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Even with an improved understanding of pain mechanisms and advances in perioperative pain management, inadequately
controlled postoperative pain remains. Predicting acute postoperative pain based on presurgery physiological measures could
provide valuable insights into individualized, effective analgesic strategies, thus helping improve the analgesic efficacy.
Considering the strong correlation between pain perception and neural oscillations, we hypothesize that acute postoperative
pain could be predicted by neural oscillations measured shortly before the surgery. Here, we explored the relationship between
neural oscillations 2 hours before the thoracoscopic surgery and the subjective intensity of acute postoperative pain. The spectral
power density of resting-state beta and gamma band oscillations at the frontocentral region was significantly different between
patients with different levels of acute postoperative pain (i.e., low pain vs. moderate/high pain). A positive correlation was also
observed between the spectral power density of resting-state beta and gamma band oscillations and subjective reports of
postoperative pain. Then, we predicted the level of acute postoperative pain based on features of neural oscillations using
machine learning techniques, which achieved a prediction accuracy of 92.54% and a correlation coefficient between the real pain
intensities and the predicted pain intensities of 0.84. Altogether, the prediction of acute postoperative pain based on neural
oscillations measured before the surgery is feasible and could meet the clinical needs in the future for better control of
postoperative pain and other unwanted negative effects. The study was registered on the Clinical Trial Registry (https://
clinicaltrials.gov/ct2/show/NCT03761576?term=NCT03761576&draw=2&rank=1) with the registration number NCT03761576.

1. Introduction

More than 230 million major surgeries are performed annu-
ally around the world [1]. Even with an improved under-
standing of pain mechanisms and advances in perioperative
pain management, inadequately controlled postoperative
pain continues. In fact, the incidence of moderate-to-severe
acute postoperative pain ranges from 20% to 80% [2]. Post-
operative pain would lead to a series of negative outcomes,
including delayed recovery time, increased cost of care, and
an increased incidence of the transition from acute pain to
chronic pain [1]. One way to prevent these issues is to adopt
more effective analgesic strategies in the perioperative period.
More effective analgesia could be achieved with the help of

successful predictions of acute postoperative pain based
on physiological measures before the surgery. Exploiting
the power of machine learning techniques, we could iden-
tify patients at risk by predicting acute postoperative pain
based on physiological measures before the surgery. The
correct prediction would help deepen our understanding
of the biological underpinning of the risk. In addition,
the prediction would help develop more targeted or pre-
ventative treatments (i.e., individualized treatments) to
improve analgesic efficacy [3, 4].

Pain is a sensory and emotional experience with a high
level of variability across different individuals [5]. Impor-
tantly, pain perception is closely related to neural oscillations
[6], which play a crucial role in the segregation and
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integration of brain regions for functioning [7]. Specifically,
numerous studies of acute and chronic pain using electroen-
cephalography (EEG) and magnetoencephalography (MEG)
highlighted the important role of neural oscillations at theta,
alpha, beta, and gamma frequency bands in characterizing
pain perception [6, 8–13], although the specificity of the rela-
tionship between neural oscillations and pain is disputed.
The relationship between pain perception and neural oscilla-
tions could be summarized in three main aspects. First, noci-
ceptive stimuli can induce significant modulations of neural
oscillations at theta, alpha, beta, and gamma frequency bands
[5, 6, 13, 14], and importantly, the changes of the magnitude
of some neural oscillations are robustly correlated with the
subjective intensity of pain perception [5, 13, 15]. For exam-
ple, gamma oscillations recorded from the primary somato-
sensory cortex could predict the subjective pain intensity
within the same individual and encode pain sensitivity across
different individuals [5]. In addition, gamma oscillations in
the prefrontal cortex are likely to encode subjective pain per-
ception of tonic heat pain [10, 16]. Second, neural oscillations
before nociceptive stimuli could also predict the subjective
intensity of pain perception that is evoked by the forthcom-
ing nociceptive stimuli [17, 18]. Specifically, alpha oscilla-
tions at bilateral central regions and gamma oscillations at
parietal regions act synergistically and causally in predicting
the intensity of pain perception elicited by subsequent noci-
ceptive stimuli [17]. Third, altered neural oscillations are
observed in many chronic pain conditions, such as fibromy-
algia [8, 13], chronic back pain [9], and postherpetic neural-
gia [12]. For example, one MEG study found that
fibromyalgia patients exhibited increased beta and gamma
power in the dorsolateral prefrontal and orbitofrontal cortex
[8]. Interestingly, increased power in these two frequency
bands also correlated with higher affective pain scores in
fibromyalgia patients [8].

