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Interleukin (IL)-18, a member of the IL-1 superfamily, is a pro-inflammatory cytokine that

is structurally similar to IL-1β. IL-18 promotes the production of interferon gamma (IFN-γ)

and strongly induces a Th1 response. IL-18 drives the same myeloid differentiation factor

88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway as IL-1β. In physiological

conditions, IL-18 is regulated by the endogenous inhibitor IL-18 binding protein (IL-

18BP), and the activity of IL-18 is balanced. It is reported that in several inflammatory

diseases, the IL-18 activity is unbalanced, and IL-18 neutralization by IL-18BP is

insufficient. IL-18 acts synergistically with IL-12 to induce the production of IFN-γ as

a Th1 cytokine, and IL-18 acts alone to induce the production of Th2 cytokines such

as IL-4 and IL-13. In addition, IL-18 alone enhances natural killer (NK) cell activity and

FAS ligand expression. The biological and pathological roles of IL-18 have been studied

in many diseases. Here we review the knowledge regarding IL-18 signaling and the role

of IL-18 in inflammatory kidney diseases. Findings on renal injury in coronavirus disease

2019 (COVID-19) and its association with IL-18 will also be presented.
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INTRODUCTION

Inflammation is a defense mechanism that is caused by harmful stimuli and conditions such
as infection and tissue injury (1). Innate immunity is the host’s first line of defense against
pathogens and is activated by pattern recognition receptors (PRRs). PRRs recognize pathogen-
associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) that
are common to pathogens. There are several classes of PRRs, including Toll-like receptors (TLRs),
C-type lectin receptors, nucleotide-binding oligomerization domain-like receptors (NLRs), retinoic
acid-inducible gene-I-like receptors (RLRs), and absent in melanoma 2 (AIM2)-like receptors.
The inflammasome, a multiprotein complex formed intracellularly in response to PAMPs and
DAMPs, converts procaspase-1 to active caspase-1 and induces pro-inflammatory cytokines such
as interleukin 1beta (IL-1β) and IL-18 (2).

The NLR family member leucine rich repeat and pyrin domain containing 3 (NLRP3) forms
the NLRP3 inflammasome together with the adapter molecules apoptosis-associated speck-like
protein containing a caspase recruitment domain (ASC) and procaspase-1 and activates caspase-1
to processes IL-1β and IL-18 to the bioactive mature form (3, 4). The NLRP3 inflammasome has
been implicated in the pathogenesis ofmany diseases, includingmicrobial pathogens, inflammatory
diseases, cancer, and metabolic and autoimmune disorders (3, 4), and it has also been implicated
in various kidney diseases (5). A member of the IL-1 superfamily, IL-18 is a pro-inflammatory
cytokine that is structurally similar to IL-1β (6, 7). IL-18 promotes the production of interferon
gamma (IFN-γ) and strongly induces a Th1 response (8).
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In recent years, the biological and pathological roles of IL-18
have been studied in many diseases. Inflammation underlies
the pathogenesis of many acute or chronic kidney diseases,
and IL-18 plays an important role. This paper focuses on the
roles of IL-18 in inflammatory kidney diseases. We review the
current knowledge regarding IL-18 signaling, and we outline the
existing evidence about the roles of IL-18 in inflammatory kidney
diseases. We are in the midst of an epidemic of coronavirus
disease 2019 (COVID-19). Findings on renal injury in cases of
COVID-19 and its association with IL-18 will also be presented.

