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Abstract

The BRAF kinase is mutated, typically V600E, to induce an active oncogenic state in a large 

fraction of melanoma, thyroid, hairy cell leukemia, and to a lesser extent, a wide spectrum of other 

cancers1,2. BRAFV600E phosphorylates and activates the kinases MEK1 and MEK2, which in turn 

phosphorylate and activate the kinases ERK1 and ERK2, stimulating the MAPK pathway to 

promote cancer3. Targeting MEK1/2 is proving to be an important therapeutic strategy, as a 

MEK1/2 inhibitor provides a survival advantage in metastatic melanoma4, which is increased 

when co-administered with a BRAFV600E inhibitor5. In this regard, we previously found that 

copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction6. 

We now show that genetic loss of the high affinity Cu transporter Ctr1 or mutations in MEK1 that 

disrupt Cu binding reduced BRAFV600E-driven signaling and tumorigenesis. Conversely, a 

MEK1-MEK5 chimera that phosphorylates ERK1/2 independent of Cu or an active ERK2 

restored tumor growth to cells lacking Ctr1. Importantly, Cu chelators used in the treatment of 

Wilson disease7 reduced tumor growth of both BRAFV600E-transformed cells and cells resistant to 

BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be 

repurposed to treat BRAFV600E mutation-positive cancers.
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Reducing Ctr1 expression suppresses MAPK phenotypes in Drosophila and signaling in 

mammalian cells. In a cupric setting MEK1 also binds Cu and Cu chelation reduces 

MEK1/2 kinase activity6. Cu and to a lesser extent silver, which is isoelectric to cuprous Cu, 

increased MEK1 phosphorylation of ERK2, whereas other metals had no effect (Extended 

Data Fig. 1a). Given these results and the dependency of BRAF mutation-positive cancers on 

MEK1/28, we investigated whether reducing Cu influx affects BRAFV600E-driven 

tumorigenesis. BRAFV600E was expressed in immortalized Ctr1+/+ and Ctr1-/- mouse 

embryonic fibroblasts (MEFs)9 and intracellular Cu deficiency of the latter confirmed by 

increased CCS levels10 (Fig. 1a,b). The BRAFV600E-transformed Ctr1-/- MEFs exhibited 

reduced phosphorylated ERK1/2 (P-ERK1/2), cell growth, and tumor kinetics, effects 

rescued by expressing CTR1, but not the transport-defective mutant11 CTR1M154A (Fig. 1a-

d and Extended Data Figs. 2a-c, 10a,b). Thus, BRAFV600E requires the Cu-transport 

function of CTR1 for robust signaling and tumorigenesis.

To assess whether reducing Cu binding in MEK1 affects BRAFV600E-driven tumorigenesis, 

targeted mutagenesis revealed that M187A, H188A, M230A, and H239A as well as one 

other mutation reduced the ability of MEK1 to bind a Cu-charged resin and phosphorylate 

ERK1/2 (Extended Data Fig. 3a-c). Metal catalyzed oxidation reaction (MCO) followed by 

mass spectrometry identified oxidation at H188, M230A, H239, as well as two other sites 

(Fig. 1e and Extended Data Fig. 4), suggesting that these residues reside within 10 Å of a Cu 

atom12. We thus focused on H188, M230, H239, as well as M187, as although the oxidation 

status of M187 could not be determined, it lies adjacent to H188 and is similarly required for 

Cu-binding and kinase activity (Fig. 1e and Extended Data Figs. 3c, 4e). These four amino 

acids are conserved in MEK2 (Extended Data Fig. 5), which like MEK1, also bound a Cu-

charged resin and was inhibited by tetrathiomolybdate (TTM), a Cu chelator (Extended Data 

Fig. 1b,c). In the three-dimensional MEK1 structure13, these four amino acids also cluster 

such that each is no more than 12.5 Å from the next (Fig. 1e). Combined mutations at these 

sites progressively reduced MEK1 kinase activity and affinity for Cu, with mutations at all 

four sites (copper-binding mutant) having the largest defect in kinase activity, even in the 

presence of a constitutively-active (DD)14 mutation or excess Cu (Fig. 1f-j). Nevertheless, 

MEK1CBM was still phosphorylated in BRAFV600E-transformed cells and underwent 

cooperative unfolding and possessed similar thermostability relative to MEK1, as assessed 

by both circular dichroism and differential scanning fluorimetry (Fig. 1k,l and Extended 

Data Figs. 6a-d, 10c). To rule out that the CBM mutation reduced kinase activity 

independent of Cu binding, we took advantage of the fact that MEK5 is highly homologous 

to MEK1/2, yet lacks two sites important for Cu binding (Extended Data Fig. 5) and neither 

bound the Cu-charged resin nor exhibited changes in kinase activity in the presence of Cu or 

TTM (Fig. 1m,n). Specifically, introducing a CBMEquivalent mutation into MEK5 was 

found to have no overt effect on the ability of MEK5 to phosphorylate substrates MBP or 

ERK5 in vitro or in cells (Fig. 1o,p). Given these results, we tested and found that the 

reduction in P-ERK1/2 and tumor growth of BRAFV600E-transformed, immortalized 

Ctr1+/+ MEFs upon knockdown of endogenous Mek1 mRNA by shRNA (Fig. 1k) was 

rescued by expressing RNAi-resistant MEK1, but not MEK1CBM (Fig. 1l,q and Extended 

Data Fig. 10c). Thus, under normal Cu homeostasis, inhibiting Cu binding in MEK1 retards 

BRAFV600E-driven signaling and tumorigenesis.
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We next tested whether bypassing the requirement of MEK1/2 for Cu restores BRAFV600E-

driven signaling and tumorigenesis to Ctr1-/- MEFs. MEK1 was engineered to be 

independent of Cu by fusing the ERK1/2-binding region of MEK115 to the kinase domain of 

MEK5, rendered active (DD mutation)16 as MEK5 is a substrate of the MAPKKK, MEKK2 

and MEKK317. Expressing MEK1-MEK5DD resulted in high levels of P-ERK1/2 in 

immortalized Ctr1-/- MEFs (Fig 1r,s), in contrast to similarly activated MEK1DD, which 

remained sensitive to TTM (Fig. 1j). Furthermore, MEK1-MEK5DD restored tumor growth 

to these Ctr1-/- MEFs (Fig. 1t and Extended Data Fig. 10d). Similarly, expressing 

ERK2R67S, which increases ERK2 autophosphorylation in a MEK1/2-independent 

fashion18, ERK2D321N, which renders the kinase insensitive to phosphatases19, or 

ERK2GOF, which combines these two mutations, also led to robust ERK1/2 phosphorylation 

and restored tumor growth to the Ctr1-/- MEFs (Fig. 1u-w and Extended Data Fig. 10d). 