Considering the strong correlation between pain percep-
tion and neural oscillations, we hypothesize that acute post-
operative pain could be predicted by neural oscillations
measured shortly before the surgery. In practice, this research
aim could be achieved based on the combination of neuroim-
aging techniques to record neural oscillations and machine
learning techniques [19, 20] to predict postoperative pain.
Machine learning is referred to as a set of algorithms that
can automatically detect patterns from neuroimaging data
and utilize the detected patterns to predict clinical outcomes
[21, 22], e.g., the intensity of acute postoperative pain. Accu-
mulating evidence has been documented to show that
machine learning is able to extract meaningful information
from high-dimensional and noisy neuroimaging data, thus
effectively identifying neural markers for behaviors and dis-
eases [21, 22].

Here, neural oscillations were measured using the EEG
technique shortly before the surgery, for which the technique
is clinically feasible in most situations as EEG can be used
directly at the patients’ bedside. The relationship between
neural oscillations before the surgery and the subjective
intensity of acute postoperative pain was quantified using
spectral analysis and partial correlation analysis. Afterward,
machine learning techniques were applied to predict the

intensity of postoperative pain based on EEG recordings
shortly before the surgery. Ideally, surgery patients with a
high risk of postoperative pain could be identified before
the surgery, which could provide a vital measure to optimize
the analgesic strategy for better control of the postoperative
pain and other negative outcomes.

2. Methods

The clinical study was conducted at the Department of Anes-
thesiology of the Peking University People’s Hospital, Bei-
jing, China. The Medical Ethics Committee of the Peking
University People’s Hospital approved the study protocol.
A written informed consent was obtained from all partici-
pants. The study was registered on the Clinical Trial Registry
(https://register.clinicaltrials.gov/) with the registration
number NCT03761576.

2.1. Participants. Patients admitted to the Peking University
People’s Hospital for lobectomy, wedge resection, or medias-
tinotomy under thoracoscopic surgery were recruited
between November 2018 and March 2019. Inclusion criteria
were (1) age between 35 and 65 years, (2) education levels
beyond secondary school, (3) American Society of Anesthesi-
ologist (ASA) grade I-II, (4) preferred to use postoperative
patient-controlled analgesia (PCA), and (5) signed informed
consent. Exclusion criteria were (1) neurological diseases, (2)
psychiatric diseases or psychiatric family history, (3) trau-
matic brain injury or postcraniotomy, (4) chronic pain suf-
fers or preoperative opioid users, and (5) thoracotomy
needed or planned to return to Intensive Care Unit after sur-
gery. The detailed demographic information is summarized
in Table 1.

2.2. Study Design. As showed in Figure 1(a), the study design
is composed of three phases. In phase 1, patients were
instructed to sign the informed consent one day before their
surgery, and patients were required to avoid smoking or
drinking coffee or caffeine-containing beverages 10 hours
before the surgery. In phase 2, resting-state EEG data were
collected from all patients 2 hours before the surgery (please
see the following section for details about EEG data collec-
tion), and all patients were instructed to complete the Hospi-
tal Anxiety and Depression Scale (HADS) before EEG data
collection. In phase 3, postoperative pain on the 1st, 2nd,
and 3rd days after the surgery was collected from all patients.
Specifically, the highest postoperative pain over the past 24
hours was assessed on an 11-point numerical rating scale
(NRS) (0 =no pain, 10=worst pain imaginable) at 10-14
o’clock on the 1st and 2nd days after the surgery. On the 3rd

day after the surgery, the highest postoperative pain over
the past 24 hours was assessed using the same NRS, but after
the chest analgesic tube was removed. Please note that the
highest postoperative pain over the past 24 hours was
obtained by the evaluation of pain at rest and pain due to
movements, e.g., coughing and breathing. As recommended
by Zalon in 2014 [23], clinicians should actively intervene
with patients with a pain score (i.e., NRS scores) more than
3. For this reason, patients with NRS scores higher than 3
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Table 1: Participant demographic information and postoperative pain.