THE PRODUCTION AND PROCESSING OF
IL-18

IL-18 was initially identified as IFN-γ-inducing factor
(IGIF) in sera from Propionibacterium acnes-primed and
lipopolysaccharide (LPS)-challenged mice (9–11). Although IL-
18 and IL-1β share only about 17% sequence homology, they have
a common β-pleated sheet structure (12, 13). IL-18 is produced
by macrophages, dendritic cells, epithelial cells, keratinocytes,
chondrocytes, osteoblasts, synovial fibroblasts, and adrenal
cortex cells, and it plays an important role in inflammatory
pathology (7, 13, 14). In the kidney, the predominant source
of IL-18 production is tubular epithelial cells (15–17). IL-18
gene expression may be enhanced by stimulation with microbe
products such as LPS and by cytokines such as IFN-α/β/γ
and TNF-α (13, 18, 19). IL-18 is stored intracellularly as a
biologically inactive 24-kDa precursor (pro-IL-18), similar to
IL-1β, and is secreted extracellularly as the 18-kDa bioactive
mature molecule after being cleaved by caspase-1. Nitric oxide
suppresses the secretion of IL-1β and IL-18 by inhibiting
caspase-1 (20). An inhibitor of mammalian target of rapamycin
(mTOR), rapamycin is widely used as an autophagy inducer
(21). The induction of autophagy by rapamycin can suppress the
production and secretion of IL-1β and IL-18 and limit excessive
inflammation (21).

IL-18 RECEPTOR AND SIGNAL
TRANSDUCTION

The IL-18 signaling pathway is illustrated in Figure 1. IL-
18 recognizes a heterodimeric receptor that consists of IL-18
receptor (R) α- and β-chains (22). IL-18Rα, also known as IL-
1 receptor-related protein (IL-1Rrp), binds specifically to the
extracellular IL-18 at the cell surface. However, its affinity is low.
IL-18Rβ (i.e., accessory protein-like [AcPL]) is recruited to form a
high affinity binding and activate intracellular signaling pathway
(23, 24). IL-18R is expressed in most types of cells, including
T cells, natural killer (NK) cells, macrophages, dendritic cells,
neutrophils, basophils, mast cells, endothelial cells, and smooth
muscle cells (25–32). The diversity of productive and receptor-
expressing cells is linked to the functional diversity of IL-18.

Like IL-1R, IL-18R contains a Toll/IL-1 receptor (TIR)
domain in the intracellular region that is shared with TLRs, and
signaling into the cell is mediated by myeloid differentiation
factor 88 (MyD88) (33–35). MyD88 is a well-known adaptor

molecule for TLRs and IL-1R. The activation of IL-18R results in
the recruitment of MyD88 to the TIR and anchors IL-1 receptor-
associated kinase (IRAK) (36). Phosphorylated IRAK dissociates
from the complex and binds to tumor necrosis factor receptor-
associated factor 6 (TRAF6), which in turn phosphorylates
nuclear factor kappa B (NF-κB)-induced kinase (NIK) (37). This
results in the activation of I kappa B (IκB) kinase (IKK). The
phosphorylation of IκB by IKK leads to the ubiquitination and
degradation of IκB (38). NF-κB is then able to migrate into the
nucleus and initiate the transcription of target genes such as
IFN-γ (39).

Although the major signaling pathway of IL-18 is NF-
κB signaling, it has been reported that stimulation by IL-18
strongly promotes the tyrosine phosphorylation of STAT3 and
the mitogen-activated protein kinases (MAPKs) p44erk-1 and
p42erk-2 in human NK cell lines (40). In murine T cells, IL-
18 induced the activation of the lymphocyte-specific tyrosine
protein kinase p56lck and p42 MAPK (41).

IL-18 BINDING PROTEIN

As with IL-1, the activity of IL-18 is regulated by the endogenous
inhibitor IL-18 binding protein (IL-18BP). IL-18BPa, the major
splice variant of IL-18BP, is present in excess concentrations
compared to IL-18 in the serum of healthy individuals and it
binds with high affinity to IL-18 to neutralize its activity (42–44).
IL-18BP inhibits the binding of IL-18 to the IL-18 receptor and
inhibits the production of IFN-γ (Figure 1). IFN-γ has been
reported to mediate the gene expression of IL-18BPa in non-
leukocytic cells (45). IL-18 activity is regulated by a negative
feedback mechanism mediated by IL-18BPa induced by IFN-γ.
It is thus likely that IL-18BPa functions as a “shut off” signal
to stop the excessive inflammatory response by IL-18 (44). The
expression of IL-18BP is regulated mainly at the transcriptional
level, and signal transducer and activator of transcription 1
(STAT1) and CCAAT/enhancer binding protein β (C/EBPβ)
have been reported to be important transcription factors in the
regulation of IL-18BP gene promoter activity (46, 47).