Thus, while reducing Cu levels will certainly have pleiotropic effects20 that could affect 

MAPK signaling21, activating the MAPK pathway in a fashion independent of Cu 

nevertheless restores MAPK signaling and tumorigenesis in cells deficient in Cu influx.

To investigate the relationship between Cu and endogenous oncogenic BRAF in 

tumorigenesis, CTR1 was stably knocked down by shRNA in BRAF mutation-positive and 

mutation-negative melanoma cell lines. Knockdown of CTR1 reduced P-ERK1/2 levels in 

all tested cell lines, although only the BRAF mutation-positive cell lines exhibited reduced 

tumor growth (Fig. 2a-c and Extended Data Fig. 10b), consistent with a dependency of 

BRAFV600E-tumorigenicity on MEK1/28. Knockdown of CTR1 also inhibited the tumor 

growth of one of two tested NRAS mutation-positive melanoma cell lines (Extended Data 

Fig. 7a,b). Finally, loss of Ctr1 had no effect on the ability of a different oncogene, 

CMYCT58A, to promote tumor growth (Fig. 2d,e). These results suggest a specific 

requirement for Cu in cancers particularly dependent upon the MAPK pathway.

We next evaluated the requirement for Cu influx in vivo during spontaneous cancer 

development. Mice harboring floxed conditional null or wild-type Ctr1 alleles22 were 

crossed into a BrafCA/+;Trp53flox/flox (BP)23 background, which upon intranasal 

administration of adenovirus expressing Cre recombinase (AdCre) converts BrafCA to an 

oncogenic BrafV600E allele and Trp53flox to a null allele, leading to the development of lung 

adenocarcinomas23. Cohorts of Ctr1+/+ and Ctr1flox/flox BP mice were administered AdCre 

to induce cancer development, and in the latter case, to convert Ctr1flox/flox to null alleles. 

Tumors arising in both cohorts exhibited the appropriate recombination of the BrafCA, 

Trp53flox, and Ctr1flox alleles and targeted loss of Ctr1 did not result in a weight loss 

(Extended Data Fig. 8a,b). Ctr1flox/flox BP mice exhibited a decrease in the number of visible 

surface lesions, area of abnormal lung tissue, and P-ERK1/2 staining in tumors as well as a 

15% survival advantage over Ctr1+/+ BP mice (Fig. 3a-g and Extended Data Fig. 10a,b). 

Thus, the loss of Ctr1 retards BRAFV600E-driven tumorigenesis, leading to a survival 

advantage.

Cu chelators D-penicillamine, trientine, and TTM are efficacious, long-term treatments for 

lowering systemic Cu levels in individuals with the Cu-overload disorder Wilson disease7. 

Capitalizing on these drugs, we tested and found that TTM reduced soft agar growth 

BRAFV600E-transformed, immortalized MEFs, but not the MEFs expressing ERK2GOF, 
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MEK1-MEK5DD, or CMYCT58A. Soft agar growth of BRAF mutation-positive melanoma 

cell lines was also inhibited by TTM to varying degrees in a dose-dependent manner, while 

BRAF/NRAS mutation-negative lines were resistant to TTM (Fig. 4a and Extended Data Fig. 

10e). Oral TTM treatments for only two weeks also reduced the size of tumors in mice 

injected with either BRAFV600E-transformed, immortalized MEFs or the BRAF mutation-

positive melanoma cell line DM440, with no negative effect on mouse weight (Fig. 4b,c and 

Extended Data Figs. 9, 10e). This could be ascribed to a reduction in MEK1/2 kinase 

activity, as TTM halved the number of P-ERK1/2-positive cells in BRAFV600E-driven 

tumors and failed to inhibit tumor growth of ERK2GOF-transformed cells (Fig. 4d,e). To 

investigate more aggressive Cu-reducing therapeutic modalities, mice injected with 

BRAFV600E-transformed, immortalized MEFs were provided a Cu-deficient (CuD) diet 

supplemented with Cu and orally treated with vehicle alone for two weeks, or provided with 

a CuD diet and treated for two weeks with vehicle alone, oral TTM, or oral TTM followed 

by oral trientine (Fig. 4f). Tumors in mice fed a CuD diet trended towards being smaller, 

although this did not reach significance (P=0.055). Combining this diet with TTM blocked 

the development of visible tumors during the two weeks of treatment, although tumors 

quickly emerged after treatment ceased. However, mice treated with oral trientine after TTM 

exhibited a more durable response (Fig. 4g and Extended Data Fig. 10e). Thus, Cu-reducing 

strategies used to manage Wilson disease7 could be repurposed for the treatment of 

BRAFV600E-driven cancers.

BRAFV600E inhibitors such as vemurafenib have a limited duration of response due to 

acquired resistance often associated with reactivation of MEK1/224. One reported 

mechanism of resistance is acquisition of an activating C121S mutation in MEK125. 

Interestingly, although MEK1C121S had elevated kinase activity in vitro, it still bound to the 

Cu-charged resin and its kinase activity was still inhibited by TTM (Fig. 4h,i). Moreover, 

although expressing MEK1C121S in the BRAF mutation-positive melanoma cell line A375 

increased P-ERK1/2 levels and imparted resistance to vemurafenib compared to the same 

cells expressing MEK1, the MEK1C121S-expressing A375 cells nevertheless still remained 

sensitive to TTM in vivo (Fig. 4j-l and Extended Data Fig. 10f). Thus, Cu chelation reduces 

tumorigenicity driven by a mutation that confers resistance to a BRAFV600E inhibitor.