Variables Categories
Moderate/high-pain group

(n = 33)
Low-pain group

(n = 34) p value

Gender
Male 14 15

0.729
Female 20 18

Age (year) 55:09 ± 6:14 56:45 ± 7:67 0.086

Education level

Junior 6 7

0.277High school 13 5

College 15 21

ASA grade
I 13 17

0.281
II 21 16

Operation type

Thoracoscopic wedge resection 15 15

0.658Thoracoscopic lobectomy 15 16

Thoracoscopic mediastinotomy 4 2

HADS score
Anxiety score 5:06 ± 3:06 4:3 ± 3:02 0.458

Depression score 5:61 ± 3:79 5:65 ± 3:65 0.506

Dose of oxycodone (mg) 14:03 ± 12:03 8:09 ± 7:44 0.021∗

NRS on the 1st day 5:21 ± 1:76 4:41 ± 1:81 0.072

NRS on the 2nd day 5:33 ± 1:93 3:53 ± 1:99 <0.001∗∗

NRS on the 3rd day 5:18 ± 1:76 2:24 ± 0:86 /
∗p < 0:05; ∗∗p < 0:001.

Phase 1

Sign informed
consent

1 day

Phase 2

Record EEG
Collect HADS

2 hours

Phase 3

1 day

Collect NRS Collect NRS Collect NRS

3 days2 days

Prior to surgery After surgery

Surgery Chest tube removal

A

(a)

84 Patients screened
from 2018.11 to 2019.03

74 Patients eligible

67 Patients included in this study

10 Excluded:
3 Needed thoracotomy
2 Returned to Intensive Care Unit
3 Chest tube was not removed on the 3rd day
2 With postoperative infection

7 Excluded:
7 Poor quality of EEG data

B

(b)

Figure 1: (a) Study design and the (b) flow of participants.
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on the 3rd day after the surgery were considered with moder-
ate/high pain, while patients with NRS scores of 3 or lower
than 3 were considered without low pain. All patients were
examined by the same investigator, and all patients were
reminded that they could withdraw from the experiment at
any time for any reason, but none did so.

Please note that after EEG data collection, patients first
received local anesthesia (i.e., thoracic paravertebral block
at T4 and T7 on the affected side) and then received general
anesthesia according to the local clinical standards to ensure
the safety of the surgery. Patients received thoracic paraver-
tebral block at T4 and T7 on the affected side with an infu-
sion of 0.4% bupivacaine (20ml) before general anesthesia.
The induction of anesthesia was achieved using midazolam
(0.02-0.04mg/kg), propofol (1-2mg/kg), and sufentanil
(0.2-0.4μg/kg). Then, rocuronium (0.6-1mg/kg) was intu-
bated with a double-lumen endotracheal tube, for which the
position was confirmed by fiberoptic bronchoscopy. Anes-
thesia was maintained with 1% sevoflurane, propofol (0.1-
0.3μg/kg/min), and remifentanil (0.1–0.3μg/kg/min) during
the surgery. More sufentanil and rocuronium were supplied
when needed, and the total amount of sufentanil should be
no more than 0.6μg/kg. Flurbiprofen axetil (100mg) was
started to be administrated 30min before the end of the sur-
gery. Along with the infusion of flurbiprofen axetil (8mg/h),
the patient-controlled analgesia (PCA) with oxycodone (Per-
fusor fm PCA; single dose 1mg, lockout 5min, limit 8mg/h)
was used for all patients as soon as they were able to operate
the system.

