
Age-related macular degeneration (AMD) is the primary 
cause of visual loss in developed countries [1-3]. In particular, 
neovascular AMD, characterized by choroidal neovascular-
ization (CNV), is responsible for most cases of severe vision 
loss due to AMD [4,5]. CNV formation occurs through 
multifactorial processes involving the complex interaction of 
metabolic, genetic, and environmental factors. In particular, 
recent basic [6, 7] and clinical [8-10] investigations have 
provided strong evidence that growth factors and cytokines, 
such as vascular endothelial growth factor (VEGF), play a 
pivotal role in the process of pathological angiogenesis.

The cytokine VEGF had long been considered a proan-
giogenic factor, but Bates and his colleagues identified 
antiangiogenic VEGF isoforms, VEGFxxxb (xxx denotes 
the number of amino acids), generated as a result of distal 
splice site selection in exon 8 (i.e., exon 8b) during alternative 
splicing of VEGF messenger RNA precursor (pre-mRNA) 
[11]. Pro- and antiangiogenic VEGF isoforms are generated 
from the same VEGF gene via alternative splicing of mRNA. 
The alternative splicing of VEGF pre-mRNA is regulated by 

splicing regulatory factors, including various serine/arginine-
rich (SR) proteins [12]. Previous studies have shown that 
SR protein kinase (SRPK) activates SRSF1 (SF2/ASF) and 
SRSF5 (SRp40), both of which favor splicing site selection at 
exon 8a during the splicing of VEGF pre-mRNA, and conse-
quently lead to upregulation of proangiogenic VEGF isoforms 
[13]. We have developed a specific inhibitor for SRPK, 
SRPIN340 [14], and inhibition of SRPK with SRPIN340 
suppressed retinal angiogenesis by reducing the ratio of 
proangiogenic to total VEGF isoforms at the mRNA level 
[15]. In this study, we investigated the therapeutic effect of 
SRPIN340 on CNV using the laser photocoagulation model 
and found that SRPIN340 suppressed Vegf expression and 
attenuated CNV formation.

METHODS

Animals and induction of choroidal neovascularization: 
Eight-week-old C57BL/6J male mice (CLEA Japan, Tokyo, 
Japan) were used for this study. All animal experiments 
were approved by the Hokkaido University Animal Use 
Committee and conducted in accordance with the Associa-
tion for Research in Vision and Ophthalmology Statement 
for the Use of Animals in Ophthalmic and Vision Research. 
Anesthesia was induced by intraperitoneal injection of pento-
barbital (0.05 mg/g bodyweight), and pupils were dilated with 
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topical 5% phenylephrine hydrochloride and 5% tropicamide. 
After anesthesia induction and pupil dilation, four laser spots 
were placed around the optic disc (532 nm, 200 mW power, 
0.1 s, 75 μm spot size, Novus Spectra; Lumineis, Tokyo, 
Japan) using a slit-lamp delivery system with a cover glass as 
a contact lens. Laser spots with vitreous, retinal, or subretinal 
hemorrhage were excluded from the analysis.

Serine/arginine-rich protein kinase inhibitor: SRPIN340, 
an isonicotinamide compound, N-[2-(1-piperidinyl)-5-
(trifluoromethyl)phenyl] (Figure 1), was found in a screening 
for chemicals specifically inhibiting SRPK to suppress the 
acute replication of viruses such as human immunodefi-
ciency virus, using a scintillation proximity assay with a 
synthetic RS-repeat peptide as the substrate [16]. For SRPKs, 
SRPIN340 selectively inhibits SRPK1 and SRPK2 but does 
not inhibit other classes of SRPKs significantly, including 
Clk1 and Clk4 [14].

