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Abstract

Neurospora crassa has been an important model organism for molecular biology and genetics for over 60 years. Neurospora crassa has a
complex life cycle, with over 28 distinct cell types and is capable of transcriptional responses to many environmental conditions including
nutrient availability, temperature, and light. To quantify variation in N. crassa gene expression, we analyzed public expression data from
97 conditions and calculated the Shannon Entropy value for Neurospora’s approximately 11,000 genes. Entropy values can be used to
estimate the variability in expression for a single gene over a range of conditions and be used to classify individual genes as constitutive
or condition-specific. Shannon entropy has previously been used measure the degree of tissue specificity of multicellular plant or animal
genes. We use this metric here to measure variable gene expression in a microbe and provide this information as a resource for the
N. crassa research community. Finally, we demonstrate the utility of this approach by using entropy values to identify genes with constitu-
tive expression across a wide range of conditions and to identify genes that are activated exclusively during sexual development.
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Introduction
Across conditions, individual genes can display expression
patterns that can range from conditional to constitutive. When
performing quantitative reverse transcription PCR (qRT-PCR), it
is crucial to identify constitutively expressed genes for experi-
mental normalization (Huggett et al. 2005). Conversely, highly
regulated, condition-specific gene promoters are often used in
molecular biology to drive conditional expression of a gene under
investigation (e.g., an essential gene) or to control expression of
reporter genes in certain cell types or environmental conditions
(e.g., a gene encoding a fluorescent protein) (Giles et al. 1985;
Hurley et al. 2012; Lamb et al. 2013). Moreover, identification of
genes that are exclusively expressed during a condition or cell
type of interest can reveal genes that are functionally important.
Such genes or promoters are often identified by examining gene
expression across just a handful of experimental conditions;
however, with the increase in publicly available transcriptomics
data, it is possible to quantify variation in gene expression across
many conditions for a given organism.

In 1963, Claude Shannon laid the basis for information
theory and described the unit known as Shannon entropy
(Shannon 1997). A simplistic definition of Shannon entropy is
that it describes the amount of information a variable can hold
(Vajapeyam 2014). In our case, a variable is a gene, and the infor-
mation is the collection of expression values from different
conditions. If a gene is classified as having low entropy, then the
expression values would be generally consistent across different
conditions or possess a low amount of information. Instead, if a

gene is classified as having high entropy, then the expression of
this gene would be highly variable across different conditions
and contain a high amount of information.

Since entropy describes information contained in a variable,
there are a number of uses for such a metric. Previous studies

have used entropy to investigate cell and tissue-specific expres-
sion of genes (Schug et al. 2005), identify potential therapeutic
targets (Fuhrman et al. 2000), characterize periodicity in gene
expression (Langmead et al. 2002), identify cancerous tissue sam-
ples (van Wieringen and van der Vaart 2011), and make genomic

comparisons (Machado 2012). Studies using entropy have been
carried out in human cell lines (Heintzman et al. 2009), mouse
(Schug et al. 2005), plants (Zhang et al. 2006), yeast (Lezon et al.
2006), bacteria, phage, and metagenomes (Akhter et al. 2013) but
not yet in filamentous fungi.

Neurospora crassa has a 43 Mb genome encoding approximately

�11,000 genes (Galagan et al. 2003; Borkovich et al. 2004). There is
a whole-genome knockout collection, and genetic, genomic, and
epigenetic studies have been carried out with this organism for
more than 100 years (Colot et al. 2006). Indeed, N. crassa has been
used as a model organism for epigenetics, testing fungal enzymes

for biomass degradation, and circadian clock studies (Dunlap
et al. 2007; Tian et al. 2009; Aramayo and Selker 2013). As a re-
source for N. crassa researchers, we generated an entropy value
for most genes in the N. crassa genome using publicly available
RNA-seq data, and we validated this approach using previously

published lists of housekeeping or inducible genes. This resource
has a number of useful applications for the N. crassa community.
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Materials and methods
Public data collection
Entropy calculations were made for all genes in the N. crassa ge-
nome using public RNA-seq data sets (97 conditions from a
total of 173 separate sets including replicates; Supplementary
Table S1).

