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Focus on the spectra that matter by clustering of
quantification data in shotgun proteomics

Matthew The'! & Lukas Kall@ 1™

In shotgun proteomics, the analysis of label-free quantification experiments is typically limited
by the identification rate and the noise level in the quantitative data. This generally causes a low
sensitivity in differential expression analysis. Here, we propose a quantification-first approach for
peptides that reverses the classical identification-first workflow, thereby preventing valuable
information from being discarded in the identification stage. Specifically, we introduce a method,
Quandenser, that applies unsupervised clustering on both MS1 and MS2 level to summarize all
analytes of interest without assigning identities. This reduces search time due to the data
reduction. We can now employ open modification and de novo searches to identify analytes of
interest that would have gone unnoticed in traditional pipelines. Quandenser+Trigler outper-
forms the state-of-the-art method MaxQuant+Perseus, consistently reporting more differen-
tially abundant proteins for all tested datasets. Software is available for all major operating
systems at https://github.com/statisticalbiotechnology/quandenser, under Apache 2.0 license.
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n mass spectrometry-based proteomics, label-free quantifica-

tion (LFQ) is one of the most comprehensive methods to

analyze protein concentrations in complex mixtures. Its main
advantage is that it allows for comparisons in large sample
cohorts and can, hence, handle complex experimental designs!.
Currently, LFQ and quantitative proteomics in general are
struggling to obtain sufficient coverage of the proteome? and also
suffer from low sensitivity for differentially abundant proteins at
false discovery rate thresholds®. While this can partially be
attributed to inherent limitations in the methodology of mass
spectrometry, it is, to a high degree, caused by the inadequacy of
our current data analysis pipelines. We also note that LFQ is
sometimes seen as cumbersome, as contrary to, for instance,
isobaric labeling, one is not guaranteed a readout for an identified
peptide in each sample. Frequently, this is resolved by missing
value imputation but this introduces a multitude of issues®°.
Novel methods for LFQ data analysis are necessary to address
these problems in sensitivity and specificity.

Two well-recognized issues regarding the sensitivity of LFQ
pipelines are that many MSI1 features remain unassigned to
peptides® or even to MS2 spectra’ and that a large number of
fragment spectra remain unidentified®. Match-between-runs
(MBR) has proven to be an effective technique to propagate
MS2 information to the MSI features®>10 and clustering of
MS2 spectra from large repositories has allowed us to zoom in on
frequently unidentified spectra for peptide identification!l.
Unsupervised clustering of MS2 spectra also significantly reduces
the number of MS2 spectra that need to be searched!2-14, This
allows more computationally expensive searches to be conducted
such as partial digestions, variable modification searches, open
modification searches or even de novo searches. Generally, clus-
tering of fragment spectra was recently demonstrated to give
better sensitivity to LFQ experiments!>.

A less highlighted issue concerning sensitivity is that conven-
tional data analysis pipelines match the individual sample’s
spectra to peptide sequences with search engines as a first step®®.
This step directly limits the number of peptides and proteins that
can ultimately be quantified. Moreover, such an identification-
first strategy has some undesirable properties. For instance, if one
would want to search the data again with an open modification
search engine or a newly acquired spectral library, all quantifi-
cation would have to be redone. Yet, in reality, the underlying
experimental quantitative data does not change due to a new
search engine result, just our interpretation thereof. By using
unsupervised clustering of MS1 features, we can capture this
underlying quantitative information of the analytes. We can
assign MS2 spectra to such clusters but postpone their inter-
pretation to a later stage. Such a quantification-first approach for
peptides allows us to focus our efforts on improving the coverage
by investigating frequently unidentified features without having
to go through the costly process of repeated iterations of identi-
fication and quantification!6-19,

We note that the term quantification-first refers to the quan-
tification of peptides, as the quantification of proteins requires
some form of identification. Furthermore, current quantification-
first approaches often apply significance filters for the differen-
tially abundant peptide signals before peptide and protein
identification!®1°, However, we refrain from applying such a
filter, as this can easily introduce quantification biases on protein
level because it discards evidence in support of the null hypoth-
esis. Whenever practically possible, significance tests should be
withheld until the final steps of any data processing pipeline, as
they introduce unnecessary bifurcations, resulting in loss of data.

Conversely, specificity is often compromised by the multitude
of thresholds in the various steps of a quantification pipeline,
which cause a lack of error control and do not properly account

for error propagation?. Also, missing value imputation is known
to induce false quantification accuracy?!. We have previously
introduced a hierarchical Bayesian model, Trigler??, for protein
quantification that propagates error rates of the different steps in
protein quantification and compensates for missing readouts in a
Bayesian manner. Triqler provides a natural means to link the
quantification to the identification process. However, two features
that Trigler did not include yet were the error rates of the asso-
ciation of MS1 features with MS2 spectra and support for MBR.

Here, we introduce a method, Quandenser (QUAN.tification by
Distillation for ENhanced Signals with Error Regulation), that we
subsequently interface to Trigler to substantially increase the
sensitivity of the LFQ analysis pipeline. Quandenser condenses
the quantification data by applying unsupervised clustering on
both MS1 and MS2 level and thereby paves the way for a
quantification-first approach. The algorithm combines the
unknowns from both levels into a condensed set of MS1 features
and MS2 spectra that are likely to be interesting for further
investigation. Specifically, Quandenser incorporates a method
similar to MBR for MSI features to increase sensitivity and uses
MS2 spectrum clustering to decrease the number of spectra to be
searched. Importantly, Quandenser addresses the false transfer
problem?? by providing feature-feature match error rates using
decoy features and an automated weighting scheme to separate
true from false matches. These error rates can be used as input to
Trigler to account for the errors as a result of the MBR step.

The main advancement of our pipeline of Quandenser with
Trigler comes from the combination of an MBR approach with a
Bayesian error model, which results in compelling gains in the
number of significant proteins while maintaining control over the
differential abundance FDR. In addition, the clustering approach
provides a conceptually pleasing solution to some of the bottle-
necks in protein quantification analysis by producing a reduced
set of hypotheses to test for. Not only does this facilitate easy
researching and open modification searches on the data, but it
also allows us to zoom in on previously unexplored parts of our
data that, for example, are frequently recurring but remain con-
sistently unidentified or follow a quantitative behavior of poten-
tial interest.

Results

Quandenser, overview of tests. We implemented our
quantification-first method, Quandenser, using clustering at both
MS1 and MS2 levels, followed by differential expression analysis
by our method Trigler2(. The details of the implementation can
be found in the “Methods” section and Supplementary Notes 1
and 2. We evaluated the performance of Quandenser with dif-
ferent search engines. We used one regular search engine, Tide?3,
one open modification search engine, MODa?* and subsequently,
we investigated a combination of them both, i.e., Tide and MODa
in a cascade search setting. We compared these quantification-
first setups to three identification-first setups: (1) MaxQuant +
Perseus with MBR%2> (2) MaxQuant + EBRCT with MBR®:26,
and (3) Tide followed by Triqler, without clustering on MS1 and
MS?2 levels nor MBR but with feature detection using Dinosaur?’.
In the following, whenever MaxQuant is mentioned as a method,
this is presumed to include MBR.