The activity of IL-18 is balanced by the presence of IL-
18BP. Serum IL-18BP levels are significantly elevated in sepsis
and other inflammatory diseases (42–44, 48, 49). Patients with
granulomatosis with polyangiitis (i.e.,Wegener’s granulomatosis)
and those with systemic lupus erythematosus showed elevated
serum levels of IL-18 as well as IL-18BP, but the levels of IL-18BP
were not sufficient to neutralize IL-18, and the levels of free IL-18
were higher than those of healthy subjects (42, 48).

Exogenous IL-18BP may be useful as a novel therapeutic
agent for diseases involving IL-18 (42–44, 48, 49). A phase II
clinical trial was conducted in patients with adult-onset Still’s
disease (50); the administration of tadekinig, a recombinant IL-
18BP, was observed to reduce the patients’ serum C-reactive
protein and ferritin levels and improve their clinical symptoms.
A Phase III clinical trial of tadekinig is currently underway in
patients suffering from pediatric monogenic auto-inflammatory
diseases and harboring deleterious mutations of NLRC4 and
XIAP (NCT03512314).
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FIGURE 1 | The IL-18 signaling pathway. IL-18 is stored intracellularly as biologically inactive pro-IL-18 and is secreted extracellularly as the bioactive mature

molecule after being cleaved by caspase-1. IL-18 is regulated by the endogenous inhibitor IL-18BP. Since IL-18BP has high affinity for IL-18, IL-18BP binds

preferentially to IL-18 and inhibits binding to the IL-18R. IL-18 first binds to the IL-18Rα; however, this binding is low-affinity, and the IL-18Rβ chain is recruited to form

a high-affinity heterodimeric complex. The activation of IL-18R recruits MyD88 to the TIR domain and anchors IRAK. Phosphorylated IRAK activates TRAF6, and

which in turn phosphorylates NIK. This is followed by the activation of IKK and finally NF-κB, which initiates the transcription of target genes such as IFN-γ.

PHYSIOLOGICAL FUNCTIONS OF IL-18

IL-18 was originally discovered as a factor that induces IFN-γ
from Th1 cells. The most important role of IL-18 in the immune
system is the induction of the production of IFN-γ by Th1 cells.
IL-18 acts synergistically with IL-12 to induce a potent Th1
response (51–53), and IL-18 plays an important role in the host’s
defense mechanism against infections caused by pathogens such
as bacteria, viruses, fungi, and protozoa (13). In concert with IL-
12, IL-18 also induces the production of IFN-γ by NK cells, B
cells, and macrophages (51, 54, 55). Although IL-18 induces IFN-
γ production as a Th1 cytokine by co-stimulation with IL-12,
IL-18 acts alone as a Th2 cytokine (13). Basophils and mast cells
derived from bone marrow cells cultured with IL-3 for 10 days
expressed IL-18Rα (56). IL-3 is involved in the differentiation
of mouse bone marrow cells into basophils and mast cells (57).
Basophils produced both of the Th2 cytokines IL-4 and IL-13
in response to stimulation with IL-3 + IL-18 (56). Although
mast cells did not produce IL-4, they produced IL-13 in response

to stimulation with IL-3 + IL-18 (56). The administration of
IL-18 together with IL-12 inhibits both the production of IgE
and the productions of IL-4 and IL-13 by basophils and mast
cells in an IFN-γ-dependent manner (58). On the other hand,
the administration of IL-18 alone has been reported to induce
IgE production by B cells (59). IL-4 and IL-13 are involved in
the production of IgE and the differentiation and proliferation
of eosinophils and are important in the formation of allergic
pathologies such as bronchial asthma and atopic dermatitis
(60). These findings suggest that IL-18 may be involved in
allergic inflammation.