Data analysis
Mapping, transcripts per million, and entropy calculations:
HiSat2 (version 2.1.0) (Kim et al. 2019) was used to map all of the
sequence read archive (SRA) accessions to the NC12 genome
(NCBI assembly: GCA_000182925.2) using appropriate parameters
specific for paired or single-end sequence reads (with parameters
–RNA-strandness RF or R) to produce bam files, which were then
sorted and indexed using SAMtools (version 1.3) (Li et al. 2009). If
experiments contain replicates, the replicate bam files were
merged together before obtaining counts with featureCounts
from Subread (version 1.6.2) (Liao et al. 2014). FeatureCounts was
used with parameters -T exon to generate all counts at the gene
level. Counts were imported into R where we obtained transcripts
per million (TPM) using the function calculateTPM from the R
package scater (McCarthy et al. 2017). This package takes in
feature-level (in our case, gene level) counts and gene lengths
and outputs the TPM values for each gene. TPM values were then
used to calculate the Shannon entropy using the R package
BioQC (Zhang et al. 2017). The function entropySpecificity was
used to calculate the entropy values for all genes in the genome.
To examine specific genes sets, we converted from NCU acces-
sion numbers to gene identifiers from NCBI Genome Assembly
NC12 (GCA_000182925.2) and plotted the kernel density estima-
tion (KDE) with rug plots.

Data availability
All supplementary tables have been uploaded to Figshare
(https://doi.org/10.25387/g3.13634993). Supplementary Table S1
contains SRA accession numbers, short descriptions, total reads,
and mapped reads for each public data set used. Calculated en-
tropy values for all N. crassa genes are listed in Supplementary
Table S2. Supplementary Table S3 contains all genes for which
we were unable to calculate their entropy value due to 0 counts
in all conditions. Underlying data used to generate heatmaps in
Figures 2 and 3 with entropy values and NCU accessions are
included in Supplementary Table S4. Lists of all N. crassa genes
used to benchmark the entropy values and generate panels in
Figures 2 and 3 are included in Supplementary Table S5.
Heatmap column descriptions and their respective categories
assigned are listed in Supplementary Table S6. Code used to gen-
erate the data in this manuscript is available through github
(https://github.com/ajcourtney/entropy).

Supplementary material is available at https://doi.org/10.
25387/g3.13634993.

Results
Shannon entropy values are useful in measuring the amount of
variation in expression levels across different tissues or growth
conditions. In order to calculate Shannon entropy values for all
N. crassa genes, we first compiled a list of available RNA-seq data
sets present in the NCBI SRA (Supplementary Table S1). We se-
lected datasets that were generated with the wild-type Oak Ridge
strain background, but we used both mating types. To calculate

accurate entropy values, we needed to gather many observations
of gene expression across different conditions. We searched the
SRA database (Leinonen et al. 2011) for N. crassa RNA-sequencing
entries that were processed at different developmental stages or
grown under different conditions. In total, we gathered 173 acces-
sions, which represent 97 developmental or growth conditions.
We then developed a pipeline to generate entropy values for each
gene (Figure 1A). Calculated entropy values are available in
Supplementary Table S2. We first mapped to the NC12 N. crassa
genome using HiSat2 (Kim et al. 2019) to generate bam files. The
bam files were then used to generate read counts for each gene in
each condition using featureCounts (Liao et al. 2014), which
assigns reads to genomic features. Once the count file was cre-
ated, we calculated normalized expression values using the TPM
normalization method to create a matrix of normalized expres-
sion values for all genes in all conditions. We then used this ex-
pression matrix to calculate the Shannon entropy value for each
gene (Zhang et al. 2017). This generated entropy values for 10,300
out of 10,398 genes. The remaining 98 genes had 0 read counts in
all conditions, so we were unable to calculate entropy. Out of the
98 genes with 0 read counts, 42 are hypothetical protein-coding
genes, 10 are protein coding with an annotation, and the remain-
ing 46 code for rRNA, tRNA, or ncRNAs (Supplementary Table S3).
Our final entropy values range from 0.0506 to 6.599. Seventy per-
cent of the genes in the genome possess low entropy values be-
tween 0.05 and 1 (7180/10,300) (Figure 1B). These values include
the constitutively expressed genes in the genome. Entropy values
above one represent only 30% of the genome (3120/10,300), corre-
sponding to genes with more condition-specific expression pat-
terns.
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Figure 1 Calculation of Shannon entropy for N. crassa genes using public
RNA-seq data. (A) Schematic of our computational pipeline for
calculating Shannon entropy from publicly available datasets. (B)
Neurospora crassa genes display a broad range of entropy values. The
histogram shows entropy values for all genes. The y-axis is the number
of genes found in each bin. The x-axis shows the binned entropy values.
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Validation of entropy as a measure of gene
expression variation in N. crassa
In order to determine if entropy values are a reliable predictor
of expression variability in a microbe, we examined the entropy
values generated here for published gene sets expected to be