We made our comparisons on four engineered data sets to
characterize the reliability and sensitivity of our pipeline. One
data set was a set of partially known composition with the UPS1
protein mixture spiked in at different concentrations in a yeast
background?8, here referred to as the UPS-yeast data set. Three
sets were mixtures of two proteomes at different ratios. The first
consists of yeast spiked into a human background?®. The second
and the third consist of E. coli spiked into a HeLa background
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concentrations, at four different concentrations30, here referred to
as the Shalit HeLa-E. coli data set, and two different concentra-
tions?!, here referred to as the BoxCar HeLa-E. coli data set.

We also downloaded RAW files for three clinical data sets. The
first was a data set studying bladder cancer3? referred to as the
Latosinska data set. The second was a data set studying hepatitis ¢
virus-associated hepatic fibrosis33, which will be referred to as the
Bracht data set. The third data set concerned a recent
advancement in nanoscale proteomics applied to type 1
diabetes34, which will be referred to as the Zhu data set. Detailed
descriptions of the data sets are given in the “Methods” section
and Supplementary Note 6.

For the engineered data sets, we verified the reported
differential abundance FDRs by comparing it to the observed
differential abundance FDR. To calculate the latter, spiked-in
proteins reported as differentially abundant with the correct fold
change sign were counted as true positives. All other proteins
reported as differentially abundant, i.e. spiked-in proteins with
the wrong fold change sign and background proteins, were
counted as false positives.

Furthermore, we used the UPS-yeast data set to illustrate some
benefits of clustering the data before analysis by a search engine.
The low complexity of the UPS spike-in fraction allowed us to
verify our findings with high confidence. Then, we used the
human-yeast proteome mixture to characterize the benefits of
each of the steps in our pipeline, as its higher complexity allowed
better separation of the performance figures. The two HeLa-E.
coli mixtures were then used to further demonstrate the
applicability of the method in different experimental setups.
Finally, we analyzed three clinical data sets to characterize our
pipeline’s behavior in real-world applications. A summary of the
data sets, including the employed parameters and reduction in the
number of searched MS2 spectra through clustering by
Quandenser can be found in Supplementary Table 4.

All analysis was performed on a quad-core (Intel i7-4790K,
4.00 GHz) machine with 32 GB of memory running Ubuntu
18.04. Conversion from RAW to mzML format with ProteoWi-
zard3> took less than 10 min per data set using four cores. Both
Quandenser and MaxQuant were run using all four cores as well.
For MaxQuant, we used Mono on Linux, which was reported to
be at least as fast as MaxQuant on Windows3®. On the tested data
sets, running Quandenser was typically about twice as fast as
MaxQuant, with respective runtimes in the range of 1-3h
compared with 2-5.5h. Quandenser does not include a search
engine step, but processing the consensus spectra with Tide and
Trigler took less than 15 min per data set. The open modification
searches with MODa on the consensus spectra for each of the
clinical data sets took about 15-18 h using four cores. One should
bear in mind that running MODa without applying clustering
would have taken between 4 and 6 days.

UPS-vyeast data set. The UPS-yeast data set consisted of a total of
535k MS2 spectra. Assigning the MSI1 features detected by
Dinosaur to the MS2 spectra resulted in 934k spectrum-feature
matches. Allowing up to M = 3 missing values, resulted in 121k
feature groups of which 50k were assigned to at least one spec-
trum cluster. As multiple spectrum clusters could be assigned to a
feature group, 109k spectrum-feature matches (12% of the ori-
ginal number of spectrum-feature matches), corresponding to 61k
consensus spectra, remained to be searched by the search engine.

Subsequently, we processed the Quandenser and search engine
outputs with Trigler and obtained posterior distributions of the
fold changes between sample groups (Supplementary Note 3 and
Supplementary Fig. 8). To illustrate what information Triqler uses
and how it arrives at these posterior distributions, we have added

Table 1 Benchmark on the UPS-yeast data set.

UPS-yeast
UPS1 spike-in concentration (fmol) 25vs.10 25vs.5 10vs.5
Max. true positives 48 48 48
Method tp fp tp fp tp fp
Quandenser + Trigler
Tide 43 1 45 1 3 0
MODa 40 0 4 2 29 0
Tide + MODa cascade 43 0 45 0 35 O
Tide + Trigler (without Quandenser/MBR) 40 O 40 O 34 0
MaxQuant MBR + Perseus (So = 0.3) 39 9 42 15 36 1

The table lists the number of true (tp) and false positive (fp) significantly differentially abundant
proteins at a 5% reported FDR threshold. For Perseus we used So = 0.3, other values (S = 0.0,
0.7, 1.0) resulted in inferior results (see Supplementary Table 1). Quandenser combined with

Trigler achieves a high sensitivity on the UPS-yeast, while still maintaining control of the FDR.

a detailed example for one of the UPS proteins in Supplementary
Note 2 and Supplementary Figs. 2-4. Trigler differs from
conventional statistical tests in that it integrates the probabilities
of the fold change exceeding a given threshold instead of
calculating a probability of the observed data given a fold change
of zero (a p value). For the UPS—yeast data set, we selected this
log, fold change to be 0.8 (——fold change eval=0.8),
which is just below the lowest spike-in ratio in the 10 vs. 5 fmol
comparison. Processing the Quandenser output with Trigler
resulted in higher sensitivity compared with applying Trigler
directly on the search results without clustering and at the same
time controlled the differential abundance FDR below the
reported FDR of 5%, whereas MaxQuant + Perseus and Max-
Quant + EBRCT failed to do so, producing observed FDRs of up
to 26% and 18%, respectively (Table 1 and Supplementary
Table 1). We also observed that MaxQuant + Perseus had trouble
controlling the differential abundance FDR, regardless of the
value for the Sy parameter (Supplementary Table 1).

To demonstrate the advantages of reducing the number of
spectra and spectrum-feature matches that need to be searched,
we ran the unidentified consensus spectra through an open
modification search with MODa using the cascade search
approach?’. This open modification search took about 4 h using
four cores, whereas applying such a search with the same number
of cores without clustering by Quandenser would have taken well
over a day. We could see a clear increase in the number of feature
groups that were assigned a peptide and more modest, but still
significant, increases in the number of unique peptides and
proteins (Fig. 1). However, the cascade search did not result in an
increased sensitivity on the spiked-in proteins, as the newly
discovered peptides were predominantly modified versions of
already identified peptides or came from already identified
proteins (Supplementary Table 1).