In addition, IL-18 has been reported to up-regulate Fas ligand
(FasL) expression in NK cells and induce apoptosis in Fas-
positive target cells (61, 62). In NK cells, IL-18 also enhances
perforin-mediated cytotoxic activity (32). The activation of NK
cells suggested that IL-18 may be associated with tumor immune
responses (13, 63). It has been reported that treatment with
IL-18 in combination with the B7-1 costimulatory molecule
resulted in the regression of melanoma with increased NK
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TABLE 1 | IL-18 in renal disease models.

Disease Model Intervention Outcome References

AKI Model

IRI IL-18 BP Protective (68)

IRI IL-18-deficient Protective (69)

LPS IL-18Rα-deficient Protective (70)

Cisplatin Anti-IL-18 antibodies Not protective (71)

Cisplatin Overexpression of IL-18BP Not protective (71)

Cisplatin IL-18-deficient Protective (72)

Cisplatin IL-18Rα-deficient Detrimental (73)

CKD Model

Anti-GBM GN IL-18-deficient Protective (74)

Immune complex GN IL-18Rα-deficient Protective (75)

LN (MRL/lpr) IL-18 Detrimental (76)

LN (MRL/lpr) IL-18Rα-deficient Protective (77)

LN (MRL/lpr) IL-18-deficient Protective (78)

LN (MRL/lpr) Anti-IL-18 autoantibodies

(IL-18 vaccination)

Protective (79)

UUO Overexpression of IL-18BP Protective (80)

UUO IL-18Rα-deficient Protective (81)

IL, interleukin; IRI, ischemia-reperfusion injury; BP, binding protein; LPS,

lipopolysaccharide; GBM, glomerular basement membrane; GN, glomerulonephritis; LN,

lupus nephritis; UUO, unilateral ureteral obstruction.

cell infiltration at the tumor tissue (64). In addition to the
above-described activities, IL-18 induces the production of
granulocyte/macrophage colony-stimulating factor (GM-CSF)
and the expression of adhesion molecules. In co-culture
with osteoblasts and hematopoietic cells, IL-18 inhibited the
formation of osteoclastlike cells via the production of GM-CSF
(65). IL-18 enhanced the expression of intercellular adhesion
molecule-1 (ICAM-1) in human myelomonocytic cell lines (66),
and ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1)
in endothelial cells and rheumatoid arthritis synovial fibroblasts
(67). As described above, IL-18 has various pro-inflammatory
effects besides the induction of IFN-γ production, and IL-18 may
be associated with various pathologies such as infections, allergic
diseases, and tumor immunity.

IL-18 AND INFLAMMATORY KIDNEY
DISEASE

Inflammation underlies the pathogenesis of many renal diseases,
including acute kidney injury (AKI) and chronic kidney disease
(CKD), and the role of IL-18 in inflammation has been reported
in many experimental animal models (summarized in Table 1).
In clinical practice, IL-18 is expected to be useful in the diagnosis
of diseases and the estimation of disease severity and prognosis.

IL-18 as a Biomarker for AKI
Urinary IL-18 has been reported to be increased in patients
with acute tubular necrosis after kidney transplantation (82, 83).
The urinary level of IL-18 is expected to be an early diagnostic
marker of acute kidney injury (AKI), and many clinical trials

have been conducted. A meta-analysis summarizing reports after
cardiac surgery showed that the sensitivity and specificity values
of urinary IL-18 as a biomarker for the diagnosis of AKI were
0.58 and 0.75, respectively (84). The area under the receiver
operating characteristic curve (AUROC) of urinary IL-18 levels
predictive of AKI was 0.70 (84). In another meta-analysis, the
AUROC was similar at 0.77 (85). Urinary IL-18 is a biomarker
of AKI with moderate diagnostic value. Although it does not
reliably predict the development of AKI, urinary IL-18 has been
reported to be useful to predict clinical outcomes including
mortality and dialysis in a heterogeneous intensive care unit
(ICU) population (86).