While the detailed mechanism underlying the requirement of Cu for robust MEK1/2 kinase 

activity remains to be elucidated, we show that decreasing Cu influx, Cu bioavailability, and 

binding of Cu to MEK1 reduced MEK1(2) kinase activity and oncogenic BRAF-driven 

tumorigenesis. Cu chelators, which are safe and economical drugs dosed daily for upwards 

of decades to manage Cu levels in Wilson disease patients7, also reduced oncogenic BRAF- 

and MEK1-driven tumorigenesis. As such, inhibiting MEK1/2 kinase activity with Cu 

chelators, perhaps in combination with other MAPK inhibitors, may merit clinical 

consideration for the treatment of not only BRAF mutation-positive cancers, but cancers 

developing resistance to BRAFV600E and potentially even MEK inhibitors.
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METHODS

Cell lines

Ctr1+/+ and Ctr1-/- immortalized (with SV40) MEFs were previously described9. A375 was 

purchased from ATCC. DM175, DM440, DM443, DM598, DM646, DM738, and DM792 

were provided by D. S. Tyler (Duke University)29. Mouse lung cancer cell lines were 

created and cultured as previously described30. Ctr1+/+ and Ctr1-/- immortalized MEFs, 

A375, DM175, DM646, DM440, DM598, DM738, and DM792 were stably infected with 

retroviruses derived from pBabe, pWZL, or pSUPER-based vectors (see plasmids below) as 

previously described31. Ctr1+/+ immortalized MEFs were stably transfected with pCMV-

based vectors (see plasmids below) using established protocols.

Plasmids

pBABEpuro-MYC-HIS-BRAFV600E, pSUPER-retro-puro-tetO-RALB-scramble (encoding 

RALB scramble shRNA), pBABEpuro-CMYCT58A, and pCMV-HA-MEK1WT were 

previously described6,32-34. pBABEbleo-FLAG-BRAFV600E was created by PCR 

subcloning BRAFV600E from the pBABEpuro-MYC-HIS-BRAFV600E plasmid with primers 

designed to include an N-terminal FLAG-tag. pWZLblasti-CTR1WT and -CTR1M154A were 

created by PCR subcloning CTR1WT or CTR1M154A from the pCDNA3.1-CTR1WT or -

CTR1M154A plasmids11. pGEX6P1-GST-HA-MEK1WT and pWZLblasti-HA-MEK1WT 

were created by PCR subcloning MEK1WT from the pENTR1-MEK1WT plasmid35 with 

primers designed to include an N-terminal HA-tag. pGEX6P1-GST-HA-MEK1CBM and 

pWZLblasti-HA-MEK1CBM (CMB: M187A/H188A/M230A/H239A), pGEX6P1-GST-HA-

MEK1C121S, pWZLblasti-HA-MEK1C121S, pGEX6P1-GST-HA-MEK1M187A/H188A, and 

pGEX6P1-GST-HA-MEK1M230A/H239A were created by introducing mutations 

corresponding to the indicated amino acid changes by site-directed mutagenesis into 

MEK1WT from the pENTR1-MEK1WT plasmid35 followed by PCR subcloning with primers 

designed to include an N-terminal HA-tag. pGEX6P1-GST-HA-MEK5WT and pWZLblasti-

HA-MEK5WT were created by PCR subcloning MEK5WT from the pWZLneo-Myr-Flag-

MEK5 plasmid32. pGEX6P1-GST-HA-MEK5CBM-E and pWZLblasti-HA-MEK5CBM-E 

(CBM-E: L280A/H281A/M323A/Q332A) were created by introducing mutations 

corresponding to the indicated amino acid changes by site-directed mutagenesis into 

MEK5WT from the pWZLneo-Myr-Flag-MEK5 plasmid32 followed by PCR subcloning 

with primers designed to include an N-terminal HA-tag. pGEX6P1-GST-HA-ERK5K84R 

was created by introducing a mutation corresponding to the indicated amino acid change by 

site-directed mutagenesis into ERK5WT from the pWZLneo-Myr-Flag-ERK5 plasmid32 

followed by PCR subcloning with primers designed to include an N-terminal HA-tag. 

pWZLblasti-HA-ERK5WT was created by PCR subcloning ERK5WT from the pWZLneo-

Myr-Flag-ERK5 plasmid32 with primers designed to include an N-terminal HA-tag. 

pBabepuro-HA-MEK1-MEK5DD and pWZLblast-HA-MEK1-MEK5DD (DD: S311D/

T315D) were created by introducing mutations corresponding to the indicated amino acid 

changes by site-directed mutagenesis into MEK5WT from the pWZLneo-Myr-Flag-MEK5 

plasmid32 followed by two-step PCR to fuse MEK1 (nucleotides 1-201) to MEK5 

(nucleotides 498 to 1344) in-frame with primers to include an N-terminal HA-tag. 

pGEX6P1-GST-HA-ERK2K54R, pWZLblasti-HA-ERK2R67S, pWZLblasti-HA-ERK2D321N, 
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pBabepuro-HA-ERK2GOF, and pWZLblasti-HA-ERK2GOF (GOF: R67S/D321N) were 

created by introducing mutations corresponding to the indicated amino acid changes by site-

directed mutagenesis into ERK2WT from the pDONR223-ERK2WT plasmid36 followed by 

PCR subcloning with primers designed to include an N-terminal HA-tag. pSUPER-retro-

puro-tetO-CTR1-shRNA was created to express the human CTR1 shRNA target sequence 

5’-AAAGCCCAGCTTTCTCTTTGG. pSUPER-retro-puro-tetO-Mek1-shRNA was created 

to express the mouse Mek1 shRNA target sequence 5’-GCCTCTCAGCTCATATGGAAT37. 

pCMV-HA-MEK1 encoding mutants M94A, H100A, H119A, M187A, H188A, C207A, 

M230A, H239A, M256A, M308A, C341A, and H358A were created by site-directed 

mutagenesis of MEK1WT from the pCMV-HA-MEK1WT plasmid.