2.2.1. EEG Recording. Patients lay in a bed with a semirecum-
bent position in a silent, temperature-controlled room. The
EEG cap was mounted on their head with conducting gel
inserted for each electrode, and all electrode impedances
were kept lower than 10 kΩ. EEG data were recorded using
a 32-channel NuAmps Quickcap, NuAmps DC amplifier,
and Scan 4.5 Acquisition software (Compumedics Neuros-
can, Inc. Charlotte, NC, USA). The NuAmps amplifier
(Model 7181) was set with a sampling rate of 1000Hz and
with a signal bandpass filter from 0.01 to 100Hz. The ground
electrode was positioned 10mm anterior to Fz, and the right
mastoid electrode (M2) was used as the online reference.
During EEG data collection (five minutes in total), all sub-
jects were instructed to keep awake, relaxed, and eyes closed,
since the test-retest reliability of resting-state EEG data was
higher in the eyes closed condition than in the eyes open con-
dition [24].

2.2.2. EEG Preprocessing. EEG data were preprocessed using
EEGLAB [25]. Continuous EEG data were first offline rere-
ferenced to the average bilateral mastoid electrodes (M1
and M2). Then, EEG data were bandpass filtered between
0.5 and 80Hz and notch filtered between 48 and 52Hz. For
the artifact rejection, continuous EEG data were segmented
into epochs using a time window of 5 s. EEG epochs were
decomposed into a series of independent components (ICs)
using the infomax algorithm as implemented in EEGLAB
[25]. The number of ICs was equal to the number of EEG
electrodes. ICs contaminated by eye blinks and movements

were identified and removed using the SASICA algorithm
[26, 27]. The number of the removed ICs was comparable
for the low-pain and moderate/high-pain groups (2:7 ± 0:22
and 2:3 ± 0:21, respectively, p = 0:19). Moreover, epochs con-
taminated by gross artifacts (i.e., exceeding ±75μV in any
channel) were automatically rejected. The proportion of
epochs rejected was not significantly different between the
low-pain and moderate/high-pain groups (19 ± 4:5% and
22 ± 3:9%, respectively, p = 0:6).

2.2.3. EEG Spectral Analysis. For each patient, the prepro-
cessed EEG data were transformed to the frequency domain
using Welch’s method (window length: 2 s; overlap: 50%)
[28], yielding an EEG spectrum ranging from 0.5 to 80Hz,
in steps of 0.5Hz. Group-level EEG spectra were obtained
by calculating the average of single-patient EEG spectra in
each group (i.e., moderate/high-pain group and low-pain
group). To assess the group difference of EEG spectra, a
point-by-point independent-sample t-test was performed
for each frequency (across all frequency bins) and each elec-
trode, and the significant level (p value) was corrected using a
false discovery rate (FDR) procedure [29]. Additionally, to
control for false-positive observations, the frequency inter-
vals with a p value smaller than the defined threshold
(pfdr < 0:05) for more than 5Hz were considered as signifi-
cant. Partial correlation analysis was also performed between
EEG power at different frequency bands and acute postoper-
ative pain (i.e., NRS scores on the 3rd day after the surgery) to
assess their relationship while controlling for the effect of age
and removing the possible outliers. Please note that the out-
liers were identified using the threshold of three standard
deviations of EEG power, i.e., the data was identified as an
outlier if its value was three standard deviations away from
the mean [30].

2.2.4. Machine Learning: Classification and Regression. We
performed the linear discriminant analysis (LDA) [31], a typ-
ical machine learning algorithm, to predict the intensity of
postoperative pain based on EEG recordings shortly before
the surgery. Considering the arbitrary nature of dichotomiz-
ing the two groups, we also predicted the continuous pain
ratings (i.e., the intensity of postoperative pain) using the
multiple linear regression (MLR) [32]. Leave-One-Out
Cross-Validation (LOOCV) [33] was used to assess the pre-
diction performance. Specifically, LOOCV was achieved by
dividing all subjects (N subjects) into N − 1 training subjects
and 1 test subject, and the same procedure was repeatedly
performed N times to ensure that every subject was used as
the test subject once. The classification accuracy and correla-
tion coefficient (R) between the real pain intensities and the
predicted pain intensities were used to evaluate the predic-
tion performance of LDA and MLR, respectively.