It has been reported that urinary IL-18 levels in patients with
AKI after cardiopulmonary bypass increased over the first 4–6 h,
peaked in 12 h, and remained elevated up to 48 h after surgery
(87, 88). This elevation of urinary IL-18 in AKI is slower than that
observed in urinary neutrophil gelatinase-associated lipocalin
(87, 88). The urinary IL-18 level in patients with acute tubular
necrosis has been shown to be significantly elevated compared
to patients with urinary tract infections, pre-renal acute renal
failure, chronic kidney disease, and nephrotic syndrome (82).
However, because urinary IL-18 is also elevated in septic patients
(86, 89), caution should be exercised when using the urinary
IL-18 level for the diagnosis of AKI.

Ischemic Renal Disease
Ischemia-reperfusion injury (IRI) in the kidney is used as a
model of AKI. An AKI caused as a result of IRI involves both
innate and acquired immune responses (90). In an IRI mouse
model, the plasma and renal IL-18 levels were shown to be
significantly increased after IRI stress (68, 69). Compared to wild-
type mice, IL-18-deficient mice were protected from IRI and
showed better renal function, less tubular damage, less neutrophil
and macrophage infiltration, and less expression of downstream
inflammatory mediators of IL-18 (69). In a mouse model of
IRI, treatment with IL-18BP, an IL-18 inhibitor, showed a renal-
protective effect (69). Treatment with IL-18 BP has also been
shown to reduce the levels of profibrotic molecules in the kidneys
of mice after IRI and to inhibit the progression of IRI-induced
renal fibrosis (68). Because caspase-1 activates IL-18, caspase-
1-deficient mice are also protected against ischemic acute renal
failure (15). Although IL-18 is produced by various types of cells,
it has been reported that cells of bone marrow origin play a more
important role than intrinsic kidney cells in the renal damage
caused by IRI (69). Blocking IL-18 signaling may be protective
against IRI-induced AKI.

LPS-Induced AKI
We reported the role of IL-18 in LPS-induced AKI in IL-18Rα-
deficient mice (70). In CD4+ T cells derived from splenocytes,
the mRNA expressions of IL-18 and IL-18Rα were significantly
increased after LPS injection. The IL-18Rα-deficientmice showed
lower blood urea nitrogen (BUN) levels, a higher survival rate,
and reduced levels of pro-inflammatory cytokines such as IL-
18 and IFN-γ compared to wild-type mice. Glomerular CD4+
T cells and interstitial macrophage infiltration were reduced
in the kidneys of the IL-18Rα-deficient mice. IL-18R-mediated
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signaling pathways may plays critical roles in these cells in the
pathogenesis of LPS-induced AKI.

Cisplatin-Induced AKI
In vitro, cisplatin induces the apoptosis or necrosis of renal
tubules (91). Cisplatin administration increases serum and renal
levels of IL-18 (71). However, methods to inhibit IL-18 using
IL-18 antiserum or transgenic mice that overproduce IL-18BP
did not protect against cisplatin-induced AKI (71). On the other
hand, IL-18-deficient mice have been reported to be protected
from AKI, and the exogenous supplementation of recombinant
IL-18 prior to cisplatin administration caused AKI (72). In
our study using IL-18Rα-deficient mice, the inhibition of IL-
18 signaling did not result in a favorable effect. We observed
that compared to wild-type mice, the IL-18Rα-deficient mice
had worse renal function and downregulated expressions of
suppressor of cytokine signaling (SOCS) 1 and SOCS3 in the
spleen and kidney (73). The inhibition of cytokine signaling by
the members of the SOCS family constitutes a major negative
feedback mechanism to prevent runaway inflammation. SOCS1
reduces the impact of cytokines by inhibiting JAK kinases
and several other mechanisms (92). Although the mechanism
is not clear, we speculate that IL-18Rα may induce an anti-
inflammatory response by affecting the expressions of the
cytokine signaling inhibitors SOCS1 and SOCS3 in addition to
the inflammatory response. In summary, the inhibition of IL-
18 may not be sufficient for the prevention of cisplatin-induced
AKI. The effect of IL-18 on cisplatin-induced AKI appears to vary
between mouse models, and further research is needed.