Reverse transcriptase-PCR

RNA was purified from MEFs or tumor cell lines and reverse transcribed (RT) as previously 

described30, and then PCR amplified with the primers 5’-

ATCCTCATCAGCTCCCAATG-3’ and 5’-CACATCACCATGCCACTTTC-3’ to detect 

human BRAF; 5’-CTGTTTTCCGGTTTGGTGAT-3’ and 5’-

TGCCCAACAGTTTTGTGTGT-3’ to detect human CTR1; 5’-

ATGAACCATATGGGGATGAACCATA-3’ and 5’-TCAATGGCAGTGCTCTGTGA 

TGTC-3’ to detect mouse Ctr1; 5’-GCACAGTCAAGGCCGAGAAT-3’ and 5’-

GCCTTCTCCATGGTG GTGAA-3’ to detect mouse Gapdh; 5’-

CCTTGAGGCCTTTCTTACCC-3’ and 5’-CCCACGATGTACGGAGAGTT-3’ to detect 

human MEK1; 5’-GTGAACTCACGTGGGGAGAT-3’ and 5’-

CAGGAGGAGGAATGGGGTAT-3’ to detect mouse Mek1; 5’-

CCTTGCAGAAGAAGCTGG AG-3’ and 5’-TCGGGACATGATATGCTTTG-3’ to detect 

human MEK1-MEK5DD; 5’-TGATCACACA GGGTTCCTGA-3’ and 5’-

TGGAAAGATGGGCCTGTTAG-3’ to detect human ERK2; 5’-GAGAGAC 

CCTCACTGCTG-3’ and 5’-GATGGTACATGACAAGGTGC-3’ to detect human GAPDH; 

5’-ACGA GCACAAGCTCACC-3’ and 5’-TTTCCACACCTGGTTGC-3’ to detect human 

CMYC. The fold change in the ratio of CTR1 mRNA to total GAPDH mRNA was measured 

in ImageJ software by boxing each band per representative image using the rectangular 

selection tool, and calculating the total area of the band in pixels. The total area of the CTR1 

mRNA band in pixels was normalized to the total area of the total GAPDH mRNA band in 

pixels. The fold change is shown in figures.

Immunoblot analysis

Equal amount of lysates were isolated from the indicated cell lines after 24 hours of serum 

starvation and then resolved by SDS-PAGE and immunoblotted as previously described6 

with one of the primary antibodies: mouse anti-MEK1, rabbit anti-ERK2, rabbit anti-MEK2, 

mouse anti-MEK1/2, rabbit anti-ERK1/2, rabbit anti-ERK5, rabbit anti-

phospho(Ser217/221)-MEK1/2, rabbit anti-phospho(Thr202/Tyr204)-ERK1/2, rabbit anti-

phospho(Thr218/Tyr220)-ERK5 (Cell Signaling Technology), mouse anti-HA (Covance), 

rabbit anti-CCS (Santa Cruz Biotechnology), mouse anti-β-actin (Sigma), mouse anti-MEK5 

(BD Transductions Laboratories), rat anti-myelin basic protein (Millipore), or mouse anti-

phospho(Thr98)-MBP (Millipore), followed by detection with one of the horseradish 

peroxidase conjugated secondary antibodies: goat anti-rabbit IgG, goat anti-mouse IgG 
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(Invitrogen), goat anti-mouse light chain-specific IgG, or mouse anti-rabbit light chain 

specific IgG (Jackson Immuno Research Laboratories) using ECL (GE Healthcare) or 

SuperSignal West Femto Chemiluminescent substrate (Pierce) detection reagents. The fold 

change in the ratio of phosphorylated protein to total protein was measured in ImageJ 

software by boxing each band per representative image using the rectangular selection tool, 

and calculating the total area of the band in pixels. The total area of the phosphorylated 

protein band in pixels was normalized to the total area of the total protein band in pixels. 

The average fold change is shown in figures.

Immunoprecipitation

500 μg of cell lysate was incubated with 5 μl of mouse anti-HA antibody (Covance) 

overnight at 4 °C. The immunoprecipitates were collected with GammaBind G Sepharose 

beads (GE Healthcare) for 2 hours at 4 °C. SDS-PAGE analysis and immunoblot were 

performed as described above.

Protein purification

Recombinant GST-ERK2, GST-MEK1, GST-ERK5, and GST-MEK5 proteins were 

expressed from pGEX-based vectors (see plasmids above) and purified as previously 

described6. Recombinant MEK1WT, MEK1DD, MEK1CBM, and MEK1CBM/DD proteins 

were a gift from A. Stewart, E. Johnson and C. Cronin (Pfizer). Recombinant GST-MEK2 

and GST-MEK5 were purchased from Abnova. Recombinant MBP was purchased from 

Millipore.

In vitro kinase assays

MEK1, MEK2, and MEK5 in vitro kinase assays were performed as previously described6. 

Briefly, 0.6 μg of recombinant GST-ERK2K54R, GST-ERK5K84R, or MBP and 1.4 μg of 

recombinant MEK1, GST-MEK1, 2, or 5 or mutants thereof were incubated in 180 μl of 

kinase buffer in the presence or absence of 2.5 molar equivalent of CuSO4, AgNO3, 

FeNH2SO4, NiSO4, or ZnSO4, (Fig. 1h, Extended Data Fig. 1a), a seven-fold titration of 

TTM (Sigma) from 0 to 50 μM (Fig. 1f), a fixed 50 μM concentration of TTM (Fig. 1j,n, 4g, 

Extended Data Fig. 1c), and/or a fixed concentration of 2.5 μM CuSO4 (Fig. 1n, Extended 

Data Fig. 1c) at 22°C for 30 minutes.

In vitro and in vivo copper binding

1 μg of recombinant GST-MEK1, GST-MEK2, GST-MEK5 proteins or mutants thereof 

were incubated in 500 μl of RIPA containing 30 μl Cu-pentadentate resin (Affiland) or 30 μl 

of free pentadentate resin (Affiland) for 2 hours at 4°C. SDS-PAGE analysis and 

immunoblot were performed as described above. In vivo Cu binding was performed as 

described previously6.

