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Abstract: The dental pulp is a soft connective tissue of ectomesenchymal origin that harbors distinct
cell populations, capable of interacting with each other to maintain the vitality of the tooth. After
tooth injuries, a sequence of complex biological events takes place in the pulpal tissue to restore its
homeostasis. The pulpal response begins with establishing an inflammatory reaction that leads to the
formation of a matrix of reactionary or reparative dentin, according to the nature of the exogenous
stimuli. Using several in vivo designs, antigen-presenting cells, including macrophages and dendritic
cells (DCs), are identified in the pulpal tissue before tertiary dentin deposition under the afflicted area.
However, the precise nature of this phenomenon and its relationship to inherent pulp cells are not yet
clarified. This literature review aims to discuss the role of pulpal DCs and their relationship to pro-
genitor/stem cells, odontoblasts or odontoblast-like cells, and other immunocompetent cells during
physiological and pathological dentinogenesis. The concept of “dentin-pulp immunology” is pro-
posed for understanding the crosstalk among these cell types after tooth injuries, and the possibility
of immune-based therapies is introduced to accelerate pulpal healing after exogenous stimuli.

Keywords: cell differentiation; dental pulp; dendritic cells; dentin; extracellular matrix proteins;
histocompatibility antigens class II; macrophages; odontoblasts; stem cells; tooth injuries

1. Introduction

The dental pulp is a specialized soft connective tissue of ectomesenchymal origin
harboring distinct cell populations with specific functions involved in teeth production and
maintenance [1–3]. Odontoblasts—dentin-forming cells—constitute the most specialized
and important cells of the tissue [4–6], whereas fibroblasts—the most numerous cells of
the pulp—are responsible for the synthesis and maintenance of the pulp extracellular
matrix (ECM). Other important cell types include undifferentiated mesenchymal stem
cells (MSCs)/progenitor cells, blood vessel components, nervous cells, and a wide vari-
ety of defense cells [1–3,7]. Under physiological conditions, the pulpal tissue executes
self-regulatory mechanisms that maintain the equilibrium of these cell populations [8,9].
Previous studies in murine and human teeth demonstrated that the dental pulp has low
proliferative activity, except for the apices of developing roots or the apical end of incisors
in rodents [2,7,10,11]. Likewise, other studies have proven that apoptosis, or programmed
cell death, occurs at low rates in the normal dental pulp of continuously growing incisor
in rats and in the pulps of human mature teeth throughout life, regulating the turnover
of odontoblasts, cells of the subodontoblastic layer, and fibroblasts [2,11–15]. Therefore,
given the stable characteristics of the dental pulp under physiological conditions, it is
essential to understand the tissue to the extent of its responsiveness after exogenous stimuli
to the tooth.
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Exogenous transdentinal stimuli, such as dental carious lesions, abrasion, attrition,
dental traumatisms and restorative procedures, induce harmful variations in the odon-
toblast layer at the afflicted site, eliciting an immunocompetent response in the pul-
pal tissue [7,16–19]. Odontoblasts are considered as the first line of defense against
pathogen invasion, facilitating the initiation, development, and maintenance of the im-
mune/inflammatory response. The release of proinflammatory cytokines by the afflicted
odontoblasts triggers specific intracellular signaling pathways involving nuclear factor-κB
and mitogen-activated protein kinase p38 that promote the recruitment of leukocytes and
antigen-presenting cells (APCs), including macrophages and immature dendritic cells
(DCs) [4–6,20–22]. After the activation of the pulpal cellular network, a newly formed
pathological dentin matrix is steadily deposited beneath the injury site. This calcified
matrix, also known as tertiary dentin, can be further classified as either reactionary or
reparative dentin based on the differences in the exogenous stimuli intensity to the tooth
and the biological events in the pulpal tissue. Thus, the tertiary dentin matrix secreted
by surviving odontoblasts in response to a mild stimulus is defined as reactionary dentin;
whereas reparative dentin is defined as the matrix deposited beneath the afflicted area by
newly differentiated odontoblast-like cells after the death of the original odontoblasts due
to severe injuries [7,23–33]. The latter implies a more complex process involving important
biological mechanisms, such as apoptosis, cell proliferation, and cell differentiation, which
remain to be elucidated at cellular and gene levels [34–38]. APCs are also critical during
the initial defense reaction. Previous in vivo studies have shown various patterns for these
cells at the onset of the healing process. For instance, macrophages are located in the
central portion of the pulp, whereas immature DCs can be detected in the odontoblast
layer [7,16,39–51]. DCs are sentinels that maintain immune homeostasis, orchestrating the
immune system’s components for a favorable effect in an organism [52,53]. Besides its
main role in the host-response against pathogens, the paraodontoblastic location of these
cells may suggest another important role during pulpal healing that needs to be clarified.

