCA samples were randomly divided into the

train (70%, n = 286) and internal test (30%, n = 120) cohorts, and

there were no significant differences in gender, age, histological

subtype, tumor stage, grade, and event between the train and

validation cohorts (Table 1). We applied LASSO and Cox

regression analyses to further narrow the range of prognostic

genes, and finally, constructed a TME-related gene signature

involving 10 genes in the train cohort. We also analyzed the

whole landscape of genetic alterations of these 10 TME-related

genes, including the CNV variation frequency (Supplementary

Figure S5A), the gene mutation frequency (Supplementary

Figure S5B, and the correlation analysis between the TME-

related genes expression and DNA methylation level

(Supplementary Figures S5C–K). The results of LASSO
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analysis were shown in Figures 2A,B. Risk score for each patient

was calculated as follows:

risk score � PFKFB4 expressionp0.156 + P4HBexpressionp0.370+
OR2B6 expressionp(−0.528) + OCIAD2 expressionp(−0.298)+
OAS1 expressionp(−0.226) +KCNJ15 expressionp(−0.105)+
AHNAKexpressionp0.210 + RAC3 expressionp0.223+
EMP1 expressionp0.150 + PRKY expressionp(−0.141).

Using the median risk score in the train cohort as the cutoff point,

the patients were divided into low-risk and high-risk groups. KM

survival analysis indicated that the low-risk group had better overall

survival than the high-risk group (log-rank test, p< 0.001) (Figure 2C),

and time-dependent ROC analysis showed that the predictive accuracy

of the TME-related gene signature was 0.784 at 1 year, 0.754 at 3 years

and 0.788 at 5 years in the train cohort (Figure 2D). We further assess

the predictive value of the TME-related gene signature in the internal

test cohort, the whole TCGA cohort, and an independent external

cohort. The results from the above data (test cohort, TCGA cohort and

GSE13507 cohort) shared the same trend in survival, with great

significance (log-rank test, p = 0.001, p < 0.001 and p = 0.006), and

the AUC was 0.611, 0.741, and 0.673 at 1 year; 0.613, 0.714, and

0.625 at 3 years; and 0.664, 0.752 and 0.594 at 5 years, respectively

(Figures 2E–J). Meanwhile, we also performed the Kaplan-Meier

survival analyses for patients with different clinical characteristics in

TCGA-BLCA cohort (Supplementary Figures S6A–F). By comparing

risk scores betweendifferent clinical characteristics, we found that some

clinical factors indicating poor prognosis were strongly associated with

a higher risk score, including older age, more advanced tumor stage,

and so on (Supplementary Figures S7A–H).

Establishment and assessment of the
nomogram

To validate the predictive efficiency of the gene signature

in TCGA-BLCA cohort, we included risk score and several

FIGURE 1
Comparison of the two clusters 1 and 2 (C1 and C2) in TCGA-BLCA cohort. (A) Consensus map clustered via the non-negative matrix
factorization (NMF) algorithm. (B,C) Overall survival (OS) and progression-free survival (PFS) showed significant differences. (D) Percentage of the
immune subtypes accounting for each of the two clusters. (E) The fraction of tumor-infiltrating immune cells in the two clusters using the
CIBERSORT algorithm (*p < 0.05; **p < 0.01; ***p < 0.001).
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clinicopathological characteristics into the univariate and