Interestingly, searching with MODa without searching with Tide
first actually decreased the sensitivity on the spiked-in proteins
relative to only searching with Tide, even though more unique
peptides were identified than by Tide. This is likely a result of the
lower sensitivity of open modification searches on unmodified
peptides, as a result of the increased search space. We indeed
discovered several unmodified peptides from UPS proteins that
were confidently identified by Tide but not picked up by MODa. In
this engineered data set the modified peptides did seem to follow
the correct abundance pattern in the vast majority of the cases. In
general, however, we should be careful about using modified
peptides for quantification, as they are not guaranteed to follow the
protein’s abundance pattern. On the other hand, quantifying
modified peptides can be of great interest for understanding
biological processes.
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Fig. 1 Number of identifications. Using Quandenser, with and without the open modification search, increases the number of quantified peptides and
proteins compared with not clustering and MaxQuant MBR. Performing an open modification search after a normal database search drastically increases
the number of feature groups with identifications. We plot the number of feature groups with identification (a-c), quantified peptides (d-f), and quantified
proteins (g-i) at 1% identification FDR after applying the maximum missing value criterion. The analyzed methods were Quandenser + Tide (green), a
cascade search of first Tide and subsequently MODa (light blue), Tide without Quandenser (magenta), and MaxQuant with MBR (yellow). For the
comparison on protein level one should bear in mind that MaxQuant requires at least two unique peptides for protein identification.

We also tested MSFragger with its large precursor tolerance
(500 Da) as an alternative open modification search engine. It
produced more identifications than MODa, reducing the number
of unidentified consensus spectra to around 40%, but also
produced several dubious modifications. MSFragger could,
therefore, be a good source for finding candidate peptide
identifications, but some extra verification seems to be required
for the moment.

To illustrate the utility of MS2 clustering, we used Novor on
the 20 most frequently occurring unidentified spectra, followed by
a BLAST search38. This interest was motivated by the fact that the
identification rate for large clusters (>80% for cluster size > 16)
was much higher than for small clusters (<50% for cluster size <
7). Using this approach, we found two distinct peptides from a
capsid of a known vyeast virus (UniProtKB: P32503/
GAG_SCVLA) and another two distinct peptides from lysyl
endopeptidase (UniProtKB: QQHWK6/LYSC_PSEAE), the latter
of which might have been used for improved protein digestion,

although this was not mentioned in the original manuscript. All
but one of these largest 20 unidentified spectrum clusters were
identified as peptides from the two above-mentioned proteins or
as modifications of already identified peptides of high-abundant
proteins (Supplementary Data 1).

Furthermore, the benefit of having clustered on MS1 level
allowed us to zoom in on feature groups without peptide
identifications, but with the same abundance pattern as the UPS
proteins. For this, we calculated the cosine distance between the
expected abundance pattern and the observed abundance pattern,
omitting missing values from the calculation, and selected the 200
feature groups with the smallest cosine distance (Fig. 2 and
Supplementary Data 1). Of these 200 feature groups, 58 were
identified through closer inspection as, often modified, UPS
peptides and often came from chimeric spectra. One helpful
approach in identifying these chimeric spectra was by filtering out
the fragment peaks of an already identified peptide species and
applying another open modification search3®.
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Fig. 2 The number of feature groups and their origin as a function of dissimilarity to the UPS1 spike-in concentrations. The histograms display the
number (a) and relative number (b) of feature groups as a function of the cosine distance relative to the UPS1 spike-in concentrations using the cascaded
search of Tide followed by MODa. The vast majority of the identified feature groups had an abundance pattern that conformed to their origin. Still, a large
proportion of feature groups remained unidentified, including a group that was tentatively identified as polyethylene glycols (PEGs), which exhibited an
abundance pattern similar to the UPST proteins. The cosine distance between the yeast and UPS concentrations was 0.16 and we can indeed observe that

the majority of the yeast peptides center around that value.

Table 2 Benchmark on the Shalit Hela + E. coli data set.
E. coli spike-in concentration (ng) 3 vs. 7.5 3vs. 10 3vs. 15 7.5 vs. 10 7.5 vs. 15 10 vs. 15
Method tp fp tp fp tp fp tp fp tp fp tp fp
Quandenser + Trigler
Tide 190 7 198 4 229 0 0 0 194 3 138 0
MODa 170 3 181 5 222 2 0 0 184 1 131 1
Tide + MODa cascade 200 8 206 8 240 3 0 0 201 4 145 1
Tide + Trigler (without 47 1 50 0 62 0 0 0 59 1 49 0
Quandenser/MBR)
MaxQuant MBR + Perseus 126 7 134 6 137 9 0 0 128 4 125 7
(So=0.3)
The table lists the number of true (tp) and false positive (fp) significantly differentially abundant proteins at a 5% reported FDR threshold. For Perseus we used Sg = 0.3, other values (5o = 0.0, 0.7, 1.0)
resulted in inferior results (see Supplementary Table 1). Also for the Shalit Hela + E. coli data set, Quandenser combined with Trigler achieves a high sensitivity, while still maintaining control of the FDR.

Interestingly, we also found 68 feature groups that had
consensus spectra that contained =25 fragments between 100
and 200 Da. Based on the accurate masses of these fragments,
these were carbohydrates or hydrocarbons and did not contain
any nitrogen atoms (Supplementary Data 1). In total, we found
1724 of these types of spectrum clusters, which mainly eluted
toward the end of the runs. Their abundance pattern typically
followed the UPS abundance pattern (Fig. 2) and MS2 spectra
associated with these feature groups generally remained uni-
dentified. Based on their precursor mass differences and late
retention times, these feature groups likely originated from
polyethylene glycols (PEG), which might have been present as a
contaminant in the UPS samples.

The putative identifications of a yeast virus, lysyl endopepti-
dase, and PEGs are examples that demonstrate that Quandenser
gives its users the capability to identify unknown either abundant
or differentially abundant compounds in their samples by
targeting their spectra for identification. Possibly, these analytes
could have been detected by other means, e.g., by using spectral
libraries of known contaminants. However, for less engineered
samples, Quandenser’s ability to help the user identifying
unknown compounds can turn out to be indispensable.

Of the remaining 71 feature groups, 50 were from analytes with
low precursor mass (<1000 Da), mostly charge 1 ions, which are
generally hard to identify. For eight feature groups, the UPS
abundance pattern was a result of deisotoping errors where
isotopes of a UPS peptide were incorrectly counted toward the
intensity of the feature. Finally, 13 feature groups remained
unidentified and did not fit into any of the above categories, but
usually had spectra that showed clear signs of chimericity or only
had fragment ions spanning less than half of the peptide
backbone making them hard to identify.