Metal catalyzed oxidation, mass spectrometry and data analysis

GST-MEK1 was loaded with cupric Cu using a CuSO4-histidine complex as described 

previously6. Metal catalyzed oxidation (MCO) reactions were performed as described 

previously28. Briefly, MCO reactions were performed at 37 °C in 50 mM HEPES pH 8.0, 
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150 mM NaCl containing 40 μM GST-MEK1, 100 mM ascorbate and 1 mM H2O2. 

Untreated MEK1 was included as the control. The reactions were stopped by precipitating 

the proteins in methanol/chloroform followed by reduction with 2.5 mM DTT at 37 °C for 

30 minutes and alkylation with 20 mM iodoacetamide in the dark at room temperature for 30 

minutes38,39. In-solution digestion was performed overnight at 37 °C with trypsin (1:40 

enzyme:protein ratio; modified, sequencing grade, Promega), which hydrolyzes peptide 

bonds at the carboxyl end of lysine and arginine, or chymotrypsin (1:60 enzyme:protein 

ratio, Sigma), which hydrolyzes peptide bonds at the carboxyl end of aromatic or large 

hydrophobic side chains of tyrosine, tryptophan, phenylalanine, methionine and leucine. The 

digested peptide samples were desalted with stage tips40 and lyophilized with a SpeedVac. 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses were performed 

on a Thermo Scientific LTQ Orbitrap XL mass spectrometer (Thermo Scientific) with a 

Finnigan Nanospray II electrospray ionization source. Digested peptides were injected onto 

a 75 μm × 150 mm BEH C18 column (particle size 1.7 μm, Waters) and separated using a 

Waters nanoACQUITY Ultra Performance LC™ (UPLC™) System (Waters). The LTQ 

Orbitrap XL was operated in the data-dependent mode using the TOP10 strategy as 

previously described41. In brief, each scan cycle was initiated with a full MS scan of high 

mass accuracy [375–1,800 m/z; acquired in the Orbitrap XL at 6 × 104 resolution setting and 

automatic gain control (AGC) target of 106], which was followed by MS/MS scans (AGC 

target 5,000; threshold 3,000) in the linear ion trap on the 10 most abundant precursor ions. 

Selected ions were dynamically excluded for 30 seconds. Singly charged ions were excluded 

from MS/MS analysis. MS/MS spectra were searched by using the SEQUEST algorithm 

against the human MEK1 sequence. Search parameters allowed for two missed tryptic 

cleavages, a mass tolerance of ± 80 ppm, a static modification of 57.02146 Daltons 

(carboxyamidomethylation) on cysteine, and dynamic modifications of 15.99491 Dalton 

(oxidation) on methionine or histidine. The MS/MS spectra of matched peptides were 

validated manually. Modeling of the distance between the thiol groups of methionines or 

imidazole groups of histidines was performed using the three-dimensional structure of 

MEK1 in complex with magnesium and ATP-γS determined at 2.1 Å (PDB ID: 3EQD)13.

Circular dichroism spectroscopy

Circular dichroism data were collected on a JASCO J-815 CD spectrometer with a JASCO 

Peltier device and water bath to control the temperature. Experiments were performed in a 1-

mm cuvette at a protein concentration of 5 μM in 20 mM Tris (pH 8.0) and 100 mM NaCl. 

Far UV scans were collected from 200 nm to 250 nm. Thermal denaturation of MEK1 and 

MEK1CBM proteins monitored at a 222 nm to estimate the protein melting temperature. The 

temperature ramp rate was 1 °C/minute and data points were collected every 1 °C. All data 

are reported in units of mean residue ellipticity, which was calculated as follows: 

, where θraw is the ellipticity in degrees, MRW is 

, c is the protein concentration in g/ml, and l is the pathlength of the 

cuvette in cm, as previously described26.
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Differential scanning fluorimetry

Differential scanning fluorimetry data were collected on a CFX384 Touch™ Real-Time 

PCR Dectection System (Bio-Rad) at a protein concentration of 1.3 μM in 25 mM Tris-HCl 

(pH 7.5), 20 mM MgCl2, and 2 mM DTT using SYPRO orange as previously described27. 

The Tm was calculated by determining the maximum of the first derivative curve of 

normalized data in Prism 5 (GraphPad) as previously described27.

Mouse xenografts, drug treatments, and diet alteration

5 × 106 MEFs or 107 melanoma cells resuspended in phosphate buffer saline were injected 

subcutaneously into flanks of SCID/beige mice (Charles River Laboratory) as previously 

described42. Drug treatments were as follows: vehicle [1% methylcellulose (Sigma), 1% 

dimethyl sulfoxide (DMSO, Sigma)], 2.0 mg tetrathiomolybdate (TTM, Sigma) in vehicle, 

or 20 mg/kg vemurafenib (Chemietek) in vehicle every other day (q.o.d) via oral gavage. 

Mice were fed a normal diet (PMI 5053 Picolab Mouse Diet 20, LabDiet) or where 

indicated, a Cu-deficient diet (CuD diet, TD.80388, Harlan Teklad). Mice fed a CuD diet 

mice were administered deionized H2O (diH2O) supplemented with 20 mg/L CuSO4, diH2O 

alone, or diH2O supplemented with 3 g/L trientine dihydrocholoride (Sigma). All studies 

were approved by the Duke University Institutional Animal Care and Use Committee. 

Statistical analysis of tumor volumes at end point was performed using a one-tailed, 

unpaired T-test, with a 95% confidence interval for two group datasets or one-way analysis 

of variance (ANOVA) with a 95%, 99%, or 99.9% confidence interval and Tukey’s multiple 

comparison post test for ≥ 3 datasets in Prism 5 (GraphPad). Statistical analysis of 

percentage of mice with tumors ≥ 1.0 cm3 versus time (days) was analyzed using a survival 

curve log-rank (mantel-cox) test in Prism5 (GraphPad).

