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Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-
coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest
in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in
allergy remain obscure. Sincemany of these proteases are produced and actively involved in the pathologic process of inflammation
including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make
important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and
structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders,
which will help us to better understand the roles of serine proteases and PARs in allergy.

1. Introduction

Protease activated receptors (PARs), a four-member family
of GPCRs, can be cleaved by certain serine proteases within
the extracellular amino terminus and expose a tethered ligand
domain, which binds to and activates the receptors to initiate
multiple signaling cascades. Therefore, these PAR-activating
proteases are named as agonists of PARs. Since many of these
proteases are produced during inflammation, PARs make
important contributions to inflammatory tissue responses
including exudation of plasma components, inflammatory
cell infiltration, and tissue damage and repair in inflam-
mation [1]. The PAR-activating serine proteases may derive
from the circulation (e.g., coagulation factors), inflammatory
cells (e.g., mast cell and neutrophil proteases), and multiple
other sources (e.g., epithelial cells, neurons, bacteria, and
fungi). Compounds that mimic or interfere with the PAR-
activating processes are attractive therapeutic candidates:
selective agonists of PARs may facilitate healing, repair, and
protection, whereas protease inhibitors and PAR antagonists
can impede exacerbated inflammation and pain.

In recent years, there has been considerable interest in the
role of PARs [2, 3] in allergic inflammation, the fundamental
pathologic changes in allergy. Since serine proteases have
long been discovered to be actively involved in the pathologic
process of inflammation and large amount of information on
PARs is accumulated over the last two decades, it is necessary
to write a literature review on PARs in allergy, which will
help us to better understand the roles of serine proteases as
agonists or antagonists of PARs in allergy.

2. Classification and Molecular
Structures of PARs

Since the landmark study from Shaun Coughlin’s group in
which an expression cloning screen was used to identify the
first human thrombin receptor known as PAR-1 [4], four
numbers of this receptor class were found both in human and
murine and designated as PAR-1, -2, -3, and -4, respectively
[5]. As the newly found members of the typical seven trans-
transmembrane GPCRs’ family, the expression of PARs is
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found on the surface of cells from a wide variety of tissues
[6].

The structure, activation mechanism, and signaling of
PARs have been reviewed extensively [1, 5]. In brief, encoding
genes for human PAR-1, -2, and -3 are located on chro-
mosome 5 (q13), and for human PAR-4 the encoding gene
is on chromosome 19 (p12). Although the location of PAR
genes differs, high degree of structural similarity of all four
genes predicts the conserved overall structure and function
of these receptors [7, 8]. In both mouse and human, all four
PARs have two exons: the first encoding a signal peptide and
the second encoding the entire functional receptor protein
[7]. Human PAR-1 protein is composed of 425 residues with
7 hydrophobic domains of a typical GPCR. The deduced
sequence of human PAR-1 contains a potential cleavage
site for thrombin within the amino tail: LDPR41↓S42FLLRN
(where ↓ denotes cleavage) [4]. PAR-2 protein consists of 395
residues with the typical characteristics of a GPCR and with
about 30% of the amino acid identity of human PAR-1. The
extracellular amino acid terminus of 46 residues of PAR-2
contains a putative trypsin cleavage site, SKGR34↓S35SLIGKV
[9]. PAR-2 is the most functionally distinct receptor in the
PAR family as it is the only PAR which is not cleaved
by thrombin. PAR-2 is most effectively cleaved by trypsin
[9], tryptase [10], coagulation factors VIIa and Xa [11], the
membrane type serine protease 1 (MT-SP1) [12], chitinase
[13], and TMPRSS2, a type II transmembrane-bound serine
protease [14]. Sharing about 28% sequence homology with
human PAR-1 and PAR-2, human PAR-3 is activated in a very
similar fashion to human PAR-1 with a thrombin cleavage site
within the extracellular amino terminus LPIK38↓T39FRGAP
[15]. Notably, mouse PAR-3 does not signal upon thrombin
cleavage but functions instead via a unique cofactoring
mechanism to support the activation of PAR-4 [16]. Human
PAR-4, about 33% homologous to the other human PARs, is
a 385-amino-acid protein with a potential cleavage site for
thrombin and trypsin in the extracellular amino terminal
domain PAPR47↓G48 YPGQV [17].

The novel activationmechanismdistinguishes PARs from
all other GPCRs though they share basic structural features.
The general mechanism by which proteases cleave and
activate PARs is similar: proteases cleave at specific sites
within the extracellular amino terminus of the receptors;
this cleavage exposes a new amino terminus, a cryptic N-
terminal domain that serves as a “tethered ligand” domain,
which binds to conserved region in the second extracellular
loop of the cleaved receptor, and thereby activates the cleaved
receptor. Synthetic peptides corresponding to the sequence
of the “tethered ligand” are capable of activating the receptor
independently of N-terminal proteolysis, confirming the self-
activation model and providing a useful experimental tool
for the specific activation of PARs [18] (Figure 1). These
peptides include PAR-1 agonists SFLLR-NH

2
and TFLLRN-

NH
2
; PAR-2 agonists SLIGKV-NH

2
and transcinnamoyl-(tc-

) LIGRLO-NH
2
; PAR-3 agonist TFRGAP-NH

2
; and PAR-

4 agonist GYPGQV-NH
2
. Activation of PARs results in a

multiple cellular signaling events including cell shape, secre-
tion, integrin activation, metabolic responses, transcriptional
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Figure 1: Activation mechanism of protease activated receptor
(PAR). PARs are a group of four G protein-coupled receptors
(GPCRs). Activation of PARs depends on the protease cleavage
at the specific site of the extracellular N-terminal, upon which
the exposed tethered ligand (gray square) binds to the second
extracellular loop of PAR resulting in a series of cellular signaling
events. The red arrow indicates cleavage site. The site for PAR-1 is at
LDPR41↓S42FLLRN, PAR-2 is at SKGR34↓S35SLIGKV, PAR-3 is at
LPIK38↓T39FRGAP, and PAR-4 is at PAPR47↓G48 YPGQV. PAR-2
antagonist peptide: FSLLRY-NH

2
; SCH 79797: a PAR-1 antagonist;

the active peptides were PAR-1: SFLLR-NH
2
, TFLLRN-NH

2
; PAR-

2: SLIGKV-NH
2
, transcinnamoyl- (tc-) LIGRLO-NH

2
; and PAR-3:

TFRGAP-NH
2
PAR-4, GYPGQV-NH

2
. S = Ser, F = Phe, L = Leu,

R = Arg, T = Thr, I = Ile, G = Gly, K = Lys, V = Val, O = Pyl, A =
Ala, P = Pro, Y = Tyr, Q = Gln, and V = Val.

responses, and cell motility. PARs are “single use” receptors
meaning that proteolytic activation is irreversible and the
cleaved receptors are degraded in lysosomes [19].