multivariate analyses. Univariate Cox regression analysis

indicated that age (HR = 1.03, 95%CI 1.02–1.05, p < 0.001),

subtype (HR = 1.47, 95%CI 1.02–2.14, p < 0.001), T (HR =

2.16, 95%CI 1.47–3.18, p < 0.001), N (HR = 2.19, 95%CI

1.60–3.00, p < 0.001), M (HR = 1.52, 95%CI 1.11–2.09, p =

0.01), stage (HR = 2.48, 95%CI 1.62–3.8, p < 0.001) and risk

score (HR = 2.45, 95%CI 1.71–3.51, p < 0.001) were

significantly correlated with OS (Figure 3A). Subsequent

multivariate Cox regression analyses showed that age

(HR = 1.03, 95%CI 1.01–1.04, p < 0.001), N (HR = 1.73,

95%CI 1.23–2.42, p < 0.001) and risk score (HR = 2.45, 95%CI

1.71–3.51, p < 0.001) were still confirmed as independent

factors for OS (Figure 3B). Next, we developed a nomogram

based on the above 3 variables to improve the clinical

practicability of the model (Figure 3C). The calibration

graph of nomogram exhibited a high consistency between

the observed probability of 1-,3- and 5-year OS and the

nomogram-predicted probability (Figure 3D). Furthermore,

using the decision curve (DCA), we found that nomogram had

higher predictive efficiency for OS than other relevant clinical

parameters (Figure 3E). Meanwhile, multivariable ROC curve

showed that the AUC of the nomogram was the highest

compared with others (AUC = 0.752) (Figure 3F).

Comparison of different BLCA prognostic
models

To further assess the survival classification and predictive

performance of the model, we not only compared the prognostic

value of the TME-related gene signature with other clinical

parameters but also compared the predictive efficiency of four

published prognostic models of BLCA. Cao signature was an

EMT-related gene signature for BLCA (Cao et al., 2020); Zhang

signature was a glycolysis-based gene signature (Zhang et al.,

2020); Yin signature was a gene signature consisting of

13 mRNAs (Yin et al., 2020), and Chen signature was a gene

signature derived from microarray data of BLCA (Chen et al.,

2019). Both KM survival method and ROC curve were used to

observe the predictive performance of the above gene signatures.

The results of KM survival curves from the above gene signature

(TME signature, Cao signature, Zhang signature, Yin signature

and Chen signature) had the same trend in survival, with great

significance (log-rank test, p < 0.001, p < 0.001, p = 0.025 and p =

0.003), and the AUC was 0.741, 0.639, 0.586, 0.597 and 0.612 at

1 year; 0.714, 0.606, 0.601, 0.617 and 0.577 at 3 years; and 0.752,

0.602, 0.609, 0.605 and 0.567 at 5 years, respectively (Figures

4A–E). When quantifying the predictive accuracy of each gene

signature, it was evident that the C-index for TME signature

TABLE 1 The clinical characteristics of the train cohort and validation cohort.

Clinical characteristics Train cohort Validation cohort p-value

Gender Female 73 (25.52%) 33 (27.5%) 0.772

Male 213 (74.48%) 87 (72.5%)

Age ≤65 113 (39.51%) 47 (39.17%) 1

>65 173 (60.49%) 73 (60.83%)

Histological subtype Non-Papillary 193 (67.48%) 78 (65%) 0.3141

Papillary 91 (31.82%) 39 (32.5%)

unknown 2 (0.7%) 3 (2.5%)

Tumor stage Stage I 0 (0%) 2 (1.67%) 0.211

Stage II 90 (31.47%) 39 (32.5%)

Stage III 101 (35.31%) 39 (32.5%)

Stage IV 93 (32.52%) 40 (33.33%)

unknown 2 (0.7%) 0 (0%)

Grade High Grade 269 (94.06%) 113 (94.17%) 0.9849

Low Grade 15 (5.24%) 6 (5%)

unknown 2 (0.7%) 1 (0.83%)

Event Censored 161 (56.29%) 67 (55.83%) 1

Dead 125 (43.71%) 53 (44.17%)
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(C-index = 0.689), as well as the RMS survival curves, were more

favorable than others (C-index 0.615, 0.581, 0.574, and 0.586 for

Cao signature, Yin signature, Zhang signature, and Chen

signature) (Figures 4F,G).