In the last decades, several animal models mimicking external injuries to the teeth
have been established to analyze the behavior of distinct pulpal cell populations, with
special emphasis on the crosstalk of dental pulp stem cells (DPSCs) and other inherent cells.
Study designs using in vivo approaches included autogenic/allogenic tooth germ and
whole-tooth replantation and transplantation [35,36,49,54–59], cavity preparations with or
without pulp exposure [16,37,38,44,47,48,60,61], and root resection [62]. For instance, the
injection of 5-bromo-2′-deoxyuridine in young animals at the optimal time demonstrated
the localization of slow-cycling long-term label-retaining cells (LRCs). It was observed
that LRCs in transplanted teeth maintain their proliferative and differentiation capacities
despite extensive apoptosis occurring in the pulpal tissue of the transplant and play crucial
roles in the pulpal healing process after exogenous stimuli, leading to the conclusion that
dense LRCs are believed to be dental stem/progenitor cells in mature pulp tissue [63–65].
Therefore, animal models simulating different kinds of tooth injuries are necessary to
identify the behavior of DPSCs in relation to other cellular lineages of the pulpal tissue,
such as APCs [66–68]. Hence, this literature review discusses the possible role of dental
pulp DCs and their relationship to odontoblasts, DPSCs, and other resident cells involved
during physiological and pathological dentinogenesis.

2. Key Functions of DCs

DCs are professional APCs critical for the initiation and orchestration of the immune
response [69]. DCs were described for the first time in 1973 by Dr. Ralph Steinman (Nobel
Prize of Medicine and Physiology in 2011) as a heterogenous population of leukocytes
originated from hematopoietic stem cells different from macrophages [52,70]. DCs are
found in most parts of the human body, including the lymph nodes, skin, blood, spleen,
lungs [71], and oral tissue [39,42,72], where they play a key role in maintaining immune
homeostasis by both activating adaptive immunity and contributing to tolerance [53]. DCs
can be classified into different subsets with specialized functions in immune responses
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to specific pathogens [73]. The two major DC subsets are plasmacytoid DCs (pDCs) and
myeloid/conventional DCs (cDCs). These subsets are generally identified based on the
lack of expression for T cells, B cells, natural killer (NK) cells, or other granulocyte-specific
markers, high-level expression of major histocompatibility complex (MHC) class II, and
lack of monocyte markers [69,74]. pDCs play an important role in the innate immune
system because of their capacity to produce type I interferons upon viral infection and are
also involved in tolerance or immune suppression in their immature state [75]. Differently,
cDCs recognize bacterial components and produce proinflammatory cytokines to activate
proinflammatory T-cell subsets and subsequently promote the recruitment of cytotoxic
T lymphocytes. cDCs can be further divided into cDC1 and cDC2. Human cDC1s and
cDC2s can be found in the blood and lymphoid and nonlymphoid tissue [75,76]. Thus,
cDCs constitute a distinct lineage of cells with the capacity to seed tissue and maintain
immune homeostasis in a steady state while rapidly responding to local insults and initiat-
ing and directing innate and adaptive immunity [76]. Immature cDCs accumulate at the
inflammation site along with other phagocytic cells (e.g., macrophages) in response to the
release of chemokines in this area. Antigens and their associated molecules will be later
recognized and captured by cDCs through different mechanisms, including pinocytosis
(macropinocytosis and micropinocytosis), phagocytosis, and receptor-medicated endocy-
tosis. Subsequently, cDCs will migrate toward lymphoid tissue during their maturation
process, and the antigenic peptides processed by cDCs will be presented on MHC class I
and II molecules for interaction with different subsets of T cells [75,77,78]. Because pDCs
are not the object of the analysis of this review, but cDCs (particularly those in the dental
pulp), cDCs will simply be addressed as DCs.