3. Expression of PARs on Inflammatory Cells

Since inflammatory cells play a pivotal role in the patho-
genesis of inflammation, what we should know first is the
type and extent of PARs expression on inflammatory cells. As
shown in Table 1, different PARs are expressed on mast cell,
eosinophil, neutrophil, monocyte, macrophage, T cell, B cell,
and dendritic cell (DC).

3.1. Expression of PARs on Mast Cells. It has been demon-
strated that mast cells express all four PARs at both mRNA
and protein levels. For example, PAR-1, -2, -3, and -4 are
expressed on mouse mast cell line P815 cells [20–22] and
MC/9 cells [20]. In addition, PAR-2 [23–25] and PAR-4 [24]
are observed on the surface of human mast cell line HMC-
1, and PAR-1 is found on murine bone marrow cultured
mast cells [26]. The studies on human specimens show the
presence of PAR-1 and PAR-2 in mast cells from various
normal human tissues [27]; expression of PAR-2 and PAR-
4 in mast cells both at protein and mRNA levels in the
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Table 1: Expression of protease activated receptors (PARs) on inflammatory cells.

Cell type Expression of PARs Regulator of PARs
PAR-1 PAR-2 PAR-3 PAR-4 Upregulation Downregulation

MC +
[22, 27]

+
[22, 23, 25, 27, 28]

+
[22]

+
[22, 28]

RANTES for PAR-1 [32]; TNF-𝛼 for
PAR-2 [23, 31] and PAR-4 [31]; IL-12 for
PAR-4 [20]; GM-CSF for PAR-4 [30]; AC
allergen rPer a1.01 for PAR-1,2,4 [22].

IL-29 for PAR-1 [29]; IL-12
for PAR-2 [20].

Eos +
[35, 36]

+
[35–37]

+
[36]

−

[36] na na

Neu +
[38]

+
[38, 39, 106]

−

[38]
−

[38] na
Simvastatin and pravastatin
for PAR-2 [106]; GC for

PAR-2 [39]

Mon
+
[40–

42, 46, 47]

+
[43–47]

+
[41, 46,
47]

+
[47]

IFN-𝛾 for PAR-1 [42]; thrombosis for
PAR-1; APS for PAR-2 [46] na

Mac
+

[41, 48,
50]

+
[41, 43, 48–51]

+
[41, 50]

+
[50]

LPS for PAR-1, -2, -3, and -4 [50]; dietary
FA for PAR-2 [51]; MMIF for PAR-2 [77];
GM-CSF for PAR-1, -2, and -3 [41]; smoke

for PAR-1 [48]

IL-4 for PAR-1, -2, and -3
[41]

TC +
[52, 162]

+
[53, 162] na +

[162] HIV for PAR-1 [52] na

BC +
[54]

+
[163] na na na na

DC +
[55, 56]

+
[43, 57]

+
[56] na GC for PAR-2 [57] LPS for PAR-1 and -3 [56]

MC: mast cell; Eos: eosinophil; Neu: neutrophil; Mon: monocyte; Mac: macrophage; TC: T cell; BC: B cell; DC: dendritic cell; RANTES: regulated upon
activation normal T cell expressed and secreted; TNF: tumor necrosis factor; GM-CSF: granulocyte-macrophage colony-stimulating factor; IL: interleukin;
IFN: interferon; APS: antiphospholipid syndrome; MMIF: macrophage migration inhibitory factor; LPS: lipopolysaccharides; FA: fatty acids; HIV: human
immunodeficiency virus; AC: American cockroach; GC: German cockroach; na: not available.

patients with postinfectious irritable bowel syndrome (PI-
IBS) [28]; upregulated expression of PAR-2 inmast cells from
ulcerative colitis tissues [25]; and the increased fraction of
PAR-2-expressing mucosal mast cells in Crohn’s specimens
[23] (Table 1).

The expression of PARs appears to be regulated by
cytokines. For example, interleukin- (IL-) 12 is able to
downregulate PAR-2 expression [20], and IL-29 decreases
PAR-1 expression [29] on P815 mast cells. On the other hand,
granulocyte-macrophage colony-stimulating factor (GM-
CSF) enhances expression of PAR-4 [30], tumor necrosis
factor (TNF) [31] upregulates PAR-2 and PAR-4 expression,
and RANTES increases expression of PAR-1 on P815 mast
cells [32]. TNF also elevates PAR-2 expression on HMC-1
mast cells [23], and IL-12 upregulates PAR-4 expression on
MC/9 mast cells [20]. Furthermore, tryptase-induced PAR-2
expression can be enhanced by IL-12 [20], TNF [31], RANTES
[32], and IL-29 [29], and tryptase-induced PAR-3 and PAR-4
expression is upregulated by TNF on P815 mast cells [31]. It
is also observed that trypsin-induced expression of PAR-1, -2,
and -4 can be enhanced by RANTES [32] (Table 1).

3.2. Expression of PARs on Basophils. Little information on
PAR expression on basophil is available. But a study showed
lack of PAR expression on purified human basophils [33], and
a report of the fact that trypsin rather than PAR-2 agonist
induces histamine release from basophils [34] suggests that
basophils may not express PARs.

3.3. Expression of PARs on Eosinophils. The expression of
PAR-1 [35] and PAR-2 [35–37] has been observed on
eosinophils. PAR-2 seems to be the major PAR receptor
capable of modulating eosinophil functions [35]. It was
reported that total numbers of eosinophils and the level of
eosinophil expressing PAR-2were significantly elevated in the
nasal mucosa of seasonal allergic rhinitis (SAR) compared
with the controls [37].

3.4. Expression of PARs on Neutrophils. Human peripheral
blood neutrophils express PAR-1 and PAR-2, but not PAR-
3 and PAR-4, proteins [38]. PAR-2 expression has also been
observed on mouse pulmonary neutrophils [39].

3.5. Expression of PARs on Monocytes. The expression of
PAR-1 [40–42], -2 [43–45], -3 [46], and -4 [47] on human
monocytes is observed at both mRNA and protein levels.
Interferon-gamma (IFN-𝛾) differentiated monocytes have
increased expression of PAR-1 [42]. Monocyte surface PAR-
2 expression is upregulated following static exposure to
activated endothelial cell (EC) [44] (Table 1).