Gene set enrichment analysis between
high and low-risk groups

GSEA was conducted to explore the underlying biological

process between the high-risk and low-risk patients stratified

by the TME signature. We found that the top five KEGG

pathways including cytokine-cytokine receptor interaction,

ECM receptor interaction, focal adhesion, pathways in

cancer, and regulation of actin cytoskeleton were

significantly increased in the high-risk group (Figure 5A),

while the ascorbate and aldarate metabolism,

drug_metabolism_cytochrome_P450, metabolism of

xenobiotics by cytochrome P450, pentose and glucuronate

interconversions and porphyrin and chlorophyll metabolism

were significantly increased in the low-risk group

(Figure 5B).

FIGURE 2
Construction and validation of the TME-related 10-gene risk score (RS). (A,B) LASSO regression analysis and partial likelihood deviance on the
prognostic genes. (C, D) Kaplan-Meier survival curves and ROC curve for TCGA train cohort. (E,F) Kaplan-Meier survival curves and the ROC curve for
TCGA test cohort. (G, H) Kaplan-Meier survival curves and ROC curve for the whole TCGA cohort. (I,J) Kaplan-Meier survival curves and ROC curve
for GSE13507 cohort.
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FIGURE 3
Clinical value of the TME-related prognostic model. (A, B) Univariate and multivariate Cox regression applied to analyze the relationship
between the risk score and clinical prognosis. (C)Nomogram predicting the 3- and 5-year OS for patients. (D) Calibration curves for the nomogram
predicted 3- and 5-year OS for patients in relation to actual survival. (E) Decision curve analysis (DCA) curves evaluated the clinical benefit of the
nomograms and their potential scope of application. (F) ROC curves of the nomograms compared with other clinical variables.
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The relationship of the TME-related gene
signature with immune cells infiltration
and immunoregulatory genes

To explore the influence of the prognosticmodel on immune cells

infiltration, we estimated the proportion of 22 types of infiltrating

immune cells based on the CIBERSORT algorithm. Next, we

compared the proportional differences of each type of immune cell

between the high-risk and the low-risk group and investigated the

association between risk score and immune cells infiltration. Samples

in the low-risk group had a significant increase in the levels of CD8+

T cells and plasma cells and a significant decrease in the fraction of

M0 macrophages and M2 macrophages (Figure 6A). Meanwhile,

correlation analysis indicated that the risk score was negatively

correlated with CD8+ T cells, plasma cells, follicular helper T cells,

and M1 macrophages but positively correlated with CD4+ naïve

T cells, M0 macrophages, and M2 macrophages (Figures 6B,C).

Furthermore, we investigated the immunoregulatory genes

expression between the high-risk and the low-risk group, including

the gene sets of MHC, immunosuppression, and immune activation.

Consequently, we found that most of the immunoregulatory genes,

such as the T cell exhaustion markers (PDCD1/PD1, CTLA4, TIM3,

FIGURE 4
Comparison of the 10-gene risk model with other established models. (A–E) Kaplan-Meier survival curves and ROC curve of TME gene
signature with four other published gene signatures. (F)Concordance index (C-index) of the five prognostic risk models. (G) Restrictedmean survival
(RMS) time curve of the five prognostic risk models.
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FIGURE 5
Gene Set Enrichment Analysis of the TME gene signature in TCGA-BLCA cohort. (A) The enriched gene sets in high-risk group (nominal p <
0.05). (B) The enriched gene sets in low-risk group (nominal p < 0.05).
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LAG3, VSIR, and TIGIT), were highly expressed in the high-risk

group compared to the low-risk group (Figures 6D–F). To explain the

relationship between risk score and commonly used biomarkers for

predicting immunotherapy response, correlation analyses were

performed. The results showed that the risk score negatively

correlated with MSI and positively correlated with some classical

immune checkpoints, but all of these relationships were weak

(Supplementary Figures S8A–I).