3. Relationship between DCs and Odontoblasts during Physiological Dentinogenesis

The existence of MHC+ class II cells with dendritic features in a normal human pulp
tissue was first reported in 1987 by Jontell et al. [79]. Cell surface markers, such as human
leukocyte antigen (HLA)-DR and HLA-DQ isotypes, and leucine (Leu) 3a were used to
identify the presence of putative DCs in human samples. HLA-DR+, HLA-DQ+, and Leu
3a+ cells showed clear dendritic features and were predominately located at the periphery
of the dental pulp [79]. Another study in human pulp samples reported similar results.
HLA-DR+ cells of dendritic appearance formed a reticular network in the pulpal tissue
while coexpressing factor XIIIa, a marker for human DCs. DCs were observed in close
relation with the endothelial cell membrane, forming a three-dimensional structure around
the microvessels [80,81]. Ohshima et al. confirmed previous reports on the characteristics
and location of human dental pulp DCs. They summarized the spatial relationship between
MHC+ class II cells and odontoblasts (Figure 1) [82].

For instance, cytoplasmic extensions of HLA-DR+ cells in the predentin were seen
in the dentinal tubules, while being in close relationship to several odontoblast processes
(Figures 1 and 2b). Pulpal DCs were consistently identified at the periphery of the tissue,
inside and beneath the odontoblast layer (Figure 2a). The ultrastructure of HLA-DR+ cells
evidenced several vesicles, a moderately developed Golgi apparatus, and mitochondria [82].
These results were consistent with other reports on HLA-DR+ cells in the dental pulp of
human unerupted developing teeth and human deciduous teeth during the physiological
root resorption process [81,83].
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Figure 1. Schematic view of the spatial relationships between MHC+ class II cells and odontoblasts 
(OB) in the human dental pulp (cited from Ohshima et al. [82], with permission from Springer 
Nature). An MHC+ class II cell (asterisk) in the predentin (PD) makes contact with several odonto-
blast processes via cytoplasmic extensions that have a beaded appearance (arrows). 

Kannari et al. reported that in the dental pulp of human deciduous teeth under 
physiological root resorption, MHC+ class II cells were seen in the same location as in 
previous reports (the odontoblast layer and/or predentin), extending their processes into 
the dentinal tubules [41]. By transmission electron microscopy (TEM) analysis, these cells 
also showed the presence of clear and electron-dense vesicles of different dimensions, 
although the number of cell organelles was scarce (Figure 2c) [82]. Lastly, a recent quan-
titative analysis of immunocompetent cells of the human dental pulp using fluores-
cence-activated cell sorting, together with identifying specific cell subsets in leukocyte 
(CD45+) cells, provided that DCs represent 4.51 ± 1.12% of the leukocyte population, thus 
supporting the data provided by conventional histological approaches [84]. 

Although studies using human teeth samples during the dentinogenesis process 
were pioneering and very informative, the data retrieved remained limited. Difficulties 
in sample acquisition and other ethical concerns led to the setting of murine models for 
further investigation in this subject and under pathological conditions [66–68]. The ro-
dent incisor is a continuously growing tooth that constitutes an optimal model for ob-
serving the different stages of dentinogenesis [85]. Different markers are available for 
identifying and tracking putative DCs regardless of the origin of the sample. Approxi-
mately 30% of MHC+ class II cells in rats were positive for the rat DC marker OX6 [86]. In 
contrast, another study on the mouse pulp verified the existence of two subpopulations 
based on their positive immunoreaction for CD11c+ and F4/80+ markers [87]. 

Figure 1. Schematic view of the spatial relationships between MHC+ class II cells and odontoblasts
(OB) in the human dental pulp (cited from Ohshima et al. [82], with permission from Springer Nature).
An MHC+ class II cell (asterisk) in the predentin (PD) makes contact with several odontoblast
processes via cytoplasmic extensions that have a beaded appearance (arrows).
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Figure 2. Relationship between odontoblasts and MHC+ class II cells during physiological dentinogenesis in human (a–c) 
and rat (d–f) pulp samples (cited from Ohshima et al. [82] with permission from Springer Nature and Ohshima et al. [39] 
with permission from Archives of Histology and Cytology). (a–c) Immunostaining for human leukocyte antigen 
(HLA)-DR antibody. (d–f) Immunohistochemistry with OX6 antibody. (c,e) TEM views. (a) Pulpal HLA-DR+ cells are 
identified at the periphery of the tissue, inside and beneath the odontoblast layer. (b) An HLA-DR+ cells inserting their 
cytoplasmic extension into the dentinal tubule. (c) Ultrastructure of an MHC+ class II cell in the predentin of human de-
ciduous teeth. Clear and electron-dense vesicles of different sizes are seen in the cytoplasm. The number of organelles is 
scarce. (d) An MHC+ class II cell in the rat pulp exhibiting dendritic features. (e) Ultrastructural features of rat DCs. Mul-
tivesicular bodies, tubulovesicular structures, and a well-developed Golgi apparatus are seen in the cytoplasm of OX6+ 
cells. (f) OX6+ cells showing dendritic features in the dental pulp of aged rat molars. An intense immunoreaction is ob-
served in the cellular bodies and cytoplasmic processes of OX6+ cells in the odontoblast and subodontoblastic layer. D 
dentin, DP dental pulp, Nu nucleus, OB odontoblasts, PD predentin, Bar = 50 μm (a,b,f), 20 μm (d), 4 μm (c), 3 μm (e). 