3.6. Expression of PARs on Macrophages. PAR-1, -2, and -
3 expression has been showed in human macrophages [48,
49]. In Wistar rats, the expression of PAR-1, -2, -3, and
-4 is revealed in airway macrophages (AMs) [50]. PAR-2
expression on human macrophages can be upregulated by
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dietary fatty acids (palmitic, stearic, and myristic) [51], but
expression of PAR-1, -2, and -3 can be downregulated by IL-
4 treatment [41]. Differentiation of human monocytes into
macrophages by eithermacrophage colony-stimulating factor
(M-CSF) or GM-CSF elicits enhanced expression of PAR-1,
PAR-2, and PAR-3 [41]. There is a higher degree of PAR-1
protein staining inAMs from smokers comparedwith healthy
controls (HC).

3.7. Expression of PARs on T Cells and B Cells. It has been
showed that peripheral blood effector memory CD4(+) and
CD8(+) T lymphocytes express PAR-1 [52] and that Jurkat T
cells express PAR-2 [53]. In normal B cells, the expression of
PAR-1 and PAR-3 is also reported [54].

3.8. Expression of PARs on DCs. It has been reported that
monocyte-derived dendritic cells (MoDCs) do not express
PARs [55, 56]. However, upon maturation with lipopolysac-
charides (LPS), but not with TNF-𝛼 or CD40 ligand, DCs
express PAR-1 and PAR-3 (not PAR-2 or PAR-4) [56]. IL-
4 strongly downregulates PAR-1, -2, and -3 at both mRNA
and protein levels in MoDCs [41]. Plasmacytoid DCs (pDCs)
and myeloid DCs (mDCs) isolated from peripheral blood
mononuclear cells (PBMC) express PAR-1 [55] and PAR-2
[57]. PAR-2 expression on mDCs is upregulated following
German cockroach (GC) frass exposure [57].

4. Expression of PARs on Structural Cells

It has long been recognized that structural cells do have the
ability to secrete proinflammatory mediators and cytokines,
through which they actively participate in the pathogenesis
of inflammation. More importantly, tissue remodeling pro-
cesses in inflammation largely depend on structural cells and
proteases. We therefore review the expression of PARs on
epithelial cell, endothelial cell, fibroblast, smooth muscle cell
(SMC), and keratinocyte in this section (Table 2).

4.1. Expression of PARs on Epithelial Cells. The A459 and
BEAS-2B epithelial cell lines and primary human bronchial
epithelial cells (HBECs) express PAR-1, -2, -3, and -4 as
judged by RT-PCR and immunocytochemistry [58]. Both
PAR-1 and PAR-2 are endogenously expressed in HBECs-
16HBE14o-cells [59]. While PAR-1, -2, -3, and -4 expression
is showed in alveolar epithelial cells of Wistar rats [50], PAR-
2 appears to be a cellular receptor expressed prominently on
epithelial cells of mice [60].

4.2. Expression of PARs on Endothelial Cells. Numerous
studies have showed that PAR-2 is highly expressed on
endothelial cells [50, 61, 62]. Stimulation with TNF-𝛼, IL-
1 𝛼, and bacterial LPS elevates the expression of PAR-2
in a dose-dependent manner in cultured human umbilical
vein endothelial cells (HUVECs) [63].Macrophagemigration
inhibitory factor (MMIF) is found to enhance PAR-1 and
PAR-2 mRNA expression in human endothelial cells [64],
whereas phorbol ester treatment seems to decrease the
expression of PAR-1 and PAR-2 [63]. In human endothelial

cells, PAR-1 and 𝛽-arrestins form a preassembled complex
[65]. Moreover, human cytomegalovirus (HCMV) induces
expression of PAR-1 and PAR-3 but not PAR-4 proteins on
HUVECs [66]. Since PAR-3 is postulated to represent a
second thrombin receptor, its modest endothelial cell and
platelet expression suggest that PAR-3 activation by alpha-
thrombin is less relevant to physiological responses in these
mature cells [67].

4.3. Expression of PARs on Fibroblasts. Human primary
bronchial fibroblasts (HPBFs) express PAR-1, -2, and -3 but
not PAR-4, and gingipains-induced secretion of hepatocyte
growth factor (HGF) is significantly inhibited by RNA inter-
ference targeted at PAR-1 and PAR-2 [68, 69]. Similarly, both
normal and fibrotic human lung fibroblasts express PAR-1,
-2, and -3. There is no significant difference between normal
and fibrotic fibroblasts in expression levels of PAR-1 and
-3, whereas a fourfold higher expression level of PAR-2 is
observed in fibrotic cells compared with normal cells [70]; in
addition an important role of basic fibroblast growth factor
(bFGF) in the regulation of functional PAR-2 expression
in cultured RA synovial fibroblasts was reported [71]. It
is reported that prostaglandin (PG) E2, via the prostanoid
receptor EP2 and subsequent cAMP elevation, downregulates
mRNA and protein levels of PAR-1 in human lung fibroblasts
[72] and that PAR-2 upregulation by TNF-𝛼 may modulate
myofibroblast proliferation [23].

4.4. Expression of PARs on SMCs. Human airway SMCs
express PAR-1 and PAR-2 proteins [73, 74]. PAR-1, -3,
and -4 are able to mediate thrombin-induced proliferation,
migration, and matrix biosynthesis as well as generation of
inflammatory and growth-promoting mediators in human
vascular SMCs [75].

4.5. Keratinocytes. It is reported that TERT-2 cells constitu-
tively express high levels of PAR-1 and PAR-2 and lower level
of PAR-3 [76], whereas human keratinocytes express PAR-2
[11], which can be upregulated by MMIF [77].

5. Signal Transduction Pathways of PARs

As shown in Figure 2, depending on the PAR subtype and
the phenotype of PAR-expressed cell, the PAR family is
able to stimulate a variety of intracellular signaling path-
ways. Like other “GPCRs,” the PARs signal via a variety
of G proteins: both PAR-1 [78] and PAR-2 [79] through
G𝛼q, G𝛼i, G𝛼12/13, and G𝛽

𝛾
; PAR-4 via G𝛼q and G𝛼

12/13

[78]; and PAR-3 via PAR-1 signaling by receptor dimeriza-
tion. PAR-1 heterodimerization with PAR-3 alters the PAR-
1/G𝛼
13

binding conformation, enhancing G𝛼
13

signaling.
Heterodimerization does not likely affect PAR-1/ G𝛼q selec-
tivity [80]. In addition, PAR-2 is able to signal via a non-G-
protein mechanism that involves the beta-arrestin-mediated
signaling [81]. Particularly in HMC-1 cell line, it was found
that curcumin inhibits PAR-2 and PAR-4 mediated human
mast cell activation, not by inhibition of trypsin activity
but by the blocking of extracellular signal-regulated kinase
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Figure 2: Continued.
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Table 2: Expression of protease activated receptors (PARs) on structural cells.