Prediction of immunotherapy sensitivity
via TME-related gene signature

Immune checkpoints are important regulators of the

immune system, which maintain immune homeostasis and

regulate immune responses. Immunotherapy, represented by

PD-L1/PD-1 inhibitors, is of great value in cancer treatment

and has become an important way in antitumor therapy recently.

FIGURE 6
The relationship between the risk score and the TME in TCGA-BLCA cohort. (A) The fraction of tumor-infiltrating immune cells between the
high and low-risk groups. (B) The correlation analysis between risk score and tumor-infiltrating immune cells. (C) The correlation analysis among risk
score, immune cells, and TMB. (D–F) The differences in the expression of immunoregulatory genes. (*p < 0.05, **p < 0.01, ***p < 0.001).
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The newly identified indicators, such as IPS, TIDE score, and

predicted neoantigens, were used to evaluate the possibility of

immunotherapy response in TCGA-BLCA samples.

Accordingly, we found that the IPS was significantly elevated

in the low-risk group (Figure 7A), and TIDE score which

positively correlated with the risk score (Figure 7C) was

FIGURE 7
Prediction of immunotherapeutic benefits using the risk score. In TCGA-BLCA cohort, (A) the relative distribution of the immunophenoscore
(IPS) between the high and low-risk groups. (B) The difference of the predicted neoantigens in the high and low-risk groups. (C, D) The correlation
analysis between risk score and TIDE score, and the comparison of the TIDE score in the high and low-risk groups. (E) The proportion of patients with
response to immunotherapy in high or low-risk groups. In IMvigor210 cohort, (F) Kaplan-Meier survival curves for high and low-risk groups. (G)
The comparison of the risk score between mUC patients with different clinical responses (CR/PR and SD/PD). (H) The proportion of patients with
clinical response to anti-PD-L1 immunotherapy in high or low-risk groups. CR, complete response; PR, partial response; SD, stable disease; PD,
progressive disease.
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significantly decreased in the low-risk group (Figure 7D).

Although there was no significant difference in the expression

of predicted neoantigens between the two groups, the violin plot

showed a trend that the expression of neoantigens increased in

the low-risk group (Figure 7B). Meanwhile, we also found that

patients in the low-risk group would be more likely to respond to

immunotherapy compared to the high-risk group (response rate:

36 vs. 19%) (Figure 7E). These findings indirectly demonstrated

that low-risk patients could benefit more from immunotherapy.

To determine whether the risk score could predict response

to immunotherapy in BLCA, we further analyzed an anti-PD-

L1 immunotherapy cohort- IMvigor210. Similarly, patients in

IMvigor210 cohort were classified into the high-risk and the low-

risk group by the median risk score. A consistent result was

observed in IMvigor210 cohort, patients in the low-risk group

had a significantly prolonged OS (log-rank test, p = 0.015)

(Figure 7F), and patients with responses to anti-PD-

L1 treatment exhibited lower risk score in the

IMvigor210 cohort (p = 0.05) (Figure 7G). In addition,

patients in the low-risk group exhibited a higher objective

response rate (CR/PR) to anti-PD-L1 immunotherapy than

those in the high-risk group (Figure 7H). These results

strongly indicated that the TME risk score is significantly

associated with anti-PD-L1 immunotherapy responses and can

help to predict the anti-PD-L1 immunotherapy response

in BLCA.

Discussion

Although immunotherapy brings new hope to patients

with advanced cancer, only 20–40% of patients respond to

immunotherapy (Sharma et al., 2017a). Rather than only

focusing on tumor cells themselves, a growing number of

studies have turned their attention to the TME, an

environment around tumor composed of immune

components, blood vessels, extracellular matrix, and

signaling molecules (Tsai et al., 2014). Growing evidence

has shown that TME has a significant impact on the growth

and development of cancerous cells, and affects the

response to immunotherapy (Murciano-Goroff et al.,

2020).

First, we included 413 BLCA samples and 4061 TME-

related genes from TCGA database. Two molecular clusters

were established by the NMF method, which has become a

widely used tool for the analysis of high-dimensional data.