enriched for constitutively expressed genes, or conversely, for
gene sets expected to contain genes with highly condition-
specific expression patterns. If entropy value is a reliable mea-
sure of gene expression variation across conditions, housekeep-
ing genes should be enriched for genes with low entropy values,
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Figure 2 Constitutively expressed genes are characterized by low entropy values. (A) The relative frequency of entropy values for a list of housekeeping
genes is shown as a KDE plot. The rug plot, black lines on the bottom in the KDE plot, represents the individual data points that create the estimation.
The y-axis is the probability density, which is the probability for each unit (gene) on the x-axis. The total area below the KDE curve integrates to one. (B)
The heatmap shows the expression value for housekeeping genes across all conditions analyzed. The expression level for each gene is plotted as the
log2 transformed TPM value. Genes (rows) are plotted in ranked order based on the entropy value from low (top) to high (bottom). The scale on the left
indicates entropy values for each gene. Each condition (column) has been assigned a category: Metabolism (gold), Development (green), or Light
Response (blue). The categories are represented at the top of the heatmap in the three different colors. (C) The relative frequency of entropy values for a
list of genes related to transcription and translation is shown as a KDE plot. The rug plot, black lines on the bottom in the KDE plot, represents the
individual data points that create the estimation. The y-axis is the probability density, which is the probability for each unit (gene) on the x-axis. (D)
Heatmap of log2 transformed TPM values from all transcription and translation related genes (rows) ranked by entropy (low to high). Entropy values are
depicted by the brown to green heatmap on the left, where brown is low (top) and green is high (bottom). Each condition (column) has been assigned a
category: Metabolism (gold), Development (green), or Light Response (blue). The categories are represented at the top of the heatmap in the three
different colors.
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whereas sets of conditionally induced genes are expected to be
enriched for high entropy values. Two previous studies identified
genes useful for RT-qPCR controls in N. crassa. One of which pub-
lished a list of 38 genes classified as “housekeeping genes” based
on previously generated microarray and RNA-seq datasets under
three different conditions [quinic acid (QA) induction, circadian

gene expression profiling, and light response] (Hurley et al. 2015),
and the other study identified four genes by using previous tran-
scriptomic studies and genes used in related organisms to gener-
ate candidates that were validated by quantitative PCR under
different conditions (Cusick et al. 2014) (Supplementary Table S1).
To visualize the distribution of entropy values in this set of 42

A B

C D
Entrop

y
Entrop

y

Exp
ression 

level 
Exp

ression 
level 

Figure 3 Validating entropy values with previously published light-induced genes and genes induced during sexual development. (A) The relative
frequency of entropy values for a list of light-induced genes is shown as a KDE plot. The rug plot, black lines on the bottom in the KDE plot, represents
the individual data points that create the estimation. The y-axis is the probability density, which is the probability for each unit (gene) on the x-axis.
The total area below the KDE curve integrates to one. (B) The heatmap shows the expression value for light-induced genes across all conditions
analyzed. The expression level for each gene is plotted as the log2 transformed TPM value. Genes (rows) are plotted in ranked order based on the
entropy value from low (top) to high (bottom). The scale on the left indicates entropy values for each gene. Each condition (column) has been assigned a
category: Metabolism (gold), Development (green), or Light Response (blue). The categories are represented at the top of the heatmap in the three
different colors. (C) The relative frequency of entropy values for a list of sexual development genes is shown as a KDE plot. The rug plot, black lines on
the bottom in the KDE plot, represents the individual data points that create the estimation. The y-axis is the probability density, which is the
probability for each unit (gene) on the x-axis. The total area below the KDE curve integrates to one. (D) The heatmap shows the expression value for
sexual development genes across all conditions analyzed. The expression level for each gene is plotted as the log2 transformed TPM value. Genes (rows)
are plotted in ranked order based on the entropy value from low (top) to high (bottom). The scale on the left indicates entropy values for each gene.
Each condition (column) has been assigned a category: Metabolism (gold), Development (green), or Light Response (blue). The categories are
represented at the top of the heatmap in the three different colors.
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“housekeeping” genes, we plotted a KDE of entropy values
(Figure 2A). The KDE is a smoothed version of a histogram esti-
mated from the underlying data. As expected, the highest density
of data points in the housekeeping data set is around 0.25 (low
entropy) and the density falls sharply around 0.75 (Figure 2A).
Two genes in this set possess entropy values above 1.6 and they
encode an exo-beta-1,3-glucanase and a UDP-glucose dehydroge-
nase. We plotted a heatmap depicting TPM values for each gene
in each condition with genes ranked by entropy values from low
to high (top to bottom) (Figure 2B and Supplementary Table S4).
Genes with higher entropy values showed significant induction of
gene expression under certain conditions, whereas genes with
low entropy values displayed consistent expression values across
all conditions. In particular, the two genes with high entropy val-
ues showed marked induction under certain conditions. Thus,
these data highlight the value of performing a comprehensive
analysis of conditional gene expression when selecting constitu-
tive control genes.