SRPIN340 treatment: SRPIN340 (50 mM in 100% dimethyl 
sulfoxide, DMSO) was diluted with phosphate buffered saline 
(PBS, potassium chloride, 2.68 mM; potassium phosphate 
monobasic, 1.47 mM; sodium chloride, 136.89 mM; sodium 
phosphate dibasic, 8.10 mM) to various concentrations in 
0.1% DMSO before treatment. Mice were divided into five 
groups: CNV induction alone (the control group) and CNV 
induction with 1 μl intravitreal injection of either 0.1% 
DMSO, 0.2 pmol, 2 pmol, or 20 pmol SRPIN340. Intravitreal 
injection was performed using a 33-gauge needle (Extreme 
Microsyringe, Ito Corporation, Tokyo, Japan) immediately 
after laser photocoagulation.

Measurement of choroidal neovascularization: Seven days 
after laser injury, mice were euthanized with an overdose 
of anesthesia, performed by intraperitoneal injection with 
2 mL of 5% pentobarbital sodium, and perfused with 5 mL 
PBS through the left ventricle, followed by 2.5 mL of 0.5% 
fluorescein-isothiocyanate-labeled dextran (Sigma-Aldrich, 
St. Louis, MO) in 1% gelatin. Subsequently, the eyes were 
enucleated and fixed with 2% paraformaldehyde for 30 min. 

Flat mounts of retinal pigment epithelium (RPE)-choroid 
complex were obtained by removing the anterior segments 
and the neural retina. Four to six radial relaxing incisions 
were made to allow the residual posterior eyecup to be laid 
flat. After mounting with the Vectashield Mounting Medium 
(Vector Laboratories, Burlingame, CA) and coverage with a 
coverslip, the flat mounts were examined with a fluorescence 
microscope (Biorevo, Keyence, Tokyo, Japan), and the CNV 
area was measured and used for the evaluation.

RNA extraction and real-time polymerase chain reaction: 
Total RNA was extracted from the RPE-choroid complex 3 
days after the laser photocoagulation procedure combined 
with intravitreal injection of either 1 μl of 0.1% DMSO or 
SRPIN340, following euthanasia by intraperitoneal injec-
tion of overdose pentobarbital (0.15 mg/g bodyweight) using 
TRIzol Reagent (Life Technologies, Carlsbad, CA). Reverse 
transcription was performed with GoScrip Reverse Tran-
scriptase (Promega, Madison, WI) and oligo dT(20) primers 
following the manufacturer’s instructions. The primers used 
in this study are summarized in Table 1 [15]. The TaqMan 
probe for F4/80 was purchased from Life Technologies. Real-
time PCR was performed using the GoTaq qPCR Master Mix 
(Promega), THUNDERBIRD Probe qPCR Mix (TOYOBO, 
Tokyo, Japan), and StepOnePlus Real-Time PCR System 

Figure 1. Structure of SRPIN340.

Table 1. Primer sequences.

Gene Sequence (5’-3’)
Vegf F: AAGGAGAGCAGA AGTCCCATGA
 R: CTCAATCGGACGGCAGTAGCT
Vegf containing exon 8a F: GTTCAGAGCGGAGAAAGCAT
 R: TCACATCTGCAAGTACGTTCG
Actb F: CATCCGTAAAGACCTCTATGCCAAC
 R: ATGGAGCCACCGATCCACA

Vegf, vascular endothelial growth factor; Actb, beta-actin
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(Life Technologies). Actb was used as endogenous control. 
Threshold cycle (CT) was determined automatically, and rela-
tive change in mRNA expression was calculated using the 
ΔΔCT values as previously reported [17]. All PCR reactions 
were repeated in triplicate, and the average values were used 
in the statistical analysis.

Quantification of infiltrating macrophages: Immunostaining 
of F4/80 was also performed to further quantify the infiltra-
tion of macrophages. Briefly, eyes were enucleated 3 days 
after the laser photocoagulation in combined with 1 μl intra-
vitreal injection of either 0.1% DMSO or 20 pmol SRPIN340, 
and whole choroid-sclera complexes were incubated overnight 
at 4 °C with a rabbit polyclonal antibody against mouse CD31 
(1:100 dilution; Abcam, Tokyo, Japan) and a rat polyclonal 
antibody against F4/80 (1:100 dilution; Serotec, Oxford, 
UK) as primary antibodies, respectively. Binding of primary 
antibody was localized with Alexa Fluor 488 goat anti-rabbit 
and Alexa Fluor 546 goat anti-rat secondary antibody (1:200 
dilution, respectively; Life Technologies). Finally, slides 
were mounted with Vectashield Mounting Medium (Vector 
Laboratories), and CNV was viewed with a fluorescence 

microscope (Biorevo, Keyence). The CD31-stained area of 
CNV and F4/80-positive macrophages were evaluated, and 
the area-adjusted number of macrophages per 1,000 μm2 area 
of CNV was calculated.