To assess the contribution of EEG feature at each elec-
trode and each frequency on the prediction performance,
the LDA and MLR were firstly performed for each electrode
in the spatial domain and each frequency in the frequency
domain. For both classification and regression, all EEG fea-
tures were tested once, and the maximal values of prediction
accuracy for classification and correlation coefficient for
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regression at the electrode level and the frequency level were,
respectively, used to evaluate the contribution of these fea-
tures in the machine learning model.

To achieve better prediction performance, EEG fea-
tures at all electrodes and all frequencies (i.e., the combi-
nation of features at the spatial and frequency domains)
were used in the multivariate machine learning model. In
the present study, there were 160 features for each elec-
trode (from 0.5Hz to 80Hz with a resolution of 0.5Hz)
and 30 electrodes. In total, the feature dimension was
4800 (160 frequency bins× 30 electrodes), and the sample
size was 67 (67 patients). This is a typical small sample
size pattern recognition problem with a high feature
dimension. In this case, the curse of feature dimensionality
is the main problem for both classification and regression.
To address this issue, feature selection is required before
performing prediction. In addition, feature selection is an
effective strategy for dimension reduction to prevent over-
fitting. Here, we firstly shrunk the features in the fre-
quency domain to the range of 20-70Hz, since there was
no significant difference between the two groups for all
channels outside the frequency range (i.e., 0.5-20Hz and
70-80Hz). Secondly, Sequential Floating Forward Selection
(SFFS) method was used as a wrapper approach for addi-
tional feature selection [29]. As a heuristic search method
[34], the SFFS algorithm starts with an empty feature set
and mainly consists of a forward step for inserting features
and a backward step for deleting features. The forward
step searches the best features outside the feature set to
improve the prediction performance in the cross-
validation. After each forward step, the backward step
removes the feature in the feature set as long as the per-
formance could be improved in the cross-validation. The
whole process of the SFFS would stop if the prediction
performance could not be improved or the feature dimen-
sion reaches 50.

2.2.5. Statistical Analysis. Demographic information of
patients in the moderate/high-pain group and the low-pain
group was compared using chi-square tests (i.e., gender, edu-
cation level, ASA grade, and operation type) and an
independent-sample t-test (i.e., age). Group differences in
HADS scores (i.e., anxiety score and depression score), doses
of oxycodone, and postoperative pain (i.e., NRS scores on the
1st, 2nd, and 3rd days after the surgery) were evaluated using
independent-sample t-tests. All statistical analyses were car-
ried out in SPSS 25.0 (SPSS Inc., New York, USA), and the
statistical significance level was set at 0.05.

3. Results

We screened 84 patients undergoing thoracoscopic surgery
for eligibility. As summarized in Figure 1(b), 10 patients were
excluded from the study for the following reasons: 3 patients
needed thoracotomy, 2 patients returned to the Intensive
Care Unit after the surgery, 3 patients for whom the chest
analgesic tube was not removed on the 3rd day after the sur-
gery, and 2 patients with postoperative infection (i.e., the
body temperature was higher than 38.0°C for more than 2

days). Moreover, data from 7 patients were excluded from
the following analysis due to the poor quality of EEG data.
As a result, 67 patients were eligible for inclusion. Accord-
ing to the postoperative pain on the 3rd day after the sur-
gery, the eligible patients were assigned to the two groups:
moderate/high-pain group (n = 33) and low-pain group
(n = 34). As demonstrated in Table 1, no significant differ-
ences were observed between patients in the moderate/-
high-pain group and those in the low-pain group for
clinical and demographic characteristics, i.e., gender, age,
education level, ASA grade, and operation type. In addi-
tion, both anxiety and depression scores, as evaluated
using the HADS, were not significantly different between
patients in the two groups. However, the dose of oxyco-
done and postoperative pain (e.g., NRS on the 2nd day
after the surgery) were significantly higher for patients in
the moderate/high-pain group than those in the low-pain
group (p = 0:021 and p < 0:001, respectively).