Mouse lung cancer model

Ctr1flox/flox mice22 were interbred with BrafCA/+; Trp53flox/flox (BP) mice23, a generous gift 

of D.G. Kirsch (Duke University), for three generations to generate BrafCA/+; Trp53flox/flox; 

Ctr1+/+ and BrafCA/+; Trp53flox/flox; Ctr1flox/flox mice. PCR was performed to detect wild-

type, conditional, and recombined alleles of Braf, Ctr1, and Trp53, as previously 

described22,23. Cohorts of these animals were administered 6 × 106 pfu adenoviral Cre 

(University of Iowa) intranasally between 69 and 85 days of age. Mice were then monitored 

and euthanized three months later or at moribundity endpoints. All studies were approved by 

the Duke University Institutional Animal Care and Use Committee. Statistical analysis of 

percent survival versus time (days) was conducted using a survival curve log-rank (mantel-

cox) test in Prism 5 (GraphPad).

Analysis of lung tumors

To quantitate the number of visible surface tumors per mouse, lungs were resected from five 

Ctr1+/+ and five Ctr1flox/flox BP mice 3 months after Ad-Cre treatment and the number of 

tumors visible on the surface of lungs were counted. Statistical analysis of the average 

number of tumors per mouse was performed using a one-tailed, unpaired T-test, with a 95% 

confidence interval for two group datasets. To quantitate the percent of abnormal lung 

tissue, lungs were resected from five Ctr1+/+ and five Ctr1flox/flox BP mice 3 months after 
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Ad-Cre treatment, fixed in 10% formalin, and paraffin embedded. Sections were 

deparaffinized, rehydrated, and subjected to epitope retrieval before staining with 

Hematoxylin (Surgipath) and Eosin (Fisher Scientific). Photographs were taken at low 

power on an Olympus Vanox S microscope to encompass the entire lung, images were 

blinded, and then the abnormal areas of adenoma and adenocarcinoma from each 

micrograph were circumscribed using Adobe Photoshop and the abnormal area in pixels was 

expressed as a percentage of the total lung area from all micrographs. Statistical analysis of 

the average percent of abnormal tissue per mouse was performed using a one-tailed, 

unpaired T-test, with a 95% confidence interval for two group datasets.

Immunohistochemistry

Three xenograft tumors from mice injected with BRAFV600E-transformed and SV40-

immortalized Ctr1+/+ MEFs or lungs resected at moribundity endpoint from Ctr1+/+ and 

Ctr1flox/flox BP mice treated with Ad-Cre were fixed in 10% formalin and paraffin 

embedded. Sections were deparaffinized, rehydrated, and subjected to epitope retrieval and 

stained with an anti-P-ERK1/2 (Thr202/Tyr204) antibody (Cell Signaling), followed by 

peroxidase-based detection with Vectastain Elite ABC Kits (Vector Labs) and 

counterstaining with Hematoxylin. Photographs were taken of high-power fields of highest 

positivity (P-ERK IHC) on an Olympus Vanox S microscope. Images were blinded and 

tumors were circumscribed in P-ERK1/2-stained tissue images using the freehand selection 

tool in Image J, and the total area of the tumor in pixels was recorded. Tumor images were 

copied and pasted to new, blank images and color thresholding was applied to determine 

positive-staining areas using the same parameters for each tumor image. Areas staining 

positive by these parameters were selected and the positive-staining area in pixels was 

recorded. Percent positive-staining area was calculated by dividing the positive-staining area 

of the tumor in pixels by the total area of the tumor in pixels. Statistical significance was 

determined using unpaired, one-tailed t-tests between treated and untreated, or between 

Ctr1+/+ and Ctr1flox/flox cohorts using Prism 5 (GraphPad).

Cell growth and soft agar assays

For growth curve experiments, cells were plated at a density of 5,000 cells/well in six 

replicate wells in four 24-well plates. At days 0, 1, 2, and 3 one plate was fixed for five 

minutes in formalin, washed with PBS and stained for 30 minutes with 0.1% crystal violet 

(Sigma) and allowed to dry for at least 24 hours. Stain was extracted in 200 μl of 10% acetic 

acid in each well, transferred to 96-well plate, and absorbance at 600 nm was measured 

using a GloMax Multi Detection System plate reader (Promega). Relative growth was 

determined by normalization to the signal at day 0 and plotted in Prism 5 (GraphPad). 

Anchorage-independent growth was assayed in 6-well plates with 1 ml of 0.6% bactoagar 

media solution (final concentration 1x DMEM, 10% FBS, 1x Penicillin/Streptomycin) as a 

bottom support layer. 5 × 104 cells per well were resuspended in DMEM (10% FBS, 1x 

Penicillin/Streptomycin) and mixed 1:1 with 0.6% bactoagar media solution with an 

appropriate concentration of DMSO or TTM to give a final bactoagar concentration of 0.3%, 

100 nM TTM, 400 nM of TTM, or an equivalent amount of DMSO and plated in triplicate. 

Each well was fed on days 3, 7, 14, and 21 with 300 μl of DMEM with the appropriate 

concentration of DMSO or TTM. Colonies were counted between days 21 and 28. Statistical 

Brady et al. Page 10

Nature. Author manuscript; available in PMC 2014 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis of soft agar growth was performed using a two-way ANOVA with a 99.9% 

confidence interval and Tukey’s multiple comparison post test in Prism 5 (GraphPad).

EXTENDED DATA

Extended Data Figure 1. CuSO4 stimulates MEK1/2 kinase activity in vitro
Detection of the amount of in vitro phosphorylated (P) recombinant GST-tagged kinase-

inactive ERK2K54R protein by a, recombinant GST-tagged MEK1 in the presence, when 

indicated, of 2.5 molar equivalents of CuSO4 (Cu), AgNO3 (Ag), FeNH2SO4 (Fe), NiSO4 

(Ni) or ZnSO4 (Zn) or c, recombinant GST-tagged MEK2 in the presence, when indicated, 

of 2.5 μM CuSO4 and/or 50 μM TTM. Total (T) levels of ERK2, MEK1 and MEK2 serve as 

loading controls. b, Immunoblot detection of the amount of recombinant GST-tagged MEK2 

protein bound to a resin charged with (Cu) or without (-) Cu. Input serves as a loading 

control. Gel images are representative of two replicates.