Cell type Expression of PARs Regulator of PARs
PAR-1 PAR-2 PAR-3 PAR-4 Upregulation Downregulation

EpC +
[50, 101]

+
[50, 60, 101,

102]

+
[50, 101]

+
[50]

NE for PAR-2; LPS for PAR-1, -2, -3, and
-4 [50] na

EnC
+

[50, 62,
64–

66, 100]

+
[50, 61, 64]

+
[50, 54, 66,

67]

+
[50, 66]

LPS for PAR-1, -2, -3, and -4 [50]; HCMV
for PAR-1, -3, and -4 [66]; MMIF for

PAR-1 and -2 [64]; TNF-𝛼, IL-1𝛼, and LPS
for PAR-2 [63]

Phorbol ester for PAR-2
[63]; sheer stress for PAR-1

[62]

Fibro
+

[68–
71, 164]

+
[53, 68–
71, 164]

+
[68, 70, 71] na Malignancy for PAR-1 and -2 [164]; bFGF

for PAR-2 [71] PGE2 for PAR-2 [72]

SMC +
[73, 75]

+
[74]

+
[75]

+
[75] na PGI2/PGE2 for PAR-1, -3,

and -4 [75]

Kerat +
[76, 82]

+
[11, 76, 82,
103, 104]

+
[76] na na na

EpC: epithelial cell; EnC: endothelial cell; Fibro: fibroblast; SMC: smooth muscle cell; Kerat: keratinocyte; NE: neutrophil elastase; LPS: lipopolysaccharides;
HCMV: human cytomegalovirus; MMIF: macrophage migration inhibitory factor; TNF: tumor necrosis factor; IL: interleukin; bFGF: basic fibroblast growth
factor; PG: prostaglandin; na: not available.
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(ERK) pathway [24], and thrombinmediates PAR-1 mediated
mast cell adhesion through the activation of G(i) proteins,
phosphoinositol 3-kinase, protein kinase C, and mitogen-
activated protein kinase (MAPK) pathways [26].

Proteases mediating PAR-1 and PAR-2 activation differ-
entially signal via MAPK cascades. In addition, the produc-
tion of chemokines induced by PAR-1 and PAR-2 activation
is suppressed by PI3K/Akt, thus keeping the innate immune
responses of human oral keratinocytes in balance [82]. The
CUX1 homeodomain protein is a downstream effector of
PAR-2. Treatment of epithelial and fibroblastic cells with
trypsin or the PAR-2 agonist peptide (AP) causes a rapid
increase in CUX1 DNA binding activity. The stimulation of
CUX1 was specific to PAR-2 because no effect was observed
with thrombin or the PAR-1 AP. These results suggest a
model whereby activation of PAR-2 triggers a signaling
cascade that culminates with the stimulation of p110 CUX1
DNA binding and the transcriptional activation of target
genes [83]. Thrombin induces RPE cell proliferation by joint
activation of PLC-dependent and atypical PKC isoforms
and the Ras-independent downstream stimulation of the
Raf/MEK/ERK1/2 MAPK cascade [84].

6. Actions of Agonists and Antagonists of
PARs in Inflammation

Since PARs are receptors expressed on various types of cells,
their actions must be triggered or inhibited by agonists and
antagonists of PARs. Hence, we review actions of agonists and
antagonists of PARs in inflammation in the current section.

6.1. Influence of Agonists and Antagonists of PARs on Inflam-
matory Cell Migration. A significant increase in PAR-2
expression is observed on cell surface of neutrophils from
septic patients as compared with HC. PAR-2 agonists (ser-
ine proteases as well as synthetic peptides) upregulate cell
adhesion molecule expression and cytokine production and
reduce transendothelial migration of neutrophils [85]. On
the other hand, basolateral, but not apical, PAR-1 and PAR-
2 activation with selective agonists decreases transepithelial
resistance (TER) and thereby facilitates neutrophil transep-
ithelial migration [86]. It is observed that activation of
PAR-1 by thrombin stimulates directed migration of human
eosinophils and thereby affects eosinophils in tissue and
allergic inflammation [87].

6.2. Influence of Agonists and Antagonists of PARs on Cell
Proliferation and Repair. Thrombomodulin (TM) acts as a
thrombin receptor that modulates the duration of pERK
nuclear retention and HUVEC proliferation in response to
thrombin [88]. It has been found that thrombin and a PAR-1
APs stimulate proliferation of HPBFs [68] and that thrombin
and FoxO factors functionally interact through PI3K/Akt-
dependent FoxO phosphorylation leading to vascular SMC
proliferation [89]. Furthermore, activated protein C (APC)
acts through both PAR-1 and PAR-2 to activate Akt and
to increase keratinocyte proliferation [90]. In mechanically

wounded 16HBE 14o(-) epithelial cell layers in culture, PAR-
1 and PAR-2 APs stimulate the rate of repair and enhance
the formation of a fibrin provisional matrix to support the
repair process. Locally expressed serine proteases of the
coagulation cascade activate PAR-1 and PAR-2 to enhance
fibrin formation and bronchial epithelial repair [91].

6.3. Influence of Agonists and Antagonists of PARs onMediator
and Cytokine Release from Cells. It has been observed that
thrombin, tryptase, elastase, and trypsin, as well as APs of
PAR-1, -2, and -4, induce IL-8 [92] and MCP-1 [93] release
from A549 cells, suggesting that the actions of thrombin
and trypsin may be via PAR-1 and -4, and cell responses
to tryptase, trypsin, and elastase may be through PAR-
2. Thrombin, trypsin, tryptase, elastase, SFLLR-NH

2
, and

GYPGQV-NH
2
stimulate also IL-6 release from monocytes

[94]. A rank order of potency of the APs corresponding to
the nascent N-termini of PAR-1, -2, and -4 appears as PAR-2
> PAR-4 > PAR-1 for induction of the release of IL-6 and IL-8
from A549, BEAS-2B, and HBECs.The APs of PAR-1, -2, and
-4 also cause the release of PGE2 fromA549 andHBECs [58].
Moreover, it is noticeable that thrombin, trypsin, tryptase,
SFLLR-NH

2
, and SLIGKV-NH

2
are capable of eliciting IL-6

release from T cells [95] (Table 3).