Enzyme-linked immunosorbent assay: Four laser lesions were 
placed in each eye, and an intravitreal injection of either 1 μl 
of 0.1% DMSO or SRPIN340 was also administered. Protein 
levels of VEGF, monocyte chemoattractant protein (MCP)-1, 
and intercellular adhesion molecule (ICAM)-1 in supernatant 
were determined using enzyme-linked immunosorbent assay 
kits (R&D Systems, Minneapolis, MN) and normalized to 
total protein (BCA Protein Assay Kit, Thermo Scientific, 
Rockford, IL), according to the manufacturer’s protocols.

Statistics: Results are presented as mean±standard error of 
the mean (SEM). Statistical analysis was performed using the 
two-tailed unpaired Student t-test, and results were consid-
ered statistically significant when the p value was less than 
0.05.

Figure 2. Suppression of choroidal 
neovascularization formation by 
SRPIN340. A: Representative 
micrographs of choroidal neovas-
cularization (CNV) lesions in the 
choroidal f lat mounts from mice 
treated with laser photocoagula-
tion alone as control (CTR, n=32; 
n represents the number of CNV 
lesions), combined with intravitreal 
injection of 0.1% DMSO (n=31) or 
0.2 pmol (n=17), 2 pmol (n=33), and 
20 pmol (n=23) SRPIN340, respec-
tively. B: Quantitative analysis 
of CNV size. Bars indicate the 
average of CNV size in each group. 
Values are mean±SEM. *, p<0.05; 
†, p<0.01.
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RESULTS

Impact of serine/arginine-rich protein kinase blockade 
during choroidal neovascularization formation: To deter-
mine whether SRPK blockade inhibits CNV formation, 
we quantified the CNV size in the flat mounts of the RPE-
choroid complex with or without SRPIN340 administration. 
Seven days after laser injury, the animals treated with 2 pmol 
SRPIN340 (n=33; n represents the number of CNV lesions) 
showed a significant decrease in the average CNV size 
(19,870±1935 μm2), compared with the vehicle-treated animals 
(30,737±3758 μm2, n=31, p<0.05; Figure 2A,B). Furthermore, 
a higher dose administration of SRPIN340 (20 pmol; n=23) 
significantly reduced the CNV size (15,649±1803 μm2, 
p<0.01) to an even greater extent than that observed in the 
2 pmol SRPIN340–treated animals, whereas a lower dose 

administration (0.2 pmol; n=17) did not significantly inhibit 
CNV formation (21,741±3695 μm2, p=0.10; Figure 2A,B). No 
significant difference in CNV size was observed between 
mice subjected to laser injury alone and those subjected to 
laser and intravitreal injection of vehicle solution. The data 
indicate that SRPK blockade suppresses CNV growth in a 
dose-dependent manner.

Impact of serine/arginine-rich protein kinase blockade on 
Vegf expression: To investigate the effect of SRPIN340 on 
Vegf isoforms, mRNA expression of total Vegf and Vegf 
isoforms containing exon 8a were analyzed using real-time 
PCR. Compared with mice treated with 0.1% DMSO (n=8; 
n represents the number of eyes), mRNA expression of total 
Vegf in the RPE-choroid complex obtained from mice treated 
with 20 pmol SRPIN340 (n=6) was significantly decreased 