Proteome mixture data sets. We processed all three proteome
mixture (human-yeast, Shalit HeLa-E. coli, BoxCar HeLa-E. coli)
data sets with Quandenser, followed by the aforementioned
search engine strategies and protein quantification using Trigler
(-—fold change eval = 0.5, just below the lowest spike-in
ratio of log,(1.5) = 0.6). We consistently observed control of the
differential abundance FDR and higher sensitivity relative to
MaxQuant + Perseus and MaxQuant + EBRCT (Tables 1 and 2
and Supplementary Table 1) as well as reasonable estimates for
the posterior distributions of fold changes (Supplementary Fig. 9).
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For the human-yeast mixture, for the 10 vs. 5, 10 vs. 3.3, and 5
vs. 3.3 comparisons, respectively, we found 24, 46, and 85% more
significant differentially abundant proteins with Quandenser +
Tide + Trigler than in the MaxQuant + Perseus analysis of the
original study (Supplementary Table 1). Compared with our own
analysis with MaxQuant + Perseus, we obtained 13, 16, and 175%
more significant differentially abundant proteins. However, more
importantly, in contrast to our pipeline, MaxQuant + Perseus
and MaxQuant + EBRCT, again, did not control the differential
abundance FDR, with, respectively, up to 10% and 21% observed
differential abundance FDRs.

For the Shalit HeLa-E. coli set, no results were presented in the
original study to which we could compare our results. Compared
with our own analysis with MaxQuant + Perseus, we obtained an
increase of at least 50% in the number of true positives in four out
of six comparisons (Supplementary Table 1). The observed
differential abundance FDRs for Quandenser + Tide + Trigler,
MaxQuant + Perseus, and MaxQuant + EBRCT were at most 6%,
6%, and 13%, respectively.

For the BoxCar Hela-E. coli set, we used the MaxQuant +
Perseus results deposited to PRIDE by the original authors. As the
original study used a database that included Swiss-Prot and
TrEMBL and we only used the Swiss-Prot part, the results are not
directly comparable. Nevertheless, under the assumption that
most protein groups from Swiss-Prot with TrEMBL correspond
to a single Swiss-Prot entry, Quandenser + Tide + Trigler
obtained a comparable sensitivity for the BoxCar runs, but an
increase of 35% for the Shotgun runs relative to the MaxQuant +
Perseus results presented in the original study (Supplementary
Table 1). Both methods managed to control the differential
abundance FDR for the one-sided tests. For the two-sided tests,
our pipeline controlled the differential abundance FDR for the
BoxCar runs, but had an 18% observed differential abundance
FDR for the Shotgun runs. However, the MaxQuant + Perseus
analysis produced observed differential abundance FDRs of 71%
and 50%, respectively.

Due to the complex interplay of several parts of our pipeline it
is hard to pinpoint exactly where the increased performance
originates from. Nevertheless, we attempted to gain insights into
the individual contributions of each of the steps by introducing
several artificial filters on our identified feature groups that mimic
the exclusion of certain parts of our pipeline. Specifically, we
investigated the performance difference of including or excluding
MS1 feature clustering, MS2 spectrum clustering, and a peptide-
level FDR threshold.

As a base case, we tested an approach that mimicked a
typical input for a protein quantification method, that is, input on
which no clustering was performed. For this, we evaluated the
performance of our pipeline if we only used the feature
groups that were (1) identified below 1% peptide-level FDR
before MS2 clustering and (2) for which the number of
missing values was >M before MS1 clustering. In other words,
we only retained feature groups for which at most M runs did
not have an MS2 spectrum with the peptide identified. This
approach is very similar to the pipeline Tide 4 Trigler without
Quandenser/MBR from Tables 1 and 2, with the addition of a
peptide-level FDR threshold. We indeed observed a very similar
performance of these two approaches (Supplementary Tables 1
and 3).

Second, we added to this set the feature groups for which at
most M runs did not have an MS1 feature after applying MS1
clustering, still at 1% peptide-level FDR. The number of feature
groups doubled, or even tripled, for all data sets through this
addition, while maintaining high specificity (Supplementary
Note 5, Supplementary Fig. 13, and Supplementary Table 3).
This can mostly be attributed to the large reduction in missing

values (Supplementary Fig. 12) and is in line with what has
previously been observed with several MBR approaches®%:10,

Third, we included feature groups that had a peptide-level FDR
below 1% after MS2 spectrum clustering. Although MS2
clustering has proven to be a valuable tool in increasing coverage
of low abundant peptides!?, in our case, the MSI clustering step
already rescued these cases based on the MS1 features. Therefore,
it was not very surprising that few feature groups were added in
this step and that the addition of these feature groups had
relatively little impact on sensitivity and specificity (Supplemen-
tary Fig. 14 and Supplementary Table 3). Nonetheless, MS2 spec-
trum clustering plays an important role in reducing the number
of hypotheses and also is necessary for the intensity score filter
introduced above. This filter relies on the MS2 spectrum clusters
to select the most likely set of MS2 spectra for a given MS1
feature group.

Lastly, we investigated the influence of lower confident peptide
identifications by adding the feature groups with a peptide-level
FDR between 1 and 10%. This represented an appreciable
number of feature groups and resulted in a modest increase in
sensitivity (Supplementary Fig. 15 and Supplementary Table 3).

As has previously been observed, we found that many
MS2 spectra remain unidentified and that a large number of
MS1 feature groups remain without an assigned MS2 spectrum.
The MS1 feature groups without identification at 1% peptide-level
FDR constituted between 50 and 75% of all MS1 feature groups
with at least one MS2 spectrum, whereas adding MS1 feature
groups without an MS2 spectrum typically triples the number of
feature groups (Supplementary Fig. 16 and Supplementary
Table 3). As one could expect, the data sets with the highest
proportions of unidentified MS2 spectra after the regular database
search, also had the biggest increases in identifications by adding
the open modification search results, bringing the identification
rate across all data sets close to 50% (Supplementary Figs. 5
and 7).

Clinical data sets. The Latosinska data set consisted of 413k
MS2 spectra, resulting in 991k spectrum-feature matches after
MS1 feature detection by Dinosaur. After filtering based on the
intensity score, we were left with 83k feature groups, of which 47k
had at least one spectrum cluster associated with them. This
corresponded to 122k consensus spectra and 183k spectrum-
feature matches to be searched, just 18% of the original number of
spectrum-feature matches. This data set contained a relatively
large number of singleton clusters, i.e., clusters with only one
spectrum. This highlights one of the benefits of doing quantifi-
cation before identification in Quandenser. We can retain sin-
gleton clusters for which we can find MS1 features in multiple
runs, while discarding the singleton clusters for which this is not
the case.

Searching the consensus spectra with Tide and/or MODa
resulted in more identifications compared with MaxQuant on all
levels (Fig. 1). We are aware that the increase in quantified
proteins can partly be explained by MaxLFQ’s requirement of
having at least two peptides to quantify a protein. However, this is
exactly the type of loss of sensitivity due to throwing evidence
away prematurely in an attempt to artificially control the error
rate that we try to address here. As we demonstrated in earlier
work, Trigler can call proteins with only one peptide as
differential abundant if the information from both the identifica-
tion and quantification is very reliable.