6.3.1. Agonists of PAR-1. Thrombin is able to mediate induc-
tion of IL-1𝛽 and IL-6 cytokine production from PBMCs
and PBMC cell proliferation in a PAR-1-dependent man-
ner [47]. Thrombin can also induce IL-8 [96] and matrix
metalloprotease- (MMP-) 9 release [97] fromhuman primary
dermal fibroblasts (HPDF) through activation of PAR-1.
Similarly, thrombin and PAR-1 APs significantly stimulate
vascular endothelial growth factor (VEGF) secretion from
cultured human airway epithelial cells (HAEC) [98] and
MMP-12 release from peritoneal macrophages [99]. A very
recent study shows that MMP-1 causes activation of the
nuclear factor-𝜅B (NF-𝜅B) pathway (p65/RelA) in endothe-
lial cells, and this response is dependent upon activation
of PAR-1 [100] (Table 3).

6.3.2. Agonists of PAR-2. In the alveolar macrophage cell
lines (MH-S cells) and peritoneal macrophage cell lines
(RAW264.7 cells), GC extract activates PAR-2 and thereby
produces TNF-𝛼. GC extract can also enhance TNF-𝛼
production by alveolar macrophages through the PAR-2
pathway [49].Theobservation that trypsin and SLIGKV-NH

2

are able to stimulate an increase in vascular cell adhesion
molecule- (VCAM-) 1 expression and the release of IL-
8 and granulocyte colony-stimulating factor (G-CSF) from
bronchial fibroblasts suggests the importance of PAR-2 in
promoting neutrophilic airway inflammation [68]. A finding
demonstrates that neutrophil elastase can increase PAR-2
expression andMUC5ACmucin release [101] may also impli-
cate the involvement of PAR-2 in airway inflammation.While
treatment with SLIGKV-NH

2
at the apical or basolateral cell

surface of epithelial cells induces GM-CSF, ICAM-1, TNF-
𝛼, MMP-1, and MMP-10 secretion [102], PAR-2 agonist also
provokes the production of thymic stromal lymphopoietin
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(TSLP) in the skin of mice [103]. Since these mediators and
cytokines are important promoters of inflammation, PAR-2
should be a pivotal contributor of inflammation. Moreover,
it is reported that mite-derived serine protease activity may
contribute to the pathogenesis of atopic dermatitis (AD) by
activating keratinocytes via PAR-2 activation [104]. Allergen-
induced, PAR-2/epidermal growth factor receptor- (EGFR-
) mediated signaling may also decrease epithelial resistance
and promotes junction disassembly [105], thereby promoting
epithelial inflammation.

It has been showed that tryptase, trypsin, SLIGKV-NH
2
,

tc-LIGRLO-NH
2
, but not thrombin, elastase, and SFLLR-

NH
2
can induce IL-8 and lactoferrin secretion from periph-

eral blood neutrophils [38], implicating that the actions of
tryptase and trypsin are likely via the activation of PAR-2.
Studies onmice show that neutrophils from antiphospholipid
(aPL) antibody-treated mice express PAR-2 and that stim-
ulation of this receptor leads to neutrophil activation [106].
Antineutrophil cytoplasmic antibodies against proteinase 3
(PR3) activate human monocytic THP-1 cells in a PR3- and
PAR-2-dependent manner [45].

Human eosinophils express PAR-1 and -2, and PAR-2
is the major PAR receptor that is capable of modulating
eosinophil function. Trypsin and the PAR-2 APs are seen
in triggering shape change, release of cysteinyl leukotrienes,
and, most obviously, generation of reactive oxygen species in
eosinophils [35]. A study demonstrates that a specific teth-
ered peptide ligand for PAR-2 potently induces superoxide
production and degranulationmay support the finding above
[36]. It is reported that SLIGKV-NH

2
and tc-LIGRLO pro-

voke histamine release from skin mast cells and that trypsin
is able to induce a bell shape increase in tryptase release
from tonsilmast cells [107]. InHUVEC, trypsin-induced IL-8
release is inhibited by the inhibitor peptide of PAR-2 Phe-Ser-
Leu-Leu-Arg-Tyr-NH

2
(FSLLRY-NH

2
), suggesting that the

action of trypsin onHUVEC ismost likely through activation
of PAR-2 [108]. Very recently, it is reported that PAR-3
cooperates with PAR-1 to mediate the effect of thrombin on
cytokine production and VCAM-1 expression in endothelial
cells, but ICAM-1 expression in endothelial cells requires
PAR-3 without PAR-1 [54]. It has been reported that aspartate
proteases from Alternaria induce GM-CSF, IL-6, and IL-
8 production and calcium response in airway epithelium
through PAR-2 [109] and that Alternaria-derived aspartate
proteases cleave PAR-2 to activate eosinophil degranulation
[110], whichmay add another novelmechanism for activation
of PARs in the development and exacerbation of airway aller-
gic diseases (Table 3). We have recently found that tryptase
can induce the release of IL-6 and TNF-𝛼 from astrocytes via
PAR-2-MAPKs or PAR-2-PI3K/Akt signaling pathway, which
reveals PAR-2 as a new target actively participating in the
regulation of astrocytic functions [111].

6.3.3. Antagonists of PARs. Potent heterocycle-based
peptide-mimetic antagonists of PAR-1, RWJ-56110 [112], and
RWJ-58259 [113] are potent, selective PAR-1 antagonists,
which bind to PAR-1, interfere with calciummobilization and
cellular functions (platelet aggregation and cell proliferation),

and do not affect PAR-2, -3, or -4. Both PAR-1 and PAR-
4 activation peptides were significantly inhibited by
affinity-purified anti-PAR-1-IgY and anti-PAR-4-IgY and
by the specific PAR-1 antagonist BMS 200261 [114]. A
cell-penetrating pepducin antagonist of PAR-4 (P4pal-10)
dose-dependently diminishes the severity of endotoxemia
and preserves liver, kidney, and lung function of mice,
suggesting that inhibition of PAR-4 signaling in neutrophils
could be protective in systemic inflammation and DIC [115].
Using a fluorescence assay, a novel compound, GB88, is
shown to antagonize PAR-2-induced intracellular Ca(2+)
release in human monocyte-derived macrophages, being
1000 times more potent than a novel small molecule PAR-2
antagonist N1-3-methylbutyryl-N4-6-aminohexanoyl-piper-
azine (ENMD-1068). GB88 inhibits also the acute paw edema
induced in Wistar rats by PAR-2 agonist 2-furoyl-LIGRLO-
NH2 or mast cell 𝛽-tryptase, without inhibiting proteolytic
activity of tryptase in vitro [116, 117].

7. Roles of PARs in Allergic Diseases

Accumulated evidence suggests that PARs are closely related
to allergic inflammation, but the detailed relationship
between PARs and allergic diseases remains obscure. We
therefore review the known roles of PARs in allergic diseases
in the current section (Table 4).