Figure 3. Inhibition of Vegf by 
SRPIN340. A: Bars represent 
real-time polymerase chain reac-
tion (PCR) analysis of total Vegf 
mRNA. B: Bars represent real-time 
PCR analysis of exon 8a containing 
Vegf mRNA. C: ELISA of total 
VEGF protein in the RPE-choroid 
complex obtained from CNV mice 
3 days after laser photocoagulation 
with intravitreal injection of 0.1% 
DMSO or 20 pmol SRPIN340 (n=6 
to 8 for real-time PCR analysis, 
n=8 to 10 for ELISA, respectively; 
n represents the number of eyes). *, 
p<0.05; †, p<0.01.
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by 56% (p<0.05; Figure 3A). Similarly, mRNA expression of 
Vegf containing exon 8a was significantly decreased by 57% 
(p<0.05; Figure 3B). Furthermore, total VEGF concentration 
in mice treated with 20 pmol SRPIN340 (209.2±10.9 pg/mg, 
n=8) was significantly lower than mice treated with 0.1% 
DMSO (274.2±17.9 pg/mg, n=10, p<0.01; Figure 3C).

Suppression of adhesion molecules, inflammatory molecules, 
and macrophage inf lux by serine/arginine-rich protein 
kinase blockade: To explore the mechanism by which 
SRPIN340 suppresses CNV formation, concentrations of the 
inflammation-associated molecules MCP-1 and ICAM-1 in 
the RPE-choroid complex were measured. Levels of MCP-1 
(19.5±0.9 pg/mg) and ICAM-1 (199.6±15.5 ng/mg) in the 
RPE-choroid complex of normal mice were significantly 
increased 3 days after laser photocoagulation and intravitreal 
injection of 0.1% DMSO (MCP-1, 99.9±8.6 pg/mg, p<0.001; 
ICAM-1, 265.4±12.3 ng/mg, p<0.01, respectively). However, 
compared with mice treated with laser photocoagulation and 
0.1% DMSO, the protein levels of MCP-1 and ICAM-1 were 
significantly reduced in the RPE-choroid complex of the mice 
treated with laser photocoagulation and 20 pmol SRPIN340 
(MCP-1, 67.8±10.2 pg/mg, p<0.05; ICAM-1, 192.9±11.6 ng/
mg, p<0.01, n=8-10, respectively; n represents the number of 
eyes, Figure 4A,B).

Furthermore, real-time PCR showed that mRNA expres-
sion of F4/80, the marker for mouse macrophages [18], was 
downregulated by 41% in the animals treated with 20 pmol 
SRPIN340 (n=6; n represents the number of eyes) compared 
to that of the vehicle-treated animals (n=8, p<0.05; Figure 
5A). In accord with the real-time PCR data, suppression of 
macrophage influx by SRPIN340 was also depicted in the 
immunofluorescence study using F4/80 antibody. Compared 
with the vehicle-treated animals, the number of F4/80-posi-
tive macrophages in CNV lesions significantly decreased in 
the animals treated with 20 pmol SRPIN340 (15.5±4.0 and 
6.5±1.8 /1000 μm2, n=13 to 15, respectively; n represents the 
number of CNV lesions; p<0.05; Figure 5B,C).

DISCUSSION

To date, intravitreal injection of anti-VEGF agents has 
brought revolutionary changes to the treatment of neovascular 
AMD. Nevertheless, novel interventions for preventing and 
treating neovascular AMD remain to be developed because 
of possible ocular and/or systemic adverse events following 
long-term administration [19-23]. Discovery of antiangio-
genic VEGF isoforms highlighted the importance and neces-
sity of differentially targeting VEGF isoforms in treating 
neovascular AMD, and suggested the possibility of regulating 
the splicing of VEGF pre-mRNA as a therapeutic strategy. 
Small molecules and compounds, including SRPIN340, have 
currently shown promising results in targeting spicing factors 
and kinases involved in alternative splicing [14,24,25].