The presence of DCs in the normal pulpal tissue of rat incisors was verified for the 
first time in 1988 also by Jontell et al. using immunohistochemistry for Ia antigen and 
TEM. Rat pulpal DCs were observed at the pulp periphery, where they exhibited narrow 
and tortuous cell processes, well-developed mitochondria, and an intense expression of 
class II antigen [88]. Similarly, Okiji et al. investigated the heterogeneity of macro-
phage-like cells and DC-like cells in the normal rat molar pulp by using double im-
munoperoxidase staining with OX6, ED1 (monocytes, macrophages and DCs), and ED2 
(tissue macrophages or histocytes) antibodies. They identified a subpopulation of 
OX6+/ED2- cells at the periphery of the coronal pulp of dendritic appearance [89]. Addi-
tionally, another study in rat incisors demonstrated that DCs increased in number ac-
cording to the progress of dentinogenesis. At early stages, scattered OX6+ cells in the 
dental pulp were seen beneath the odontoblast layer. In contrast, several OX6+ cells were 
found throughout the dental pulp at the site of active dentin formation. These cells were 
characterized by their dendritic features, showing a close relationship to odontoblasts 
and the intervening network of fenestrated capillaries close to the predentin (Figure 2d) 
[39]. As for its intracellular architecture, OX6+ cells contained multivesicular bodies, other 
smaller vesicles with amorphous contents, fine tubulovesicular structures, and a 
well-developed Golgi apparatus (Figure 2e) [39]. Although DCs and macrophages ex-
press MHC class II antigen, DCs differ from macrophages not only for their distinct 
morphological features but also for their low phagocytic capacity and low acid phos-
phatase (ACPase) activity. This notion was supported by another in vivo study in rat in-
cisor pulp, where a subpopulation of OX6+ cells associated with fenestrated capillaries in 
the odontoblast layer, at the periphery or central portions of the pulp tissue of rat inci-
sors, demonstrated low levels of ACPase activity, being considered a type of “true” DCs 
[50]. Consistent with previous findings, pulpal DCs cells were also confirmed in postna-

Figure 2. Relationship between odontoblasts and MHC+ class II cells during physiological dentinogenesis in human (a–c)
and rat (d–f) pulp samples (cited from Ohshima et al. [82] with permission from Springer Nature and Ohshima et al. [39]
with permission from Archives of Histology and Cytology). (a–c) Immunostaining for human leukocyte antigen (HLA)-DR
antibody. (d–f) Immunohistochemistry with OX6 antibody. (c,e) TEM views. (a) Pulpal HLA-DR+ cells are identified at
the periphery of the tissue, inside and beneath the odontoblast layer. (b) An HLA-DR+ cells inserting their cytoplasmic
extension into the dentinal tubule. (c) Ultrastructure of an MHC+ class II cell in the predentin of human deciduous teeth.
Clear and electron-dense vesicles of different sizes are seen in the cytoplasm. The number of organelles is scarce. (d) An
MHC+ class II cell in the rat pulp exhibiting dendritic features. (e) Ultrastructural features of rat DCs. Multivesicular bodies,
tubulovesicular structures, and a well-developed Golgi apparatus are seen in the cytoplasm of OX6+ cells. (f) OX6+ cells
showing dendritic features in the dental pulp of aged rat molars. An intense immunoreaction is observed in the cellular
bodies and cytoplasmic processes of OX6+ cells in the odontoblast and subodontoblastic layer. D dentin, DP dental pulp,
Nu nucleus, OB odontoblasts, PD predentin, Bar = 50 µm (a,b,f), 20 µm (d), 4 µm (c), 3 µm (e).