Group-level spectra of resting-state EEG oscillations in
both moderate/high-pain and low-pain groups are showed
in Figure 2. The point-by-point statistical analysis revealed
that patients in the moderate/high-pain group had signifi-
cantly higher spectral power density of resting-state EEG
oscillations at the frontocentral region (maximal at FCz
electrode) within beta and gamma frequency bands
(between 21 and 55Hz) than patients in the low-pain
group (pfdr < 0:05). When taken separately, beta (14-
30Hz) and gamma (31-50Hz) band powers in the moder-
ate/high-pain group were both significantly higher than
those in the low-pain group (see Figure 3; beta band: t =
2:063, p = 0:043; gamma band: t = 2:935, p = 0:005). To
test the robustness of results, we also performed partial
correlation analysis between EEG power at beta and
gamma frequency bands and acute postoperative pain
(i.e., NRS scores on the 3rd day after the surgery) while
controlling for the effect of age and removing the possible
outliers which lay three standard deviations away from the
mean. Both beta band power (partial R = 0:25, p = 0:04)
and gamma band power (partial R = 0:29, p = 0:02) were
significantly correlated with acute postoperative pain
(Figure 3).

The contribution of presurgery EEG features on the
performance of machine learning algorithms to predict
the intensity of postoperative pain is displayed in
Figure 4. EEG features in the frequency domain showed
distinct patterns of contribution to the prediction perfor-
mance for classification (i.e., LDA, Figure 4(a)) and regres-
sion (i.e., MLR, Figure 4(b)). However, the features around
30Hz provided the most discriminative information for
both classification and regression. As displayed in
Figures 4(c) and 4(d), EEG features in the frontocentral
region were more discriminative for both classification
and regression. For classification, electrodes Cz, FCz, and
F3 provided the highest prediction accuracy. For regres-
sion, electrodes F3, F4, FCz, and Fz provided the highest
correlation coefficient.

To achieve better prediction performance, EEG features
at all electrodes and all frequencies (i.e., the combination of
features at the spatial and frequency domains) were used in
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the multivariate machine learning model. The SFFS algo-
rithm was stopped with 50 extracted features for both classi-
fication and regression. For classification, LDA with 50
features provided a prediction accuracy of 92.54% in the
LOOCV test, i.e., 5 out of 67 patients have been misclassified.
For regression, the MLR with 50 features also showed good
prediction performance (Figure 5), i.e., the correlation
between the real pain intensities and the predicted pain
intensities was very strong (R = 0:84, p < 0:001). These results
suggested that the combination of EEG features at the spatial
and frequency domains would provide complementary

information to achieve better prediction performance than
any single EEG feature.

4. Discussion

In the present study, we found that the incidence of
moderate-to-high acute postoperative pain after thoraco-
scopic surgery was high (49%) according to the subjective
reports of pain intensity on the 3rd day after the surgery.
EEG data collected 2 hours before the surgery showed that
patients in the moderate/high-pain group had significantly
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higher spectral power density of resting-state beta and
gamma band oscillations at the frontocentral region than
patients in the low-pain group (Figure 2). In addition, a pos-
itive correlation was observed between the spectral power
density of resting-state beta and gamma band oscillations
and subjective reports of postoperative pain (Figure 3).
Importantly, applying machine learning technique, the
intensity of acute postoperative pain could be accurately pre-
dicted based on the recorded resting-state EEG data before
the surgery (prediction accuracy is 92.54%, and the correla-
tion coefficient between the real pain intensities and the pre-
dicted pain intensities is 0.84). Therefore, our study provided
a feasible strategy to identify patients with a high risk of post-
operative pain before the surgery using EEG recordings. This
strategy could hopefully meet the clinical needs in the future
as it would help optimize the analgesic strategy for better
control of postoperative pain and other unwanted negative
effects.