Next, we compared the proportion of infiltrating immune

cells between the two clusters. Previous studies have shown

that dendritic cells (DCs) are antigen-presenting cells and

responsible for the initiation of adaptive immune responses

through interacting with T cells and B cells. As members of

the immune system, T cells, composed of two main subtypes

of CD4+ and CD8+ T cells, play a central role in the adaptive

immune response. CD4+ T cells, also known as T helper cells,

mediate the humoral immunity and can further differentiate

into follicular helper T cells (Tfhs) and regulatory T cells

(Tregs) after being activated. Tfhs are responsible for

cooperating with B cells to promote and regulate humoral

immune responses (Jia et al., 2015), and the infiltration of

Tfhs can increase the survival of cancer patients (Nurieva

et al., 2019). Tregs have the capacity to maintain the balance

of immune responses; but in tumors, they suppress

antitumor effects of immune cells, and thus are

considered to correlate with tumor escape from the host

immune system (Whiteside, 2014). CD8+ T cells, another

subtype of T cells, play a crucial role in the host response to

antitumor immunity through their cytotoxicity effect to kill

tumor cells, and they are thought to be an important reason

for the success of cancer immunotherapy (Raskov et al.,

2021). In our study, cluster 1 with a better prognosis has

higher infiltration levels of CD8+ T cells, follicular helper

T cells, and activated dendritic cells (DCs). The results

indicated that with the help of DCs, the infiltration of

activated CD8+ T cells and Tfh can improve BLCA

survival, which is consistent with previous studies (Shi

et al., 2018; Winerdal et al., 2018). Macrophages,

including M1 and M2 macrophages, are mainly involved

in innate immunity and help initiate adaptive immunity

(Hao et al., 2012). M1 macrophages, representing the

antitumor activity, mainly produce proinflammatory

factors to induce inflammation which leads to antitumor

reaction. Whereas M2 macrophages, as another type of

tumor-associated macrophages (TAMs), suppress the

immune response by secreting inhibitory cytokines, thus

promoting tumor progression (Chanmee et al., 2014; Lin

et al., 2019). In line with previous research, our study found

that infiltration of M2 macrophages was higher in cluster

2 with poor survival, suggesting that an increasing

infiltration of M2 macrophage can be a risk factor for

poor prognosis in BLCA.

Next, we observed the distribution of immune subtypes

between the two clusters. The immune subtypes have six

distinct immune subtypes, including Wound Healing (C1),

IFN-gamma Dominant (C2), Inflammatory (C3),

Lymphocyte Depleted (C4), Immunologically quiet (C5), and

TGF-beta Dominant (C6). In our study, C2 IFN-g Dominant

was particularly dominant in cluster 1, which presented a high

CD8 T cell population and the greatest T-cell receptor (TCR)

diversity (Soldevilla et al., 2019). However, cluster 2 had a

higher proportion of C4 Lymphocyte Depleted than cluster 1,

which could be associated with a high M2macrophage response

and indicate poor outcome (Soldevilla et al., 2019). These

results above may explain the reason for the better prognosis

of cluster 1.

We constructed a 10-gene risk model (PFKFB4, P4HB,

OR2B6, OCIAD2, OAS1, KCNJ15, AHNAK, RAC3, EMP1,
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and PRKY) associated with the prognosis of BLCA patients.