Subsequent processing with Trigler (--fold change
eval =0.8) resulted in more enriched functional annotation
terms than applying Trigler directly on the MS2 search results (Fig. 3
and Supplementary Data 1). There was a noticeable advantage for a
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Fig. 3 Differentially abundant proteins and enriched functional annotation terms. The analyzed methods were our quantification-first approach,
Quandenser + Trigler when using the search engine Tide (green); and two identification-first approaches, Tide and Trigler without clustering nor a match-
between-runs (MBR) feature (light blue) and MaxQuant with MBR followed by statistical analysis with Perseus (yellow) when analyzing the Latosinska
(a, b), Bracht (¢, d), and Zhu (e, f) data sets. The left plots (a, ¢, @) show the number of differentially abundant proteins at three differential abundance FDR
thresholds. The plots on the right (b, d, f) show the number of significant functional annotation terms we discovered with DAVID using the sets obtained in
the left plots. Overall, we discovered more differentially abundant proteins and enriched functional annotation terms with than without Quandenser.
Notably, Quandenser + Trigler with Tide found enriched functional annotation terms for the Bracht set for which no enrichments were previously found
(d). Note that the FDRs reported in the plots on the right (b, d, f) refer to the differential abundance FDR and not the functional annotation term FDR, which

was kept fixed at 5%.

cascaded Tide + MODa search, both in terms of the number of
differentially abundant proteins, as well as in the number of enriched
functional annotation terms. The original study found only a single
protein at a 5% differential abundance FDR and 77 proteins with a p
value below 0.05. These 77 proteins did not show any
term enrichment in DAVID. The significant proteins called by
MaxQuant + Perseus at the three FDR thresholds nor the 63 proteins
with a p value below 0.05 showed any enriched terms either.

The Bracht data set contained 1.01 M MS2 spectra, which were
assigned a total of 1.47 M spectrum-feature matches after feature
detection. Processing with Quandenser resulted in 69k feature
groups in total and 45k with at least one spectrum cluster. This
left 106k consensus spectra, with 150k spectrum-feature matches
to be searched, which was only 10% of the original number of
spectrum-feature matches.

Again, we observed an increase in the number of identifications
on all levels compared with MaxQuant (Fig. 1). Analysis of the
Tide search results with Trigler (-—fold change
eval =0.5; the fold change threshold used in the original
study was log,(1.5) = 0.58) resulted in multiple differentially
abundant proteins for all three searches, even at as low as 5%
differential abundance FDR (Fig. 3 and Supplementary Fig. 11).
Conversely, neither the original study nor MaxQuant + Perseus
found any differentially abundant proteins at 5% differential
abundance FDR.

In the original paper, seven proteins with a p value below 0.05
and high fold change differences were subjected to verification
through gene expression analysis, as well as targeted analysis with
MRM. Notably, the four proteins that showed a consistent
relationship with increasing fibrosis stages in both experiments
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(FBLN5, LUM, COL14A1, and MFAP4) were all discovered at
10% differential abundance FDR, as was one protein that showed
significance in the gene expression analysis but only partial
statistical significance in the MRM analysis (TAGLN). The two
proteins with the least consistent relation of expression levels with
increasing fibrosis stages (CSRP2 and CNN2) were not discovered
at 10% FDR, though CSRP2 was called significant at 20% FDR. In
the original study, these two proteins actually obtained a lower p
value than the other five proteins, and Quandenser + Trigler,
thus, seemed to give a better ordering of these seven proteins.

Moreover, functional annotation analysis with DAVID actually
resulted in several significant terms for the 10 and 20%
differential abundance FDR thresholds (Supplementary Data 2).
Compellingly, several terms related to the extracellular matrix
were found significant, which was also pinpointed as an entity of
interest in the original paper based on earlier studies.

Finally, we wanted to test the applicability of the method to the
Zhu data set, which contained samples of a small number
(10-100) of cells. This data set comprised 593k MS2 spectra,
assigned to 1.02M spectrum-feature matches. Processing with
Quandenser resulted in 73k feature groups of which 52k had at
least one spectrum cluster. This left 117k consensus spectra,
corresponding to 187k spectrum-feature matches to be searched,
18% of the original number. We set the log, fold change threshold
--fold change eval=1.0 in Trigler, corresponding to
the threshold employed in the original study.

The number of identified feature groups and unique peptides
was closer between Quandenser and MaxQuant for this particular
set (Supplementary Fig. 6). Nevertheless, Quandenser + Trigler
managed to discover more significant proteins across all tested
differential abundance FDR thresholds compared with Max-
Quant + Perseus (Fig. 3). Using Tide as a search engine, we found
703 significant proteins at 2% differential abundance FDR,
considerably more than the 304 proteins at the same FDR found
in the MaxQuant + Perseus analysis of the original study. Again,
we found enriched functional annotation terms associated to
several sets of significant proteins using Quandenser + Trigler
(Supplementary Data 1). No enriched terms could be found for
MaxQuant + Perseus analysis, neither from the original study nor
from our own reanalysis. Interestingly, using Trigler without
Quandenser appeared more sensitive in the functional annotation
enrichment analysis, as did using stricter differential abundance
FDR thresholds.

Discussion

Here, we demonstrated the utility of a quantification-first
approach in which we cluster both MS1 features and
MS2 spectra prior to identifying spectra, peptides, and proteins of
interest. While the idea to quantify features without an explicit
identity is well explored in the literature!®18:19, we here have
demonstrated the idea’s usefulness in combination with cluster-
ing. Not only does this approach provide several new ways of
obtaining unidentified analytes of interest, but by combining
Quandenser with Trigler, we discovered substantially more dif-
ferentially abundant proteins and enriched functional annotation
terms than MaxQuant + Perseus.

We demonstrated that clustering was effective in increasing the
coverage of the examined samples. By first reduced sets of spectra,
we could apply relatively computationally expensive search stra-
tegies. First, an open modification search increased the number of
identified consensus spectra by 47% for the UPS-yeast data set
and 14-20% for the clinical data sets. Second, de novo searches on
large MS2 spectrum clusters of the UPS-yeast data set resulted in
the identification of peptides and proteins not present in the
database. Third, we made use of the fact that the similarity of

feature groups’ abundance patterns across runs indicates that they
could originate from the same group of proteins. By restricting
the search to the 48 UPS proteins, we found that many analytes
with a similar abundance to the spiked-in proteins were modified
UPS peptides. Unfortunately, such targeted searches easily cause
false reinforcement of protein quantities, but it does reveal pep-
tides and modifications we are missing out on. This approach also
revealed a group of analytes that covaried with the UPS proteins,
likely to be PEGs. These analytes would not have come to our
attention in a traditional identification-first approach. Our
intention was not to demonstrate that the modification and de
novo searches we applied here are the best way of achieving
increased proteome coverage. Rather, our analysis presents an
insight into the part of the proteome that normally is ignored,
with hopefully many more discoveries yet to come.