Extended Data Figure 2. Genetic ablation of Ctr1 decreases BRAFV600E-mediated cell growth 
and tumorigenesis
a, Cell growth, as measured by crystal violet staining, of BRAFV600E-transformed, 

immortalized Ctr1+/+ (black circle) or Ctr1-/- (red square) MEFs (plated in sextuplicate) 

over a period of three days. Representative of three experiments. b, Representative resected 

tumors (scale bar = 1 cm) at 20 days post injection and c, Kaplan-Meier analysis of 

percentage of mice with tumor volume ≥ 1.0 cm3 versus time (days) of mice (n=8) injected 

with BRAFV600E-transformed, immortalized Ctr1+/+ (black line) or Ctr1-/- (red line) MEFs. 

****P<0.0001.
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Extended Data Figure 3. Identification of Cu-binding mutants of MEK1 that reduce ERK1/2 
phosphorylation
a, Immunoblot detection of the amount of HA-tagged wild-type (WT) MEK1 and an 

example of one MEK1 mutant tested (H188A) that bound to a Cu-charged resin. Input 

serves as a loading control. b, Immunoblot detection of the amount of phosphorylated (P) 

and/or total (T) ERK1/2 or HA-MEK1 protein in immortalized Ctr1+/+ MEFs stably 

expressing HA-tagged wild-type (WT) MEK1 or an example of one MEK1 mutant tested 

(H188A). c, Summary of whether the indicated MEK1 point mutants did (YES) or did not 

(NO) exhibit a reduction in binding to the Cu-charged resin or show a reduction in the levels 

of phosphorylated (P) ERK1/2 when stably expressed in immortalized Ctr1+/+ MEFs. Gel 

images are representative of two replicates.
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Extended Data Figure 4. Amino acids in MEK1 identified to be oxidized by the MCO reaction 
followed by MS/MS
Representative annotated MS/MS fragmentation spectra for five indicated MEK1-derived 

peptides containing oxidized residues a, MEK1H87 and MEK1M94 b, MEK1H100 

c,MEK1H188 d, MEK1M230 and e, MEK1H239 highlighted in red. The peak heights are the 

relative abundances of the corresponding fragmentation ions, with the annotation of the 

identified matched amino terminus-containing ions (b ions) in blue and the carboxyl 

terminus-containing ions (y ions) in red. For clarity, only the major identified peaks are 

labeled. f, Amino acid sequence of human MEK1 with the peptides identified by MS/MS 

underlined (red: trypsin digest and blue: chymotrypsin digest). Amino acids oxidized only in 

the presence of H2O2 in one to three independent MCO reactions are denoted in red. Amino 
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acids, that when mutated to alanine reduced both binding of MEK1 to a Cu-charged resin 

and phosphorylation of cellular ERK2, are boxed (from Extended Data Fig. 3c).

Extended Data Figure 5. Alignment of the amino acid sequence of MEK1, MEK2, MEK5, and 
MEK1-MEK5
The amino acid sequence of human MEK1, MEK2, MEK5, and the MEK1-MEK5 chimeric 

protein (without the DD mutation) aligned using Clustal W. Black letters: amino acids. 

Colored letters: the four amino acids mutated in MEK1CBM to reduce Cu-binding (blue: 

conserved between MEK1, MEK2 and MEK5, red: conserved only between MEK1 and 

MEK2). Dashes (-): gaps in the alignment.
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Extended Data Figure 6. Protein purification and biochemical analysis of wild-type and CBM 
versions of MEK1
a, Coomassie Brilliant Blue detection of the amount of wild-type (WT) or CBM mutant 

(CBM) purified recombinant GST-tagged MEK1 protein in the absence or presence of 

precision protease for cleavage of GST. b, Circular dichroism spectra at increasing 

wavelengths (nm) c, thermal denaturation monitored at 222 nm at increasing temperature 

(°C) and d, differential scanning fluorimetry at increasing temperature (°C, left) and the 

average estimated melting temperature (right) of purified recombinant MEK1WT (black 

cirlce, line,) and MEK1CBM (red square, line). Data are representative of two replicates.

Extended Data Figure 7. Tumorigenic growth of NRAS mutation-positive human melanoma 
cancer cell lines upon knockdown of CTR1
a, RT-PCR detection of the amount of endogenous CTR1 and GAPDH mRNA and b, mean 

tumor volume (cm3) ± s.e.m. versus time (days) in mice (n=3) injected with the NRAS 

mutation-positive (NRASQ61L) human melanoma cell lines DM598 and DM792 stably 

infected with a retrovirus expressing either a scramble (SCRAM) shRNA (black circle) or 

CTR1 shRNA (red square). ****P<0.0001.
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Extended Data Figure 8. Detection of Cre-mediated recombination and weight measurements of 
AdCre-treated Ctr1+/+ versus Ctr1flox/flox BP mice
a, PCR detection of BRafCA/+,Trp53flox/flox, and Ctr1flox/flox recombinated alleles from 

matched tail samples (T) and lung tumor cell lines (C) generated from indicated genotypes. 

Alleles are indicated by: WT (black), flox (red), null (blue), BrafCA (orange) or BrafV600E 

(green) arrowheads. b, Box and whiskers plot of weight (grams) of Ctr1+/+ versus 

Ctr1flox/flox BP mice (n=30) one month after intranasal AdCre treatment. ****P<0.0001.

Extended Data Figure 9. TTM does not reduce the weight of mice with tumors
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Mean weight ± s.e.m. over time (days) of mice (n=4) injected with BRAFV600E-

transformed, immortalized MEFs and treated with vehicle (black circle) or TTM (red 

square).

Extended Data Figure 10. Graphical representation of Cu regulation of BRAFV600E-mediated 
signaling and tumorigenesis
Inactivation of the signaling pathway is denoted in grey and dashed lines, gain of function 

mutations are denoted in green and loss of function mutations are denoted in red.
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Figure 1. Binding of Cu to MEK1 promotes MAPK signaling and tumorigenesis by oncogenic 
BRAF
a,k,r,u RT-PCR and b,l,p,s,v immunoblot detection of the indicated endogenous, ectopic 

(ect), or both (end/ect) mRNA and phosphorylated (P) and/or total (T) proteins from cells. 