Researchers have demonstrated that higher expression of

PFKFB4 is associated with poor prognosis and more

frequent presence of metastases, including BLCA and other

malignancies (Kotowski et al., 2021). High expression of

P4HB has been observed in BLCA cell lines, knockdown of

which can inhibit the invasion and proliferation of cancer cells

(Lyu et al., 2020). Several studies have constructed prognosis

models with OAS1, AHNAK, and other BLCA genes, which

show the same trend as our analysis (Qiu et al., 2020; Guo

et al., 2021; Jin et al., 2021). As for RAC3, one study has

reported that it plays an oncogenic role to activate JAK/STAT

signaling via up-regulation of PYCR1 in the BLCA cells

(Cheng et al., 2020). Furthermore, we combined the TME

prognostic signature with other clinicopathological prognostic factors

to build a predictive nomogrammodel, which could offer an effective

way for treatment planning and improving the overall outcome of

BLCA patients. ROC curve and DCA confirmed that our model

could accurately evaluate the prognosis of patients. When we

compared our risk model with other prognosis risk signatures

from Cao et al., Zhang et al., Yin et al. and Chen et al., the

C-index demonstrated the highest AUC of our model. These

results indicate that the overall performance of our proposed

model is superior to others.

Considering the complexity between tumor growth and

TME, we further explored the relationship between risk score

and immune infiltration, and immune regulatory genes. We

found that the risk score was negatively correlated with CD8+

T cell, Tfhs, and M1 macrophage, which were confirmed to play

an anti-tumor role in cancer, while it was positively associated

withM2macrophage which inhibited the immune response. As a

CD4+ T cell subset, Tfhs are essential for promoting humoral

immune responses mediated by B cells, and can produce a

negative or positive prognostic effect on multiple cancer types.

A recent study has indicated that the accumulation of Tfh cells

plays an important role in the CD8+-dependent antitumor

immunity and anti-PD-L1 efficacy. The absence of Tfh cells is

associated with the CD8+ T cell dysfunction, which leads to the

resistance to anti-PD-L1 therapy (Niogret et al., 2021).

Furthermore, during chronic infections and cancer, exposure

to persistent antigens can lead to the state of T cells dysfunction,

which is termed T cell exhaustion (Saeidi et al., 2018). Our results

showed that the high-risk group with poor survival had a higher

expression of T cell exhaustion markers, such as PDCD1/PD1,

CTLA4, TIM3, LAG3, VSIR and TIGIT, which lead to tumor

immune evasion.

Recent studies have shown that the high mutational burden

of BLCA renders it susceptible to immunotherapy (Weinstein

et al., 2014), particularly the immune checkpoint inhibitors.

Unlike chemotherapy acting directly on cancerous tumors,

immunotherapy works by enhancing the capacity of the

immune system to fight against tumors, which has been

approved to be the second-line treatment for advanced

bladder cancer (Bellmunt et al., 2017). Besides the widely used

PD-L1, MSI and TMB, we used two independent methods, IPS

analysis and TIDE algorithm, to predict the response of TCGA-

BLCA patients to ICIs. The results showed that IPS was

significantly increased in the low-risk group while the TIDE

score significantly decreased. And TIDE algorithm also indicated

that the low-risk group appeared to present with a high rate of

responder to ICIs immunotherapy. Both findings support the

potential of the TME gene model to determine the

immunotherapy sensitivity for TCGA-BLCA patients.

IMvigor210 was a large phase 2 clinical trial in mUC that

tested the efficacy and safety of atezolizumab which is the

FDA approved PD-L1 inhibitor for BCa treatment. Notably,

the performance of TME-related gene signature we developed

was confirmed in mUC, which further demonstrated its value in

predicting the immunotherapy response of BLCA patients.

There are also several limitations in our study. As this is a

retrospective study based on the published data, the results

should be further verified in prospective clinical trials.

Moreover, the underlying mechanisms of how these TME-

related genes in our risk model regulate the process of BLCA

are still unclear. Their biological functions require further

exploration with experiments.

Conclusion

Our results demonstrated that TME-related gene signature

shows potential roles in the prediction of prognosis and

immunotherapy response in BLCA patients. In addition, the risk

model is remarkably associated with immune cells infiltration and

modulates the T cell function in BLCA, implying the potential role in

predicting immunotherapy response. Therefore, the TME-related

gene signature can provide recommendations for improving patients’

response to immunotherapy and promote personalized tumor

immunotherapy in the future.
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