Glomerulonephritis
Neutrophils play an important role in the pathogenesis
of antineutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV). Neutrophils require priming for subsequent
ANCA-induced activation, and IL-18 is thought to be important
for neutrophil priming in AAV, as is tumor necrosis factor-alpha
(TNF-α) (93, 94). In vitro, IL-18 can prime neutrophils, and it
enhances superoxide production by cells after ANCA binding
(93, 94). AAV patients have higher serum IL-18 concentrations
compared to healthy controls (95). In renal biopsies from AAV
patients, IL-18-positive cells were found in podocytes in the
glomerulus and in myofibroblasts, distal tubular epithelial cells,
and infiltrating macrophages in the interstitium (94).

In patients with IgA nephropathy, serum IL-18 levels have
been reported to correlate significantly with urinary protein
excretion, serum creatinine, and the estimated glomerular
filtration rate (eGFR) (96). In addition, patients with high IL-18
levels at baseline were shown to have worse renal function during
the follow-up period (96). The serum IL-18 level may predict the
reduction of renal function in patients with IgA nephropathy.
In renal biopsies of IgA nephropathy patients, the expression
levels of IL-18 were positively correlated with both the infiltration
of inflammatory cells into the interstitium and the extent of
proteinuria (74).

A role of IL-18 has been reported in several experimental
animal models of glomerulonephritis. In a model of anti-
glomerular basement membrane nephritis in mice, IL-18-
deficient mice had reduced leukocyte infiltration in the glomeruli
and interstitium (97). Based on our findings obtained with
a bovine serum albumin glomerulonephritis mouse model,
we reported that IL-18Rα-deficient mice showed a significant
reduction of proteinuria, renal pathological findings including
glomerular IgG and C3 deposits, and leukocyte infiltrates
compared to control mice (75). Thus, in experiments with several
animal models, the suppression of IL-18 signaling has been
shown to be protective against glomerulonephritis.

Lupus Nephritis
Lupus nephritis (LN) is a frequent and severe organ lesion
associated with systemic lupus erythematosus (SLE) (98). IL-18
has been implicated in the pathogenesis of SLE, based on studies
in mice and humans. MRL/lpr mice, which develop spontaneous
lupus-like autoimmune disease, had higher levels of serum IL-
18 compared to controls (76), and the mice treated with IL-
18 developed accelerated proteinuria, glomerulonephritis and
vasculitis (76). We reported that IL-18Rα-deficient MRL/lpr
mice survived longer than IL-18α-intact MRL/lpr mice, and we
observed significant reductions in glomerular IgG deposition,
proteinuria, and serum anti-DNA antibodies in the IL-18Rα-
deficient MRL/lpr mice (77). Similarly, some other groups have
reported improved survival and proteinuria in IL-18-deficient
and IL-18-vaccinated MRL/lpr mice (78, 79).

High serum IL-18 levels have been reported in patients with
SLE (99, 100). Patients with active renal disease also have higher
serum levels of IL-18 than those without renal activity (99, 100).
It was reported that in the serum of LN patients, not only IL-
18 but also IL-18BP, which neutralizes the activity of IL-18,
are significantly increased, but the IL-18/IL-18BP ratio is also
increased (101). This imbalance between IL-18 and IL-18BP may
be involved in the pathogenesis of LN (101).