J. Clin. Med. 2021, 10, 3348 5 of 23

Kannari et al. reported that in the dental pulp of human deciduous teeth under
physiological root resorption, MHC+ class II cells were seen in the same location as in pre-
vious reports (the odontoblast layer and/or predentin), extending their processes into the
dentinal tubules [41]. By transmission electron microscopy (TEM) analysis, these cells also
showed the presence of clear and electron-dense vesicles of different dimensions, although
the number of cell organelles was scarce (Figure 2c) [82]. Lastly, a recent quantitative analy-
sis of immunocompetent cells of the human dental pulp using fluorescence-activated cell
sorting, together with identifying specific cell subsets in leukocyte (CD45+) cells, provided
that DCs represent 4.51 ± 1.12% of the leukocyte population, thus supporting the data
provided by conventional histological approaches [84].

Although studies using human teeth samples during the dentinogenesis process
were pioneering and very informative, the data retrieved remained limited. Difficulties
in sample acquisition and other ethical concerns led to the setting of murine models for
further investigation in this subject and under pathological conditions [66–68]. The rodent
incisor is a continuously growing tooth that constitutes an optimal model for observing the
different stages of dentinogenesis [85]. Different markers are available for identifying and
tracking putative DCs regardless of the origin of the sample. Approximately 30% of MHC+

class II cells in rats were positive for the rat DC marker OX6 [86]. In contrast, another study
on the mouse pulp verified the existence of two subpopulations based on their positive
immunoreaction for CD11c+ and F4/80+ markers [87].

The presence of DCs in the normal pulpal tissue of rat incisors was verified for the
first time in 1988 also by Jontell et al. using immunohistochemistry for Ia antigen and TEM.
Rat pulpal DCs were observed at the pulp periphery, where they exhibited narrow and
tortuous cell processes, well-developed mitochondria, and an intense expression of class II
antigen [88]. Similarly, Okiji et al. investigated the heterogeneity of macrophage-like cells
and DC-like cells in the normal rat molar pulp by using double immunoperoxidase staining
with OX6, ED1 (monocytes, macrophages and DCs), and ED2 (tissue macrophages or
histocytes) antibodies. They identified a subpopulation of OX6+/ED2- cells at the periphery
of the coronal pulp of dendritic appearance [89]. Additionally, another study in rat incisors
demonstrated that DCs increased in number according to the progress of dentinogenesis. At
early stages, scattered OX6+ cells in the dental pulp were seen beneath the odontoblast layer.
In contrast, several OX6+ cells were found throughout the dental pulp at the site of active
dentin formation. These cells were characterized by their dendritic features, showing a close
relationship to odontoblasts and the intervening network of fenestrated capillaries close to
the predentin (Figure 2d) [39]. As for its intracellular architecture, OX6+ cells contained
multivesicular bodies, other smaller vesicles with amorphous contents, fine tubulovesicular
structures, and a well-developed Golgi apparatus (Figure 2e) [39]. Although DCs and
macrophages express MHC class II antigen, DCs differ from macrophages not only for their
distinct morphological features but also for their low phagocytic capacity and low acid
phosphatase (ACPase) activity. This notion was supported by another in vivo study in rat
incisor pulp, where a subpopulation of OX6+ cells associated with fenestrated capillaries in
the odontoblast layer, at the periphery or central portions of the pulp tissue of rat incisors,
demonstrated low levels of ACPase activity, being considered a type of “true” DCs [50].
Consistent with previous findings, pulpal DCs cells were also confirmed in postnatal
developing mice and the molars of aged rats. In mouse molar samples, the use of the
F4/80 antibody allowed the detection of immature DCs inside and nearby the odontoblast
layer during the morphogenetic stage [90]. Similarly, in aged rat molars, several OX6+

cells exhibiting dendritic features were seen throughout the dental pulp but mainly in the
peripheral zone near the pulp-dentin border. An intense immunoreaction was observed in
cellular bodies and processes of OX6+ cells in the subodontoblastic and odontoblast layers
and those extending into the predentin, respectively (Figure 2f) [47].