We further validated the use of entropy as a measure for con-
stitutive gene expression by using the same approach with a pub-
lished list of 2624 genes involved in transcription and translation
(Supplementary Table S1), reasoning that genes involved in these
essential processes would be expressed at similar levels in all 93
conditions we investigated (Benz et al. 2014). The distribution of
entropy values for transcription and translation genes resembles
the distribution of entropy values for housekeeping genes where
the highest density is concentrated at the low end of entropy val-
ues (Figure 2C). Many of the genes that possess entropy values
above 1.6 are either hypothetical proteins or genes associated
with cellular transport or metabolism. We again examined the
TPM values for each gene in this set in a heatmap ranked by en-
tropy from low to high and again find mostly steady expression
across conditions (Figure 2D and Supplementary Table S4).

We next asked if higher entropy values were associated with
conditionally expressed genes. The highest entropy values imply
that a gene must only be expressed under specific conditions and
may only show expression in one or a few of the conditions in the
entire RNA-seq dataset. To confirm that higher entropy values
were indeed associated with condition- or tissue-specific gene ex-
pression, we created KDE plots for 513 genes induced by light
(Figure 3A and Supplementary Table S1) and 3259 genes that
have expression changes during sexual development (Figure 3C
and Supplementary Table S1) (Wang et al. 2014; Wu et al. 2014). In
both cases, there is a shift in distribution of entropy values to-
ward higher entropy values compared to “housekeeping” or
“transcription and translation” genes. We examined TPM values
for each gene in each condition using a heatmap ranked by en-
tropy values from low to high (top to bottom) and find that a ma-
jority of genes in each gene set show variable expression across
conditions, as expected (Figure 3, B and D and Supplementary
Table S4). Genes that have regulation changes during perithecial
(sexual) development also show a shift to the right, but with re-
tention of more low entropy genes than in the light-induced gene
set (Figure 3C). Plotting the TPM values in an entropy ranked
heatmap shows that approximately half of these genes are highly
expressed across many conditions and half are variably
expressed, corresponding to genes with lower entropy values in
the density plot (Figure 3D and Supplementary Table S4). This
implies that half of these genes are not specific to sexual or vege-
tative cell types even though they show transcriptional changes
throughout development (Wang et al. 2014).

As a final confirmation that entropy can be used as a reliable
metric to assess the variation or lack of variation in gene

expression levels across many conditions, we plotted the expres-

sion levels of 100 genes with the highest entropy values and 100

genes with the lowest entropy values. We took the log2 TPM val-

ues for all conditions (columns) and plotted them for each gene

in a heatmap for both the top and bottom 100 genes. As expected,

genes with the lowest entropy values show mostly uniform ex-

pression across all conditions (Figure 4A), and genes in the high

entropy group displayed highly variable and condition-specific

expression (Figure 4B). Together, these data demonstrate that en-

tropy is an effective tool for measuring variation in gene expres-

sion levels in a filamentous fungus.

Discussion
The information and code generated in the course of this study

could prove useful in a number of ways. First, identifying genes

that are induced in a certain condition and display a high entropy

value will help identify genes that are condition-specific. In addi-

tion, examining entropy values for individual genes can be a use-

ful approach for finding new inducible promoters to use for

genetic studies. Condition-specific expressed genes are good

starting targets to test for this purpose. The entropy metric deter-

mined here can also be used to confirm constitutive expression

of genes chosen as controls for RT-PCR. In examining the house-

keeping genes from previously published studies it is clear that

not all will function as good controls under all conditions, a limi-

tation that was discussed by Hurley et al. (2015). We combined all

of their housekeeping genes together, whereas they had them di-

vided into housekeeping genes usable for different conditions in

qRT-PCR (QA induction, light response studies, and circadian

experiments). Here we can choose genes that will work across all

conditions (provided the conditions were represented in the ini-

tial dataset). Our approach provides a quantitative metric that

can be applied to identify condition-specific genes, as opposed to

investigating individual datasets or using controls from previous

studies, which may not perform as expected. In addition, this

methodology is scalable; the initial inclusion of more conditions

will only increase the robustness of the metric produced. As

more data are published, more datasets can be incorporated.

This approach can be used across other fungi in addition to N.

crassa, provided there are sufficient RNA-seq data publicly avail-

able.
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