7.1. Roles of PAR-1 in Allergic Diseases

7.1.1. In Allergic Rhinitis (AR). It has been reported that
thrombin is increased in nasal secretion of the patients with
chronic rhinosinusitis and thrombin and PAR-1 APs stimu-
late VEGF secretion from cultured HAEC [98], suggesting
that thrombin may play a role in nasal polyp formation by
stimulating VEGF production from airway epithelial cells.

7.1.2. In Asthma. Heterozygous PAR-1 mice have less aller-
gic inflammation but PAR-1 agonist worsens it. Allergic
bronchial inflammation is worsened in mice that receive
adoptive transfer of PAR-1 agonist-treated Th2 cells com-
pared to controls. Low concentrations of thrombin suppress
but high dose of it enhances maturation and secretion of
cytokines in DCs [118]. The expression of PAR-1 is upregu-
lated by thrombin that induces the expression of TGF-𝛽1 to
promote airway remodeling in OVA-allergic rats [119]. An
integrated effect is also observed in one haplotype cluster
consisting of both regions of the EGFR gene and the PAR-
1 gene, suggesting the possibility that the integrated effect
of functionally related EGFR and PAR-1 genes (haplotype
cluster) is associated with susceptibility to airway hyperre-
sponsiveness (AHR) [120].

7.2. Roles of PAR-2 in Allergic Diseases

7.2.1. In AR. The expression levels of PAR-2 mRNA and
immunoreactivity for PAR-2 in the nasal mucosa of AR
are significantly upregulated as compared with normal nasal
mucosa [121], suggesting that PAR-2 is very likely to be
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Table 4: Roles of PARs in allergic diseases.

Disease PAR involved Response of cell or molecule

Rhinitis

PAR-1 VEGF secretion from CHAEC [98];

PAR-2
Higher secretion rate and numbers of responding glands [122]; fluid hypersecretion of airway mucosa
[123]; suppression of Cx26 production in human NEC [124]; IL-6 and IL-8 production in NECs [125];
tachykinin-mediated neurogenic inflammation [126];

Asthma

PAR-1 Bronchial inflammation is worsened [118]; expression of TGF-𝛽1 to promote airway remodeling [119];
susceptible to AHR [120]

PAR-2

Contractions of human airways [128]; bronchial SMC proliferation and migration [129]; increased anion
secretion [130]; eosinophil infiltration, AHR, IgE levels to OVA sensitization [131] influx of eosinophils in
BALF, protein leak in the bronchoalveolar space, increase BALF levels of the anaphylatoxins C3a and C5a
[132]; increase IL-6 expression and induce the proliferation of asthmatic bronchial SMC [134]; augment
TNF-𝛼-induced MMP-9 expression [135]; generate Ca(2+) in HAECs [136, 138]; AHR, Th2, andTh17
cytokine release, serum IgE levels, and cellular infiltration [137]; CCL20 and GM-CSF production,
increase recruitment and/or differentiation of mDC populations [139]; beta-adrenergic desensitization
[140]; increase chemotactic activity for the HMC-1 mast cell line [141]; exaggerate cough [142];
chitinase-mediated [Ca(2+)] increase [13]; inhibit the development of airway eosinophilia and
hyperresponsiveness in allergic mice through COX-2-mediated generation of the anti-inflammatory
mediator PGE2 [143]; inhibit bronchoconstriction and airway hyperresponsiveness [144]

Skin disorders PAR-2 Production of the TSLP and TNF-𝛼 [146]; modulation of the calcium ions in skin [147]; scratching
behavior in mice [148, 149]; ear edema and infiltration of inflammatory cells [150]

Colitis
PAR-2

Inflammatory process in the intestinal mucosa [25]; impaired epithelial barrier [151]; somatic and visceral
hyperalgesia and allodynia [152]; relaxation in colonic smooth muscle [153]; cytoskeleton contraction with
subsequent changes in tight junction permeability [154]; visceral hypersensitivity [155]

PAR-4 Contraction of the longitudinal muscle of colon [156]; antinociceptive [158]; increase paracellular
permeability and myeloperoxidase activity [159, 160]; colonic hyposensitivity [157, 161]

VEGF: vascular endothelial growth factor; CHAEC: cultured human airway epithelial cell; Cx: connexin; NEC: nasal epithelial cell; TGF: transforming growth
factor; AHR: airway hyperresponsiveness; SMC: smooth muscle cell; BALF: bronchoalveolar lavage fluid; TNF: tumor necrosis factor; HAEC: human airway
epithelial cells; GM-CSF: granulocyte-macrophage colony-stimulating factor; mDC: myeloid DC; TSLP: thymic stromal lymphopoietin; CCL20: chemokine
C-C motif ligand 20; PGE2: prostaglandin E2.

involved in allergic nasal inflammation. Indeed, it is found
that house-dust mite (HDM) induces a higher secretion
rate and numbers of responding glands in the AR group of
patients than in the control group. Since PAR-2 is highly
expressed in nasal mucosa, PAR-2 activating peptide pro-
vokes similar responses in nasal mucosa, and both HDM and
PAR-2 activating peptide induced responses are suppressed
by ENMD-1068; the involvement of PAR-2 in AR is con-
firmed [122]. In addition, HDM-induced PAR-2 activation
and fluid secretion in porcine airway mucosa suggest a role
for PAR-2 in mucociliary clearance and fluid hypersecretion
of airway mucosa [123]. It is found that suppression of con-
nexin 26 in HDM-sensitized AR patients is related to a PAR-
2 mediated pathway and may be involved in the initiation
and maintenance of AR [124]. Stimulation of elevated IL-6
and IL-8 production in primarily cultured nasal epithelial
cells (NECs) by a major allergen of HDM Der p1 may also
contribute to AR. Der p1 induced IL-6 and IL-8 production
which seems to be associated with the PAR/PI3 K/NF𝜅B
signaling pathway [125].

Furthermore, the abundant presence of PAR-2 in different
cell types including eosinophils and epithelial cells in the
nasal mucosa suggests that PAR-2 may contribute to the
pathogenesis of seasonal AR [37]. Based on the colocalization
of PAR-2 and tachykinins in trigeminal sensory neurons
innervating the nasal mucosa, it is suggested that, follow-
ing an activation of PAR-2 in tachykinergic neurons by

trypsin and mast cell tryptase, there may be a triggering of
tachykinin-mediated neurogenic inflammation in allergic or
nonallergic rhinitis [126].