With the improved understanding of pain analgesic
mechanisms, more and more analgesia techniques have been
developed to manage postoperative pain [35–38]. Although
multimodal analgesia is normally applied in clinical practice,
clinical pain assessment based on subjective pain reports,
behavioral assessment tools, or solicit input from caregivers
[39] suggests that control of postoperative pain is still inade-
quate [38, 40]. One survey showed that approximately 75% of
patients still reported pain after discharge [41]. In the present

study, approximately 49% of surgery patients experienced
moderate-to-high acute postoperative pain (on the 3rd day
after the surgery), for which the incidence of postoperative
pain was similarly high in previous studies [40–42]. Please
note that significant difference of postoperative pain was
already observed on the 2nd day after the surgery between
the moderate/high-pain group and the low-pain group. The
inadequate management of postoperative pain calls for more
effective analgesic strategies. Successful prediction of acute
postoperative pain using physiological measures before the
surgery would offer valuable information on who needs to
be treated preemptively, thus paving the way for more effec-
tive and individualized analgesia.

In the present study, the analysis of resting-state EEG
data collected 2 hours before the surgery showed that the
spectral power density of beta and gamma band oscillations
at the frontocentral region was able to distinguish patients
with different levels of acute postoperative pain. Additionally,
the spectral power density of resting-state beta and gamma
band oscillations was positively correlated with the subjective
report of postoperative pain.

A series of neural oscillations plays an important role in
encoding pain perception for both healthy and disease condi-
tions [8, 15, 16, 43–45]. Evidence showed that beta band
oscillations are highly associated with sensorimotor func-
tions, e.g., the preparation before the movement and the cal-
ibration during the movement [46, 47]. For instance, beta
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band oscillations enhance when the movement is inhibited or
voluntarily suppressed [46]. There is a close relationship
between movement and pain, and nocifensive behaviors that
responded to pain have important protective functions for
humans [48]. In addition to movement-related functions,
beta band oscillations have been shown to be highly associ-
ated with pain in both basic and clinical conditions. In
healthy subjects, the power of beta band oscillations has been
shown to be modulated by acute pain that was elicited by
electrical, laser, and contact heat stimuli [15, 49, 50]. How-
ever, it is important to note that the functional interpretation
of beta band oscillations is still speculative since, in this study,
EEG data were collected before the surgery, and no pain-
related movement could be observed at this time. Future
studies are required to delineate the detailed mechanism
behind the association between the spectral power density
of beta band oscillations and acute postoperative pain.

Gamma band oscillations, which are believed to play a
crucial role in cortical integration and perception [6, 49,
51], reflect cortical activity directly related to pain perception
[16, 51, 52]. For this reason, gamma band oscillations are
currently one of the most promising biomarkers of pain per-
ception [5, 51]. Importantly, the solid relationship between
gamma band oscillation and pain perception was observed
not only at the within-subject level but also across different
subjects, in both humans [5, 51] and rodents [14]. In terms
of mechanism, the close relationship between gamma band
oscillation and pain perception would be associated with
the integrating role of gamma band oscillations in the gener-
ation of the conscious experience of pain [53], as gamma
band oscillations are important for communications within
a large network of cortical and subcortical brain regions
[17, 54]. Moreover, gamma band oscillations have been
demonstrated to subserve a filtering mechanism to select
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behaviorally relevant information for action [16, 52]. In the
present study, we observed that the spectral power density
of gamma band oscillations was positively correlated with
the subjective report of postoperative pain. This observation
provided additional evidence for the close relationship
between gamma band oscillation and pain perception across
different human subjects and might be related to the possible
communication between distributed neuronal ensembles for
subsequent pain-related behaviors [5, 11].