J. Clin. Med. 2021, 10, 3348 6 of 23

4. Relationship between DCs and Odontoblasts or Newly Differentiated
Odontoblast-like Cells after Noninfected Exogenous Injuries

Exogenous injuries to the tooth elicit the response of the local immune system of the
pulpal tissue. The pulpal response directly involves various cell types that are distinctly
regulated depending on the intensity and duration of these injuries. Thus, a sequence of
biological mechanisms, such as apoptosis, cell proliferation, cell migration, and cell differ-
entiation, is triggered in the pulpal tissue immediately after the injury, leading to proper
healing of the dental pulp. The establishment of murine injury models without infection
is advantageous to monitor the presence of DCs at the lesion site and their behavior after
the injury. By excluding the influence of external harmful agents, such as bacteria and
related substances, it is easier to analyze the influence of the local microenvironment for
DC recruitment and their relationship to other pulpal cell populations.

The first study that explored the occurrence of pulpal MHC+ class II cells under
pathological conditions was published in 1991 by Bergenholtz et al. The dental pulp of
rat incisors was exposed and irritated with bacteria-derived lipopolysaccharides and then
covered with a temporal restoration. A significant increase in MHC+ class II cells was
observed in inflamed pulps compared to control. Cells presenting dendritic features were
more abundant than those observed in the normal pulps of incisors [91]. Another similar
study explored the response of immunocompetent cells in relation to neural elements using
innervated or denervated pulps of rat molars. Four days after the operation, Ia+ cells (a
marker for immunocompetent cells) were densely distributed in the proximity of the injury
in the innervated group, suggesting the importance of sensory nerves on the recruitment
of immunocompetent cells [92].

Murine incisors are continuously-growing teeth and not suitable for comparison to
human teeth in terms of healing and/or regeneration. Therefore, injury models were
modified using murine molars for cavity preparations with or without pulp exposure
instead of incisors. Moreover, the murine tooth replantation model was proposed to analyze
the pulpal responses after severe injuries, mimicking a situation where the neural and
vascular supply of the pulpal tissue is abruptly interrupted. Thus, the use of noninfection
injury models in the past years has helped to clarify the pulpal cell dynamics, allowing to
understand the relation among immunocompetent cells, odontoblasts, and odontoblast-
like cells.

The preparation of occlusal cavities in rat molars has shown to induce the immediate
disruption of odontoblast morphology and cell death, causing a sharp increase in apoptotic
activity. The induction of two waves of apoptosis has been reported in odontoblasts after the
cavity preparation in murine molars. In rats, the primary induction of the apoptotic activity
in odontoblasts appeared just 1 h after the operation, whereas the secondary induction
of apoptotic cells appeared in the subodontoblastic layer 1 day after the operation [93].
Differently, cavity preparations in the mouse molar elicited an extensive apoptotic activity
from 12 h to day 1 after the operation, which was resolved after day 3. The intense
apoptotic activity shown in mice was identified not only in odontoblasts but also in
the subodontoblastic layer, expanding toward the center of the pulpal tissue [38]. The
differences in the location, wideness of inflammatory reaction, and timing of the apoptotic
activity in the pulpal tissue of rats and mice may be explained by the size of their pulp
chambers and overall tooth dimensions.

After the initial acute injury, exudative lesions appeared beneath the injury site and
separated the few surviving odontoblasts from the predentin. MHC+ class II cells, identified
by the OX6 antibody, moved inward from the pulp-dentin border, and were relocated
beneath the exudative lesions (asterisk) (Figure 3a) [40,44,94]. Six hours after the cavity
preparation, the surviving odontoblasts began to degenerate and lost HSP-25 expression (a
protein used as a rat odontoblast marker), whereas some of the OX6+ cells remained among
them. Scattered OX6+ cells extended their dendritic process into the dentinal tubules.
However, the number of these cells increased 12 h after the operation, especially under the
afflicted area (arrow in Figure 3b). Exudative lesions disappeared from 12 h to day 1 after
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the operation (Figure 3b). Odontoblasts did not show HSP-25 immunoreactivity. Moreover,
when samples were analyzed by TEM, the cytoplasmic processes of OX6+ cells located deep
into the dentinal tubules were characterized by tubulovesicular structures, multivesicular
bodies, and vacuoles, as seen in DCs observed in other human tissue [40,44,94]. It is
believed that pulpal macrophages and neutrophiles quickly remove the cell and dentinal
debris induced by cavity preparation, thus facilitating the migration of DCs toward the
pulp-dentin border [93]. Newly differentiated odontoblast-like cells began to appear
48 h after the initial injury. Although speculative, there is a possibility that HSP-25 can
be discharged from dying odontoblasts to the extracellular milieu, where it could act
as a chemotactic agent, favoring DC recruitment in the afflicted area [40,44,94]. Up to
day 3 after the operation, the afflicted area of the pulp completely recovered, and newly
differentiated odontoblast-like cells expressing HSP-25 aligned under predentin. OX6+