Serum IL-18 levels correlate with the disease activity of SLE
(99, 100, 102) and are also associated with the severity of LN
(100, 103, 104). Several studies indicated that the IL-18 value in
the serum or glomeruli of patients with class IV LNwas increased
compared to the LN class III and V patients. Thus, IL-18 may
be useful for the identification of LN in SLE patients and for
estimating the severity of LN.

Diabetic Nephropathy
Inflammatory cytokines play an important role in the
development and progression of diabetic nephropathy (105).
In clinical studies, elevated plasma and urinary IL-18 levels
were associated with diabetic nephropathy, and IL-18 was
observed to be a predictive marker for the development of
diabetic nephropathy in diabetic patients and to be associated
with the progression of renal dysfunction (106–108). Serum and
urinary IL-18 levels correlate with the degree of urinary albumin
excretion (107, 108). Elevated serum and urinary IL-18 levels
in diabetic patients may be a risk factor for the development of
diabetic nephropathy. In kidney tissue of diabetic nephropathy
patients, IL-18 is overexpressed in tubular epithelial cells, which
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may occur via the activation of the MAPK pathways induced by
transforming growth factor-beta (TGF-β) (109). Treatment that
blocks IL-18 signaling may be a new approach in the treatment
of diabetic nephropathy.

Obstructive Nephropathy
Renal interstitial fibrosis is a common and important lesion in
the process of various progressive renal diseases that progress
to renal atrophy. Unilateral ureteral obstruction (UUO) is an
important model for studying the mechanisms of renal fibrosis
and evaluating the potential therapeutic approaches (110). In
UUO model mice, it was reported that serum IL-18 levels
were elevated and the renal IL-18 and IL-18R expressions
were enhanced after a UUO operation (16, 17, 80, 81). We
reported that compared to wild-type mice, IL-18Rα-deficient
mice had reduced tubular cell apoptosis and suppressed renal
interstitial fibrosis after UUO (81). Similarly, transgenic mice
with neutralized IL-18 activity also show reduced fibrosis (80).

In general, TGF-β is a mediator that plays a central role in
renal fibrosis (111). Interestingly, in our previous study, there
was no significant difference in the expression of renal TGF-β
between IL-18Rα-deficient and wild-type mice (81). IL-18 may
be involved in renal interstitial fibrosis by a mechanism that
is independent of TGF-β (80, 81). In vitro, FasL expression in
human proximal tubular cells has been reported to be enhanced
by IL-18 exposure, and IL-18 may stimulate proapoptotic
signaling through a FasL-dependent mechanism and affect
obstructive nephropathy (112). In addition, TLR4 signaling may
affect IL-18-mediated profibrotic effects (113, 114). Experiments
using these mouse models suggested that (i) IL-18 signaling
plays an important role in renal interstitial fibrosis during renal
obstruction, and (ii) the inhibition of IL-18 acts protectively
against fibrosis.

COVID-19
COVID-19, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and first detected in the city
of Wuhan in China’s Hubei Province, has become a global
pandemic. In response to SARS-CoV-2 infection, the human
body produces pro-inflammatory cytokines such as IL-1β,
IL-6, IL-7, IL-8, TNF-α, granulocyte-colony stimulating factor
(G-CSF), interferon gamma-induced protein 10 (IP-10),
monocyte chemotactic protein (MCP)-1, and MCP-3 (115–117).
COVID-19 produces an excessive inflammation “cytokine
storm” that leads to acute respiratory distress syndrome (ARDS)
and the failure of multiple organs including kidney.