7.2.2. In Asthma. It is observed that, in normal and asthmatic
subjects, epithelial staining intensity of PAR-1 and PAR-3
is greater than that of PAR-4. However, PAR-2 staining in
asthmatic epithelium is increased in comparisonwith normal
epithelium [127], which suggests that PAR-2 may be involved
in the pathogenesis of asthma. In fact, activation of PAR-
2 has been found to induce contraction of human airways
and potentiate contraction to histamine and therefore may
contribute to asthma [128]. Through a PAR-2-dependent
mechanism, chitinase 3-like 1 protein promotes bronchial
SMC proliferation and migration [129]. Basolateral PAR-2
activation in the mouse airways leads to increased anion
secretion through apical calcium-activated chloride chan-
nels, which is more pronounced in allergic animals [130].
Compared with wild-type animals, eosinophil infiltration
is inhibited by 73% in mice lacking PAR-2 and increased
by 88% in mice overexpressing PAR-2. Similarly, airway
hyperreactivity to inhaled methacholine is diminished by
38% in mice lacking PAR-2 and increased by 52% in mice
overexpressing PAR-2. PAR-2 deletion also reduces IgE levels
to OVA sensitization. These results indicate that PAR-2
contributes to the development of immunity and to allergic
inflammation of the airway [131].
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HDMexposure to wild-type (Wt)mice causes a profound
influx of eosinophils in bronchoalveolar lavage fluid (BALF)
and accumulation of eosinophils in lung tissue. Both of them
are strongly reduced in PAR-2 KO mice. PAR-2 KO mice
demonstrate also attenuated lung pathology and protein leak
in the bronchoalveolar space, accompanied by lower BALF
levels of the anaphylatoxins C3a and C5a [132]. Through its
serine protease activity, HDM potentiates capsaicin-evoked
Ca(2+) transient in mouse pulmonary sensory neurons
via PAR-2-phosholipase C-protein kinase C intracellular
transduction cascade [133]. HDM extract also upregulates
calreticulin (CRT) protein, activates PAR-2, increases IL-
6 expression, and induces the proliferation of asthmatic
bronchial SMC [134].

GC fecal remnants contain active serine proteases which
augment TNF-𝛼-induced MMP-9 expression by a mecha-
nism involving PAR-2, ERK, and AP-1 [135]. GC extract
has a direct effect on HAEC, in particular generating
[Ca(2+)](i) oscillations through activation of PAR-2 [136].
PAR-2-deficient mice have significantly reduced AHR, Th2,
and Th17 cytokine release, serum IgE levels, and cellular
infiltration compared to Wt mice when sensitizaed to GC
frass [137]. Alternaria proteases act through PAR-2 to induce
rapid increases in human airway epithelial [Ca(2+)](i) in
vitro and cell recruitment in vivo, the critical early steps
in the development of allergic asthma [138]. Through the
activation of PAR-2, allergen-derived proteases are sufficient
to induce CCL20 (chemokine C-Cmotif ligand 20) and GM-
CSF production in the airways leads to increased recruitment
and/or differentiation of mDC populations in the lungs,
which likely plays an important role in the initiation of
allergic airway responses [139].

A report that tryptase and SLIGKV-NH2 act on airway
smooth muscle and lead to homologous beta-adrenergic
desensitization via PAR-2 activation [140] suggests a relatively
novelmechanism involved in asthma. Supernatants of human
SMCs treated with the major mast cell product tryptase have
increased chemotactic activity for the HMC-1 mast cell line.
The effect depends on an intact catalytic site for tryptase and
can be induced by a peptide agonist for PAR-2, indicating
that the action of tryptase is via PAR-2 activation [141]. More-
over, PAR-2 activation, by sensitizing the transient receptor
potential vanilloid 1 (TRPV1) in primary sensory neurons,
may play a role in the exaggerated cough observed in certain
airways inflammatory diseases such as asthma and chronic
obstructive pulmonary disease [142]. Desensitization of PAR-
2 by repetitive agonist stimulation or siRNA-mediated PAR-
2 knockdown reveals that chitinase-mediated [Ca(2+)](i)
increase is exclusively mediated by PAR-2 activation. Chiti-
nase is found to cleave the cleavage site of PAR-2 and
enhance IL-8 production, indicating that exogenous chitinase
is a potent proteolytic activator of PAR-2 in human airway
epithelial cells [13]. In contrast, SLIGRL-NH

2
has been found

to inhibit the development of airway eosinophilia and hyper-
responsiveness in allergic mice through COX-2-mediated
generation of the anti-inflammatorymediator PGE2. SLIGRL
also displays bronchodilator activity in allergic mice. These
studies support the concept that PAR-2 exerts predominantly
bronchoprotective actions within allergic murine airways

[143]. It is also found that PAR-2 AP pretreatment is able to
inhibit airway hyperresponsiveness and bronchoconstriction
and to modulate the immune response induced by allergic
challenge in sensitized rabbits [144].

7.2.3. In Allergic Skin Disorders. It has been reported that
certain proteases signal to cells by activating PARs in the
skin. Recent studies have revealed aberrant expression and
activation of serine proteases andPAR-2 in the lesional skin of
AD patients. Upregulated proteases stimulate PAR-2 and lead
to the production of cytokines and chemokines involved in
inflammation and immune responses, itching sensation, and
sustained epidermal barrier perturbation with easier allergen
penetration. In addition, PAR-2 is an important sensor for
exogenous danger molecules, such as exogenous proteases
from various allergens, and plays an important role in AD
pathogenesis [145]. Defective skin barrier facilitates allergen
and microbe penetration and generates danger signals lead-
ing to PAR-2 activation, which triggers the production of the
major pro-Th2 cytokine TSLP and TNF-𝛼 [146]. It is also
found that allergens with protease activity can influence the
epidermal permeability barrier homeostasis through PAR-2
activation and consequent modulation of the calcium ions
in skin [147]. PAR-2 may be involved in passive cutaneous
anaphylaxis-induced scratching behavior in ICR mice [148].
Intradermal injections of histamine and SLIGRL-NH

2
induce

scratching in naive mice, but protease-associated itch and
allergy-associated itch are different from those of histamine-
induced itch [149]. It is reported that PAR-2 may also play a
crucial role in type IV allergic dermatitis [150].

7.2.4. In Allergic Colitis. Increased levels of serine proteases
activating PAR-2 are found in the lumen and colonic tis-
sue of inflammatory bowel diseases (IBD) patients. PAR-
2 activity and proinflammatory cytokines impair epithelial
barrier, facilitating the uptake of luminal aggressors that
perpetuate inflammation in IBD [151]. Trypsin and tryptase
expression and release are increased in colonic biopsies
from irritable bowel syndrome (IBS) patients compared
with control subjects. Biopsies from IBS patients release
mediators that sensitize murine sensory PAR-2 expressing
neurons in culture. Supernatants from colonic biopsies of
IBS patients also cause somatic and visceral hyperalgesia and
allodynia in mice. These pronociceptive effects are absent
in PAR-2-deficient mice, indicating that proteases released
in IBS can directly stimulate sensory neurons and generate
hypersensitivity symptoms through the activation of PAR-2
[152]. PAR-2 mediated relaxation system in colonic smooth
muscle is suppressed in experimental colitis rat model, which
may contribute to motility disorders in IBD [153].