IP: immunoprecipitated. c,d,q,t,w Mean tumor volume (cm3) ± s.e.m. versus time (days) in 

mice injected with c, BRAFV600E-transformed Ctr1+/+ (black circle) or Ctr1-/- (red square) 

MEFs (n=4) d, BRAFV600E-transformed Ctr1-/- MEFs expressing no transgene (red square), 

CTR1 (black diamond), or CTR1M154A (blue open circle) (n=3) q, BRAFV600E-transformed 

Ctr1+/+ MEFs expressing scramble shRNA (black circle), Mek1 shRNA alone (red square) 

or with RNAi-resistant MEK1 (green open triangle) or MEK1CBM (blue open circle) (n=3) 

t, Ctr1-/- MEFs expressing BRAFV600E (red square, n=3) or MEK1-MEK5DD (black open 

square, n=4) or w, Ctr1-/- MEFs expressing BRAFV600E (red square, n=3), ERK2GOF (black 

diamond, n=3), ERK2R67S (yellow open triangle, n=4), or ERK2D321N (green open triangle, 

n=4). ** P<0.01. ***P<0.001.****P<0.0001. e, MEK1 structure (from PDB ID: 3EQD) 

denoting amino acids M187, H188, M230, and H239 and the intervening space (Å)13. f-j,m-
o, Immunoblot detection of the indicated f,m recombinant proteins bound to a resin charged 

with or without Cu or g,h,i,j,n,o phosphorylated (P) or total (T) recombinant proteins with 

or without 50 μM TTM, a seven-fold increase in TTM from 0 to 50 μM, or either 2.5 molar 

equivalents or 2.5 μM CuSO4. Gel images are representative of at least two replicates.
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Figure 2. Knockdown of CTR1 decreases MAPK signaling and tumorigenesis specifically by 
oncogenic BRAF
a, RT-PCR detection of the indicated mRNA b, immunoblot detection of the indicated 

phosphorylated (P) or total (T) proteins from cells and c, mean tumor volume (cm3) ± s.e.m. 

versus time (days) of mice injected (DM738 n=3, others n=4)) with the indicated cell lines 

expressing scramble (black circle) or CTR1 (red square) shRNA. *P<0.05. ***P<0.001. d, 

RT-PCR detection of the indicated endogenous or ectopic (ect) mRNA from cells and e, 

mean tumor volume (cm3) ± s.e.m. versus time (days) of mice (n=3) injected with 
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CMYCT58A-transformed Ctr1+/+ (black circle) or Ctr1-/- (red square) MEFs. Gel images are 

representative of two replicates.
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Figure 3. Genetic ablation of Ctr1 decreases MAPK signaling and tumorigenesis and extends the 
lifespan in a mouse model of BrafV600E-driven lung cancer
a, Representative resected (arrows: visible lesions, scale bar: 1cm) c, H&E stained (scale 

bar: 1mm) or e, immunohistochemical detection of P-ERK1/2 (red: positive pixels, scale 

bar: 500μm) of lungs of Ctr1+/+ or Ctr1flox/flox BP mice (a,c fixed or e, moribundity 

endpoint). b, Box and whiskers plot of tumors/mouse (n=5 lungs) d, mean % of area of 

abnormal lung tissue (n=5 lungs) and f, mean % P-ERK1/2 positive-staining area/lung tumor 

from Ctr1+/+ (n=199 tumors) versus Ctr1flox/flox (n=142 tumors) BP mice (b,d fixed or f, 
moribundity endpoint). g, Kaplan-Meier survival analysis of Ctr1+/+ (black line, n=30) 

versus Ctr1flox/flox (red line, n=30) BP mice. * P<0.05. ** P<0.01. ***P<0.001. 

****P<0.0001.

Brady et al. Page 23

Nature. Author manuscript; available in PMC 2014 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Pharmacological chelation of Cu reduces tumor growth of BRAFV600E-driven and 
vemurafenib-resistant tumor cells
a, Normalized % average soft agar growth ± s.e.m of Ctr1+/+ MEFs (plated in triplicate) 

expressing the indicated transgenes or the indicated cell lines treated with vehicle (black 

bar), 100 nM (grey bar), or 400nM (white bar) TTM. **** P<0.0001. Representative of 

three experiments. b,c,g,l Mean tumor volume (cm3) ± s.e.m. versus time (days) of tumors 

in mice (n=3) injected with b, BRAFV600E-transformed Ctr1+/+ MEFs c, DM440 cells or e, 

ERK2GOF-transformed Ctr1-/- MEFs and treated with either vehicle (black circle) or TTM 

(red square). *P<0.05.**P<0.01. d, Box and whiskers plot of % P-ERK1/2 positive-stained 

cells/field from tumors derived from mice (n=3) injected with BRAFV600E-transformed 

Ctr1+/+ MEFs and treated with vehicle (black line) or TTM (red line). *P<0.05. f, Dosing 
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and diet regimen and g, mean tumor volume (cm) ± s.e.m. versus time (days) in mice (n=3) 

injected with BRAFV600E-transformed Ctr1+/+ MEFs and provided a copper-deficient diet 

(CuD) with either deionized H2O (diH2O) and treated 2 weeks with vehicle (Group A, black 

circle) or diH2O supplemented with CuSO4 and treated 2 weeks with vehicle (Group B, blue 

triangle), TTM (Group C, red square), or TTM then trientine (Group D, green open 

diamond). ***P<0.001. h, Immunoblot detection of the indicated mRNA and 

phosphorylated (P) or total (T) recombinant proteins with or without 50 μM TTM. i, 
Immunoblot detection of the indicated recombinant proteins bound to a resin charged with 

or without Cu. j, RT-PCR and k, immunoblot detection of indicated phosphorylated (P) or 

total (T) endogenous, ectopic (ect), or both (end/ect) proteins in A375 cells expressing HA-

MEK1 or HA-MEK1C121S. l, Mean tumor volume (cm3) ± s.e.m. versus time (days) of mice 

injected with A375 cells expressing MEK1 (left) or MEK1C121S mutant (right) and treated 

with vehicle (black circle, n=4), TTM (red square, n=3), or vemurafenib (blue diamond, 

n=4). **P<0.01. ***P<0.001. Gel images are representative of at least two replicates.
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