Most of the findings regarding the regulation of alter-
native splicing of VEGF pre-mRNA during pathological 
angiogenesis were obtained from in vitro study [13,15]. Using 

Figure 4. Reduction of inflammatory molecules by SRPIN340. A, 
B: Bars indicate average protein levels of monocyte chemoattrac-
tant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 
in the RPE-choroid complex obtained normal mice or CNV mice 3 
days after laser photocoagulation combined with intravitreal injec-
tion of 0.1% DMSO or 20 pmol SRPIN340. Protein levels were 
measured with ELISA and normalized to total protein levels. Values 
are mean±SEM (n=8 to 10; n represents the number of eyes). *, 
p<0.05; †, p<0.01; ‡, p<0.001.
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in vitro experiments, upregulation of proangiogenic VEGF 
isoforms and simultaneous downregulation of antiangiogenic 
VEGF isoforms in various pathologies have subsequently 
been elucidated [26-29]. In contrast, animal experiments 
used in investigations of this mechanism are rarely reported. 
Moreover, a limited number of reports are currently avail-
able on the effect of specific inhibitors for SRPK against 
pathological angiogenesis such as a murine hypoxia-induced 
retinopathy model [15] and xenotransplanted tumor growth in 
nude mice [30]. Previous reports suggested that this suppres-
sive effect was caused by the upregulation of antiangiogenic 
VEGF isoforms and the subsequent restoration of the balance 
between pro- and antiangiogenic VEGF isoforms. However, 
our data indicated that SRPIN340 suppressed total Vegf and 
Vegf isoforms containing exon 8a at the mRNA level. In 
addition, the total VEGF protein was also decreased by the 
SRPK inhibitor SRPIN340. Recently, Tripathi et al. reported 

that SRSF1 is a component of the 7SK complex and influ-
ences RNA polymerase II-mediated transcription [31]. Since 
SRPK activates SRSF1 through the phosphorylation of the RS 
domain [32], the current data suggest that SRPK inhibition by 
SRPIN340 may reduce transcription of VEGF, in addition to 
the switching to antiangiogenic VEGF isoforms.

During CNV formation, VEGF and its related molecules 
reciprocally accelerate angiogenesis via macrophage infil-
tration. For instance, VEGF induces MCP-1 and ICAM-1 
production in endothelial cells, both of which play a role 
in macrophage recruitment [33-35], and directly mediates 
macrophage migration via its receptor 1 [36]. Subsequently, 
the recruited macrophages secrete VEGF and facilitate 
CNV growth [37]. Thus, decrease of VEGF might result in 
reduced macrophages influx and VEGF secretion. Indeed, in 
the current study we observed that levels of inflammation-
associated molecules were decreased during CNV formation, 

Figure 5. Inhibition of macrophage 
infiltration by SRPIN340. A: Bars 
represent real-time polymerase 
chain reaction (PCR) analysis 
of the relative change in F4/80 
expression in the RPE-choroid 
complex obtained from CNV mice 
3 days after laser photocoagulation 
combined with intravitreal injec-
tion of 0.1% DMSO or 20 pmol 
SRPIN340. Values are mean±SEM 
(n=6 to 8; n represents the number of 
eyes). B: Micrographs depict repre-
sentative F4/80 immunostaining 
in CNV lesions 3 days after laser 
photocoagulation combined with 
intravitreal injection of 0.1% DMSO 
or 20 pmol SRPIN340. (left). CNV 
lesions stained for CD31 (middle). 
Immunofluorescence staining for 
F4/80 (right). Merged image. Bar, 
100 μm. C: Quantitative analysis of 
F4/80-positive cells. Bars represent 
the average number of infiltrated 
macrophages in each CNV lesion. 
Values are mean±SEM (n=13 to 15); 
n represents the number of CNV 
lesions. *, p<0.05.
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following VEGF downregulation via SRPK inhibition with 
SRPIN340. Therefore, SRPK inhibition with SRPIN340 
could disrupt the vicious cycle formed by VEGF and its 
related proteins such as MCP-1 and ICAM-1, and result in 
the attenuation of CNV formation, suggesting the possibility 
of a novel chemical treatment strategy for pathological angio-
genesis, which targets SRPK.
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