Also, our results showed that pain-related beta and
gamma band oscillations were mostly recorded from the
frontocentral region. This is reminiscent of previous studies
on acute and chronic pain [8, 9, 12, 16]. Some researchers
posited that pain chronification involves a shift from brain
circuits associated with sensory processes to emotional cir-
cuits [55]. Supporting this idea, one previous study showed
that beta and gamma band power increases in the dorsolat-
eral prefrontal and orbitofrontal cortex were correlated with
higher affective pain scores in fibromyalgia patients [8]. In
addition, the prefrontal cortex is generally believed to be
involved in emotion processing [56]. The tonic and ongoing
nature of clinical pain resembles that of chronic pain better
than phasic pain, like transient laser-induced thermal pain,
in which the somatosensory cortex seems to play crucial roles
[5]. The importance of prefrontal oscillations, therefore, may
suggest that the emotional processing in patients who tend to
develop postoperative pain is already somewhat compro-
mised in the presurgery stage, even though these patients
may display no explicit emotional disorders or manifestly
abnormal emotional processing. Future studies are needed
to test whether emotion does play some roles in the relation-

ship between neural oscillations and the probability of devel-
oping postoperative pain. It should be noted that no
significant correlation between alpha oscillations and acute
postoperative pain was observed in the present study. Since
alpha oscillations are highly sensitive to the state of the
patients (e.g., attention and anticipation), it might be possible
that alpha oscillations could be able to predict the intensity of
pain perception within a short period of time (e.g., several
seconds) [17], but not within a long period of time (e.g., sev-
eral days in the present study).

The relationship between neural oscillations and acute
postoperative pain provided a solid basis for the prediction
of postoperative pain with physiological measures before
the surgery. The use of machine learning techniques (i.e.,
LDA with SFFS) achieved a prediction accuracy of 92.54%
and a correlation coefficient of 0.84 based on resting-state
EEG activities that were recorded 2 hours before the surgery.
Ideally, the combination of resting-state EEG recording tech-
nique and machine learning algorithms would yield diagnos-
tic biomarkers of acute postoperative pain. This diagnostic
biomarker would be important for the development of effec-
tive analgesic strategies in the perioperative period, which
would be helpful in controlling postoperative pain in surgery
patients [21, 22, 53]. In practice, the EEG device is portable
and widely equipped, which enables the feasibility in most
clinical situations for the application of an EEG-based diag-
nostic biomarker. Nevertheless, this study did not detangle
the respective contribution of trait and state characteristics
of patients to the prediction success since EEG data collected
2 hours before the surgery may reflect both characteristics.
Importantly, both of them could contribute to the individual
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difference in analgesic efficacy. If it were trait characteristics
that mattered, specifically targeting patients with those traits
may be more beneficial and cost-effective. If it were state
characteristics, interventions manipulating those states
might help achieve better analgesic efficacy.

Several additional limitations in the present study should
be noted. First, the current clinical experimental design
would possibly be confounded by some unwanted factors.
Although a standardized operative procedure was adopted
for all patients, there were some variations during the surgery
(e.g., the duration and complexity of the surgery and the
types and amounts of analgesics), which might also affect
the acute postoperative pain. Second, the sample size of the
present study is limited, and the age, the educational level,
and the type of surgery varied a lot among subjects. In addi-
tion, more patients scheduled for other types of surgery
should be considered in future studies to verify the identified
EEG-based biomarker of postoperative pain. Third, this
study did not testify the specificity of EEG oscillations to
acute pain. Some studies suggest that gamma oscillations
selectively encode phasic and tonic thermal pain [5, 16], but
this issue is still in a heated dispute. More importantly, this
study did not explicitly address this issue, even though neural
oscillations were demonstrated to predict postoperative pain.
Future research may test the specificity of EEG oscillations
and offer further insights into specifically predicting postop-
erative pain with neural oscillations or other physiological
measures.

In conclusion, we provided solid evidence for the close
relationship between the spectral power density of resting-
state beta and gamma band oscillations at the frontocentral
region and subjective reports of postoperative pain. More-
over, we predicted the level of acute postoperative pain based
on features of neural oscillations using machine learning
techniques, which achieved a prediction accuracy of 92.54%
and a correlation coefficient between the real pain intensities
and the predicted pain intensities of 0.84. Therefore, the pre-
diction of acute postoperative pain based on neural oscilla-
tions measured before the surgery is feasible and could
hopefully meet the clinical needs in the future, thus helping
optimize the analgesic strategy for better control of postoper-
ative pain and other unwanted negative effects.
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