Another benefit of combining clustering on MS1 with MS2
levels is that we can include quantification information in the
selection of MS2 spectrum clusters of interest. This addresses a
frequently observed phenomenon in MS2 spectrum clustering in
which the majority of the clusters only contain a single spectrum,
known as singleton clusters!>~14. These could be spurious MS2
fragmentation events, which should preferably not be matched by
a search engine. On the other hand, these could be low abundant
peptides rarely selected for fragmentation. The Quandenser
workflow can separate these cases by only retaining fragment
spectra from analytes that were quantified across several runs.
Furthermore, by using the agreement of the MS2 spectra within
an MS2 spectrum cluster regarding which MS1 feature group was
most likely targeted, we managed to set up the efficient intensity
score filter, which drastically reduced the number of hypotheses
with few false negatives.

The clustering steps further unveil the potential of integrated
quantification and identification error models such as Trigler.
Particularly, using MBR with feature-feature match error rates
contributes to controlling the differential abundance FDR.
Notably, even though the number of peptide and protein iden-
tifications favors our method, we want to emphasize that it is
quantitative reliability that is key in the end. By using statistical
models with error propagation instead of sets of (arbitrary)
thresholds, our pipeline consistently achieved control of the dif-
ferential abundance FDR, whereas both MaxQuant + Perseus and
MaxQuant + EBRCT markedly failed to do so.

The functional enrichment term analysis by DAVID showed
promising results on the clinical data sets, finding enriched terms
for all three sets where MaxQuant + Perseus repeatedly showed
no term enrichments. However, care should be taken in inter-
preting these results as the methods used here might introduce
biases that analysis tools such as DAVID are sensitive to. For
example, our method allows the quantification of proteins with
only a single confident peptide in which the prior still has a strong
influence. These proteins are far less likely to reach the differential
abundance significance threshold but are still included in the
background of identified proteins. Ideally, one would feed the
posterior distributions directly into a downstream (Bayesian)
method, without setting thresholds on differential abundance
significance. With the recent rise of Bayesian methods for protein
quantification, we expect such methods to become a topic of
interest in the near future.

Several improvements could still be made to increase the
sensitivity of Quandenser and the quantification-first pipeline in
general. As with other LFQ approaches, Quandenser is highly
dependent on the ability to reliably extract features from the MS1
chromatograms, which becomes harder as the density of MS1
features increases’:?. However, Quandenser could easily be
extended to fractionated data, or even to ion-mobility data?0
using the same clustering principles as employed here. Moreover,
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Quandenser forms consensus spectra by a weighted averaging of
the peak intensities of the spectra in a cluster!214, However, the
search engine scores of consensus spectra are seldom higher than
the best scoring constituent spectra. Improving the process to
form consensus spectra would have benefits for other types of
analysis, such as the formation of spectral libraries. Another
problem with the current methods for clustering MS2 spectra is
the so-called chimeric spectra, i.e. spectra containing product-
ions from multiple peptides, that can contaminate clusters!4.
Solving how to cluster partial fragment spectra based on simila-
rities of subseries of the full spectrum would overcome this
problem and open up avenues for applying Quandenser-like
processing of data from data independent analysis mass
spectrometry.

Finally, we specifically note the great potential of the
quantification-first approach for processing data sets larger in
sample size. First, by only requiring quantification to take place
once, we remove one of the most time-consuming parts of rea-
nalysis with different search parameters or engines. Second, by
reducing the number of spectra that we need to analyze, we
reduce the search time as well as lower the number of hypotheses
we need to test when analyzing the subsequently matched spectra.
The combination of these two techniques allows a wide variety of,
potentially computationally expensive, search strategies to be
applied to the quantification data. Especially with regards to the
constant stream of new search engines, this provides an easy way
for users to efficiently interrogate their data.

The quantification-first approach in label-free protein quanti-
fication, thus, provides an attractive alternative to the traditional
identification-first approach. Through the use of unsupervised
clustering, we condensed the data into a comprehensive format
that retained the relevant information and thereby allow the
researcher to spend more time on a reduced set of hypotheses.
By subsequently propagating the feature-level error rates to
probabilistic protein quantification methods, the bounds of sen-
sitivity and specificity in LFQ are extended considerably.
Already, we can see the benefits of this approach in terms of
coverage and sensitivity using the techniques presented here, but
many more modes of interpretation are available, ready to be
applied.

Methods

Data sets. We downloaded RAW files for four engineered data sets to characterize
the reliability and sensitivity of our pipeline. The first data set was a set of partially
known composition with the UPS1 protein mixture spiked in at different con-
centrations in a yeast background (PRIDE project: PXD002370, nine RAW files, only

the files C-25fmol-R*_QEx2_*, D-10fmol-R*_QEx2_*, and E-5fmol-R*_QEx2_*
were used)?8. The other three sets were mixtures of two proteomes spiked in at
different ratios. The first comes from a benchmark comparing quantitative accuracy
and coverage between the commonly used LFQ and TMT methods using a sample of
yeast spiked into a human background?® (PRIDE project: PXD007683, 11 LFQ RAW
files). Second, we analyzed the data from a benchmark for MS1 LFQ where E. coli was
spiked into a HeLa background at four concentrations? (PRIDE project: PXD001385,
12 RAW files, the Shalit HeLa-E. coli data set). Finally, we processed the data from the
recent BoxCar method, where again E. coli was spiked into a HeLa background at two
different ratios’! (PRIDE project: PXD006109, 12 RAW files, only the files for the
mixture of E. coli with HeLa were considered, both from the Shotgun and the BoxCar
run, the BoxCar HeLa-E. coli data set).

We also downloaded RAW files for three clinical data sets. The first was a data
set studying bladder cancer? (PRIDE project: PXD002170, eight LFQ RAW files,
the Latosinska data set). The second was a data set studying hepatitis ¢ virus-
associated hepatic fibrosis?> (PRIDE project: PXD001474, 27 RAW files, the Bracht
data set). The third data set concerned a recent advancement in nanoscale
proteomics applied to type 1 diabetes®* (PRIDE project: PXD006847, 18 RAW files,
the Zhu data set).