Activation of PAR-2 on epithelial cells may directly affect
cytoskeleton contraction by triggering phosphorylation of
myosin light chain with subsequent changes in tight junc-
tion permeability [154]. Dexamethasone treatment improves
PAR-2 agonist-induced visceral hypersensitivity but does
not prevent PAR-2 agonist-induced increase in colonic per-
meability in rats [155]. It has been showed that PAR-2 is
upregulated on ileal mucosal mast cells in Crohn’s ileitis,
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which may contribute to perpetuating the inflammatory
process in the intestinal mucosa in Crohn’s ileitis [23].

It is reported that GB88 is a potent antagonist of PAR-
2 activation in colonocytes. Acute colonic inflammation
induced in rats by SLIGRL-NH

2
is inhibited by oral admin-

istration of GB88 with markedly reduced edema, mucin
depletion, PAR-2 receptor internalization, and mastocytosis.
Chronic trinitrobenzenesulfonic acid-induced colitis in rats
is ameliorated by GB88, which reduces mortality and pathol-
ogy (including colon obstruction, ulceration, wall thickness,
and myeloperoxidase release) more effectively than the clin-
ically used drug sulfasalazine, suggesting the therapeutic
potential for PAR-2 antagonist in inflammatory diseases of
colon [116].

7.3. Roles of PAR-4 in Allergic Diseases

7.3.1. In Allergic Colitis. PAR-4 is functionally expressed
in rat colon and its activation induces contraction of the
longitudinal muscle both through tetrodotoxin sensitive
release of acetylcholine and release of tachykinins, probably
from sensory nerves [156]. PAR-4 agonists modulate colonic
nociceptive response and inhibit colonic hypersensitivity
and primary afferent responses to pronociceptive mediators.
Endogenous activation of PAR-4 also plays a major role
in controlling visceral pain. These results identify PAR-4
as a previously unknown modulator of visceral nociception
[157]. The PAR-4 activation is endogenously involved as a
feedback loop to attenuate inflammatory colonic hyperalgesia
to colorectal distension [158]. Ulcerative colitis (UC) fecal
supernatants, cathepsin G (Cat-G), and PAR-4 agonist can
increase both paracellular permeability andmyeloperoxidase
activity [159]. Increased colonic paracellular permeability
that is triggered by UC fecal supernatants can be blocked by
both specific Cat-G inhibitor (SCGI) (77%) and pepducin
P4pal-10 (PAR-4 antagonist) (85%) [160]. UC supernatant
also promotes colonic hyposensitivity to distension, an effect
can be mimicked by PAR-4 AP or Cat-G. Blockage of PAR-4
or Cat-G inhibition results in colonic hypersensitivity [161].

8. Summary: Potential Roles of
Agonists and Antagonists of PARs in
Allergic Inflammation

Thepotential roles of agonists (Figure 3(a)) and antagonists of
PARs ( Figure 3(b)) in allergic inflammation are summarized.
Although PARs as a unique family of GPCRs are widely
expressed on inflammatory cells, each member of the family
appears to selectively be expressed on different cell types.
For example, mast cells express PAR-1, -2, -3, and -4 under
different conditions, but eosinophils and neutrophils seem
to only express PAR-1 and PAR-2. Selective expression of
subtypes of PARs has also been found in different structural
cells such as epithelial cells, SMCs, and fibroblasts.

Agonists of PARs including proteases can modulate
neutrophil transepithelial migration, provoke proliferation
of HUVEC, HPBFs, vascular SMC, and keratinocyte,
and induce murine wound healing, fibrin formation, and
bronchial epithelial repair. They are also able to induce

release of various types of cytokines and proinflammatory
mediators from inflammatory cells. In addition, increased
vascular leakage and enhanced bronchial smooth muscle
contraction can be elicited by agonists of PARs.

On the other hand, selective PAR-1 antagonists interfere
with platelet aggregation and cell proliferation, whereas an
antagonist of PAR-4 diminishes the systemic inflammation
and local neutrophilic inflammatory responses. A novel PAR-
2 antagonist GB88 inhibits the acute paw edema induced by
PAR-2 agonist or mast cell 𝛽-tryptase.

In AR, since PAR-2 is highly expressed in nasal mucosa,
PAR-2 activating peptide provokes higher secretion rate and
numbers of responding glands in nasal mucosa, and both
HDM- and PAR-2 activating peptide induced responses are
suppressed by ENMD-1068; the involvement of PAR-2 in
AR is confirmed. In asthma, PAR-2 staining in asthmatic
epithelium is increased and activation of PAR-2 has been
found to induce contraction of human airways and potentiate
contraction to histamine, and therefore may contribute to
asthma. Studies that revealed aberrant expression and acti-
vation of serine proteases and PAR-2 in the lesional skin
of AD patients, increased levels of PAR-2 in the lumen and
colonic tissue of IBD patients, and upregulated PAR-2 on
ileal mucosal mast cells in Crohn’s ileitis implicate that PAR-
2 is likely involved in the pathogenesis of these diseases.
Moreover, inhibition of acute colonic inflammation by GB88
suggests the therapeutic potential for PAR-2 antagonist in
inflammatory diseases.

In conclusion, increased expression and activation of
PARs, particularly PAR-2, are closely associated with inflam-
matory conditions, suggesting that this relatively novel recep-
tor family is likely to contribute to inflammatory process and
subsequently facilitates allergic disorders. However, lack of
clinically effective anti-PARdrugs andmultihospital involved
clinical investigation is not supportive for the statement that
PARs play key roles in allergy as yet.

9. Future Work

In order to further evaluate the potential roles of PARs in
allergy, the following work should be done: (1) investigating
the reasons for selective expression of PARs on different cell
types; (2) investigating influence of different types of allergens
on expression and functions of PARs; (3) investigating further
the effects of various inflammatory mediators on expression
and functions of PARs, and vice versa; (4) investigating PARs
in allergic conditions in a more and better designed clinical
way; (5) developing clinically effective drugs for treatment of
allergy.
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Figure 3: (a) Potential roles of agonists of PARs in allergic inflammation. (b) Potential roles of antagonists of PARs in allergic inflammation.
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