The incidence of AKI in COVID-19 patients is higher
than that in non-COVID-19 patients, and AKI associated with
COVID-19 has been shown to be independently associated with
an almost 4-fold higher odds of death than AKI associated
with other acute illnesses (118). However, in general, critically
ill patients with ARDS and AKI have many complications
that can induce acute tubulointerstitial injury, and the causal
relationship between coronavirus infection and AKI remains
unclear. Factors that may contribute to the development of
AKI in COVID-19 patients include direct viral infections,
the cytokine storm, drug treatments, hemodynamic instability,

and advancing hypercoagulable state. In a renal histological
analysis of samples from autopsies of 26 patients who died of
COVID-19-induced respiratory failure, clinical signs of renal
injury, including increased serum creatinine and/or new-onset
proteinuria, were observed in only nine of the 26 patients
(34.6%), while mild to severe acute tubular injury was observed
in all 26 patients (119). Three patients had pigmented tubular
casts, three had segmental glomerular fibrin thrombi and
two had focal segmental glomerulosclerosis. In seven patients,
electron microscopy showed coronavirus-like particles in the
tubular epithelium and podocytes. The SARS-CoV-2 virus uses
angiotensin-converting enzyme 2 (ACE2) as a receptor for host
cell entry. In the kidney, ACE2 is predominantly expressed in
proximal tubules and is also present in podocytes and endothelial
and smooth muscle cells of vessels (120). The finding that
SARS-CoV-2 infects these cells (119) may indicate that the virus
causes renal injury directly. However, it has been reported that
multivesicular bodies (MVBs)mimicking SARS-CoV-2 are found
in podocytes of COVID-19-negative patients, and it has not yet
been established whether SARS-CoV-2 truly causes direct kidney
injury (121).

Many cytokines are involved in the pathogenesis of
COVID-19, and IL-18 may also be relevant (122, 123).
Serum IL-18 levels have been shown to correlate with serum
IL-6 levels, with inflammatory markers such as C-reactive
protein and ferritin, and with markers of organ injury such as
creatinine, liver enzymes, and troponin (122). It has also been
reported that serum IL-18 levels on admission are higher in
COVID-19 patients requiring mechanical ventilation and lethal
cases (123). IL-18 may be related to the severity of COVID-
19. The appropriate control of pro-inflammatory cytokines,
including IL-18, may be a therapeutic option for managing the
complications caused by the cytokine storm in COVID-19. There
are currently no clinical trials examining IL-18 signaling. On
the other hand, the effect of the humanized anti-IL-6 receptor
antibody tocilizumab on COVID-19 has been reported. Several
open-label trials and non-randomized case series reported
positive effects of tocilizumab on COVID-19 (124); however,
phase III clinical trials did not show efficacy of tocilizumab for
preventing intubation or death in moderately ill hospitalized
patients with COVID-19 (125). Although the regulation of IL-18
signaling may be a potential therapeutic target for COVID-19,
the suppression of IL-18 signaling alone may not be sufficient
to control the disease, as many cytokines are involved in the
severity of COVID-19.

CONCLUSION

IL-18 belongs to the IL-1 superfamily and drives the same
MyD88/NF-κB signaling pathway as IL-1β. IL-18 is a pro-
inflammatory cytokine that induces IFN-γ production and has
a variety of other functions, including the enhancement of
NK cell activity and up-regulation of FasL expression. IL-
18 appears to regulate inflammation at multiple checkpoints.
Pre-clinical and clinical studies have obtained interesting results
in many circumstances in which IL-18 is associated with an
increased inflammatory infiltrate andmore severe kidney lesions.
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These results suggest that IL-18 may play an important role
in the pathology of inflammatory kidney diseases, and they
raise expectations that IL-18 may be a potential therapeutic
target. However, there is a lack of clinical studies targeting
IL-18 in inflammatory renal disease. In addition, the role
and signaling of IL-18 in inflammatory kidney disease are
not fully understood. It remains unknown whether IL-18 is
clearly implicated in disease pathogeneses. In experimental
animal models, IL-18-deficiency, anti-IL-18 antibodies, IL-18R-
deficiency, and IL-18BP all regulate IL-18 signaling, and in many
cases their effects are protective for the kidneys. Some conflicting

results suggest that their respective signaling pathways, effects
on cytokines, etc. may not be identical. Studies that will
further elucidate IL-18 signaling are important for understanding
the pathogenesis of inflammatory kidney disease and for
therapeutic applications.
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