For the UPS-yeast mixture, a UPSI protein mixture was spiked into a 1 ug yeast
background at, respectively, 25, 10, and 5 fmol concentrations, with triplicates for
each concentration. For the human-yeast mixture, yeast lysate was spiked in at
10% (n=3), 5% (n=4), and 3.3% (n =4) total protein concentration into a
human cell lysate (SH-SY5Y) background. For the Shalit HeLa-E. coli mixture, 3,
7.5, 10, and 15 ng of E. coli lysate was spiked into a HeLa digest background of 200
ng in triplicates. For the BoxCar HeLa-E. coli mixture, E. coli lysate was mixed in
1:2 and 1:12 ratios in a HeLa lysate in triplicates. The Latosinska data set featured
eight samples of tumor tissues of non-muscle-invasive (stage pTa, n = 4) and
muscle-invasive bladder cancer cases (stage pT2+, n = 4), without technical
replicates. The Bracht data set featured 27 samples of biopsies from patients with
HCV-associated hepatic fibrosis, classified in a low fibrosis group (n=13) and a
high fibrosis group (n = 14), without technical replicates. The Zhu data set featured
18 samples with 10-100 cells each from human pancreatic islet thin sections with
9 samples from a type 1 diabetes donor and 9 from a nondiabetic control donor,
without technical replicates.

Prior to processing the runs with Quandenser v0.02, all RAW files were
converted to mzML format with ProteoWizard3> (ver 3.0.10765), where we applied
peak picking both on MS1 and MS2 levels, except for the Bracht set, where peak
picking was only applied on MS2 level. For the BoxCar runs of the BoxCar data set,
MS1 BoxCar windows were combined into new MSI1 spectra using an in-house
python script.

An overview of the data sets used in this study can be found in Supplementary
Note 6.

Quandenser. An overview of the Quandenser process is given in Fig. 4. First, MS1
features were detected with Dinosaur v1.1.3%7 and assigned to the MS2 spectra that
were obtained inside the retention time and precursor isolation window. We will
refer to a combination of an MS1 feature and an MS2 spectrum as a spectrum-
feature match. Next, clustering of MS2 spectra was applied with MaRaCluster
v0.05!4. One advantage of applying MS2 clustering first was that we could align
retention times between two runs through pairs of spectra that end up in the same
cluster. This alignment was done by fitting a spline function to the medians from
100 bins of the sorted retention times using iteratively reweighted least squares
regression (IRLS). The IRLS algorithm protected against outliers that might have
resulted from incorrect clusterings. We then estimated the standard deviation of
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the aligned retention times, which gave us a way to dynamically select a reasonable
window to search for matching precursors (by default, 5 standard deviations),
instead of having this window specified with a fixed time interval, as is usually
done.

Retention times were aligned pair-wise between runs using a minimum
spanning tree based on the similarity of chromatography runs®#l. This tree was
traversed twice, once from bottom to top and a second time from top to bottom.
This ensured that MS1 feature information was distributed between all pairs of
runs, not only the pairs connected in the tree. For each pair-wise retention time
alignment, the MS1 features discovered by Dinosaur from the two corresponding
runs were matched based on a set of numeric features, such as the difference
between the observed and aligned retention time and precursor mass difference. At
the same time, we matched MSI features against decoy MS1 features®, which were
generated by shifting the precursor m/z of all MS1 features discovered by Dinosaur
by 5 - 1.000508 Th in one of the runs. For a more detailed description of these
decoy features and what constitutes good decoy features, see Supplementary
Note 4. These decoy MS1 features correctly mimicked incorrect target MS1 features
in a target-decoy competition setting (Supplementary Fig. 10). Also, we noted that
the probability of observing a certain precursor mass is constrained by its
composition of amino acids and, therefore, the probability of a match quickly
tapers off when non-integer multiples of 1.000508 were employed as shifts
(Supplementary Fig. 10f).

The MSI feature characteristics, e.g. the precision of precursor m/z and
retention time, can vary significantly between samples. We designed Quandenser to
allow different amounts of flexibility when matching MSI1 features between
different runs. We achieved this by automatically weighting the numeric features
using Percolator v3.0242, This perhaps surprising use of Percolator—which
normally is used for quality assessments of peptide-spectrum matches—allowed us
to avoid fixed thresholds for individual numeric features, and instead derive error
probabilities for feature-feature matches. This approach is an extension of the
approach employed by DeMix-Q°®, where Percolator now provides a more natural
means to feature weighting as well as probabilistic scoring.

We retained feature-feature matches with a posterior error probability (PEP)
below 0.25, which typically controls the feature-feature match FDR well below 5%.
These PEPs were also used as input to Trigler to control for false matching. For
features for which no confident corresponding feature could be found in the
opposite run, we used an MBR approach by searching for previously missed
features using the targeted mode of Dinosaur, again scored by Percolator according
to the same scheme as outlined above. If a feature still had no match, a placeholder
feature, representing a missing value, was added at the corresponding precursor
mass and aligned retention time.

The MSI1 features were grouped by feature—feature matches from the pair-wise
alignments using single-linkage clustering, resulting in MS1 feature groups. The
feature groups that had a missing value in more than M runs were filtered out.
Subsequently, for each feature group, we selected all MS2 spectra that were
previously assigned to a feature in the group and assigned the MS2 spectrum’s
corresponding cluster from MaRaCluster to the feature group. We then scored each
match between a feature group and a spectrum cluster according to the following
score:

i
Mw

][(6121) x IOgZ(I,), (1)

r=1

where r =1, ..., R indicates the run index, I is the indicator function that is 1 if the
condition holds and 0 otherwise, ¢, is the number of spectra in the spectrum cluster
that can be linked to the feature for run r, and I, is the intensity of the feature in

run r. For each spectrum cluster, we only retained the feature groups with

G} . . .
s2 %, with G the set of all feature groups associated with the spectrum

cluster. The idea behind this filter is that the MSI feature intensity is a good
predictor of the dominant peptide species in the MS2 spectrum. This filter typically
more than halved the number of spectrum-feature matches that had to be searched,
while maintaining or even increasing the number of peptide identifications due to
the reduction of tested hypotheses.

Finally, Quandenser produces (1) a list of MS1 feature groups with their
corresponding MS2 spectrum clusters, and (2) a spectrum file with, for each
spectrum cluster, its consensus spectrum together with the spectrum-feature
matches of the assigned feature groups. The spectrum file can be any of the file
formats that are supported by Proteowizard, such as mzML and mgf, and can then
be processed by the user’s search engine of choice.

Peptide and protein identification and quantification. For the UPS-yeast mix-
ture, we created a concatenated FASTA file containing 6769 records from both the
UPSI proteins (https://www.sigmaaldrich.com/, accessed 17 January 2018) and the
Swiss-Prot database for yeast (http://www.uniprot.org/, accessed 15 March 2016).
For the human-yeast mixture, we created a concatenated FASTA file with 26,914
entries from the Swiss-Prot databases of human (accessed 15 March 2016) and
yeast (accessed 12 November 2015). For the Shalit HeLa-E. coli mixture, we used
the FASTA file provided in the PRIDE repository containing 24,557 sequences
from the Swiss-Prot databases of human (accessed June 2014) and E. coli (accessed
August 2014). For the BoxCar HeLa-E. coli mixture, we created a concatenated

FASTA file with 24,753 proteins of the Swiss-Prot proteins of human (accessed 6
September 2019) and E. coli (accessed 11 April 2019). The Latosinska, Bracht, and
Zhu sets were searched against the Swiss-Prot database for human containing
20,193 records (accessed 12 November 2015). We generated decoy sequences by
reversing the amino acid sequences and created concatenated target-decoy data-
bases as input to the search engines.

We used several search engines both as standalone packages as well as part of a
cascade search approach’’. We employed Tide??, through the interface of the Crux
2.143 package, and used Percolator v3.0242 to post-process the resulting PSMs. For
all data sets, all parameters in Tide and Percolator were left to their default values
(i.e., tryptic cleavages, fixed carbamidomethylations of cysteine, and ——mz-bin-
width=1.000508), except for allowing up to two methionine oxidations, up to
two missed cleavages, and +10 ppm precursor tolerance. Furthermore, we used
MODa v1.51%4 and MSFragger (build 20170103.0)** for open modification
searches. We extracted several relevant features of the respective search results with
in-house python scripts and subsequently processed the PSMs with Percolator
v3.02. Finally, we also used Novor v1.05.0573% for de novo searches as a discovery
tool and searched the resulting sequences with BLAST through the UniProtKB
website. We did no statistical analysis on the Novor results.

After the search engine search, the feature groups output file from Quandenser
and the search engine results were combined into an input file to Trigler v0.1.4
with a python script available from the Quandenser repository (bin/
prepare_input.py). This step includes the option for retention time-
dependent normalization®, which is the default option and was also applied to all
data sets presented here. The number of missing values allowed for each feature
group, M, was chosen to reflect the parameters chosen by the authors of the
original manuscripts, or, if unavailable, we allowed between } and § of the runs to
have missing values. For the UPS-yeast data set, we allowed M = 3 missing values,
for the human-yeast mixture we used M = 4, for the Shalit HeLa-E. coli mixture
M =3 and for the BoxCar HeLa-E. coli set we analyzed all 12 runs together with
Quandenser and the respective search engine(s), but then analyzed the 6 shotgun
runs and the 6 BoxCar runs separately with Trigler using M = 3. As for the clinical
data sets, we used M = 4 for the Latosinska set, M =7 for the Bracht set, and M =
11 for the Zhu set. Although the number of allowed missing values has a significant
impact on sensitivity, testing different values of M on the human-yeast mixture
showed that the FDR could still be controlled within reasonable bounds, i.e. below
10% empirical FDR at 5% reported FDR, even when allowing more than 70% of the
runs to have missing values (Supplementary Table 2).

The use of Trigler’s hierarchical Bayesian model to combine the quantitative
signals of the spectrum-feature matches into protein quantities offers a great way to
integrate away undesired variation. The algorithm will in effect down weight any of
a protein’s constituent peptides with a quantification pattern that contradicts its
other peptides. In this aspect, Trigler resembles our previously published method,
Diffacto®, which uses factor analysis to obtain a similar effect. However, Trigler
expands on this idea with the integration of identification errors, a more intuitive
way to impute missing values and posterior probabilities that facilitate better
interpretation of the results.

Some adaptations to Trigler were necessary to deal with the additions to the
pipeline. First, the feature—feature match PEPs are used explicitly as an extra input
to the feature node in Trigler’s probabilistic graphical model (Supplementary
Fig. 1). Second, there is the issue of the many-to-many relation between feature
groups and spectrum clusters. Note that a spectrum cluster can be associated with
multiple identified peptide sequences due to the chimericity of the spectrum. In the
end, only one peptide identification can be associated with each feature group. To
resolve this, for each unique peptide sequence identification of the spectrum
cluster, Trigler first assigns the feature group with the best search engine score.
Subsequently, if a feature group still has multiple peptide identifications, Trigler
chooses the peptide sequence with the best combined PEP of the search engine PEP
and the feature—feature match PEPs.

Finally, to deal with open modification search results, we have to guard
ourselves against assigning correct peptides with incorrect (small) modifications to
feature groups. To prevent this, we only select the best peptide identification per
protein for each spectrum cluster, under the assumption that the search engine will
score the true peptide sequence, with or without modification, the highest. Trigler
then proceeds in normal fashion to calculate relative protein expression levels and
finally outputs a list of differentially abundant proteins, based on the posterior
distributions of the log, fold change between treatment groups of the protein
concentrations.

As a comparison, we also analyzed the data sets with MaxQuant v1.6.1.0°,
starting from the RAW files, followed by differential expression analysis with
Perseus v1.6.1.3%%. We used the default parameters in MaxLFQ, except for
allowing up to two oxidations, and allowed the use of these modified peptides for
quantification. For the differential expression analysis with Perseus, we filtered
out decoy proteins and proteins with more than M missing values per data set as
stated above. We then log, transformed the intensities, used missing value
imputation from a down-shifted Gaussian with the default parameters, and used
a two-sided Welch’s ¢ test with different values of S, (0.0, 0.3, 0.7, 1.0), where
higher values of S, will increasingly prevent small fold changes from being
selected as significant?’. The results reported in the main text are for S, = 0.3
unless stated otherwise, as these generally gave the best trade-off between
sensitivity and specificity.
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In addition, we analyzed the protein group-level output of MaxQuant with the
empirical Bayesian random censoring threshold model (EBRCT)?¢. This method
deals with missing values in a similar way to Trigler, using the assumption that low
abundant analytes are more likely to produce missing values. The main difference
is that it operates on protein group-level input and is thus a simpler approach. We
adapted the R scripts provided in the supplementary materials of the original
publication to output the posterior estimations for the group means and the group
means’ standard deviations, which we then used to compute fold change posterior
distributions.

Finally, we used DAVID 6.8%8 to find significant functional annotation terms
for the sets of differentially abundant proteins found by Quandenser + Trigler and
MaxQuant + Perseus. We used the proteins identified at 5% protein-level
identification FDR as the background set and thresholded the significant terms at a
5% Benjamin-Hochberg corrected FDR.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

RAW files for all seven data sets analyzed are available without restrictions from the
PRIDE repository: UPS-yeast mixture (PXD002370), human-yeast mixture
(PXD007683), Shalit HeLa—E. coli mixture (PXD001385), BoxCar HeLa-E. coli mixture
(PXD006109), Latosinska data set (PXD002170), Bracht data set (PXD001474), and the
Zhu data set (PXD006847). All other data are available from the corresponding author
on reasonable request.

Code availability

The source code and binary packages for all major operating systems are available from
https://github.com/statisticalbiotechnology/quandenser, under Apache 2.0 license. An
installation guide and instructions on how to run the full pipeline including Trigler can
be found at https:/github.com/statisticalbiotechnology/quandenser/wiki/Installation-
guide.
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