cells were located exclusively beneath the odontoblast layer (Figure 3c) and displayed the
same ultrastructural features as those observed in control samples [40,44,94]. Previous
findings were also confirmed in aged rat molars after the same injury model. Aged pulps
still maintained a satisfactory self-defense capacity, with the same rate of recovery of
younger pulps [47,95]. The summary of the morphological changes and the spatiotemporal
relationship between odontoblasts and OX6+ cells in a rat model for cavity preparation are
summarized in Figure 4a.
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Figure 3. Relationship between DCs and odontoblasts or newly differentiated odontoblast-like cells
after noninfected exogenous injuries in rat molars (cited from Ohshima et al. [44], with permission
fromWilley and Nakakura-Ohshima et al. [45], with permission from Oxford University Press).
(a–c) Cavity preparation model. (d–f) Tooth replantation model. (a–f) Immunohistochemistry with
OX6 antibody. (e) TEM view. (a) Exudative lesions appear right after the initial injury beneath the
injury site. OX6+ cells move inward from the pulp-dentin border and are relocated beneath the
exudative lesions. (b) Twelve hours after cavity preparation, the number of OX6+ cells increase under
the afflicted area (arrows). The exudative lesions disappear from 12 h to 1 day after the injury. (c) On
day 3, the afflicted area of the pulp completely recovers. OX6+ cells are located exclusively beneath
the odontoblast layer. (d) Three days after the tooth replantation, DCs located at the pulp-dentin
border consistently express OX6 (arrows). (e) The ultrastructure of OX6+ cells on day 3 presents
tubulovesicular structures and multivesicular bodies in their cytoplasm. An intense immunoreaction
is observed in their cell membranes (arrows in inset). (f) OX6+ cells are observed in between or
beneath the newly-differentiated odontoblast-like cells. D dentin, DP dental pulp, OB odontoblasts,
PD predentin, Bar = 50 µm (a–d,f), 5 µm (e), 2 µm (inset). * exudative lesions.
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To analyze the behavior of DCs after severe injuries, another set of studies was carried
out using the murine tooth replantation model. Rungvechvuttivittaya et al. investigated
the kinetics of pulpal macrophages and MHC+ class II cells after the tooth replantation.
From days 3 to 7 after the operation, OX6+ cells with a dendritic profile concentrated in
the pulp-dentin border areas where odontoblasts had died. Two weeks after the operation,
a calcified tissue was observed under the predentin in all replanted teeth, indicating
that the pulpal repair process had been completed [23,25]. Interestingly, ED1+ cells (a
marker for macrophages) were seen in the same high proportion as OX6+ cells in cases
where bone-like tissue was formed in the pulp of the replanted teeth [42]. Ohshima et al.
confirmed the previous reports in two conclusive studies after the same methodology in
rats. The activity of odontoblasts and odontoblast-like cells was related to the variation
of OX6+ and ED1+ cell distribution in the dental pulp during its repair process. On day 1
after replantation, numerous polymorphonuclear leukocytes (PMLs) migrated through the
damaged odontoblast layer, which lost HSP-25 immunoreactivity. OX6+ and ED1+ cells
increased in number at the pulp periphery at this stage. On day 3, odontoblasts did not
show HSP-25 immunoreactivity, nor major changes were noted in the number of OX6+

and ED1+ cells located at the pulp-dentin border (arrows) (Figure 3d). The ultrastructure
of these cells presented the same tubulovesicular structures and multivesicular bodies in
their cytoplasm as other pulpal DCs, whereas an intense immunoreactivity for OX6 was
recognized in their cell membranes (arrows in inset) (Figure 3e). From days 3 to 5, OX6+
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cells increased in number at the pulp periphery of replanted teeth. Newly differentiated
odontoblast-like cells were identified on day 5 after replantation, showing intense HSP-25
immunoreactivity. Some OX6+ cells with dendritic profiles were observed beneath or in
between them (Figure 3f). OX6+ cell accumulation was observed specifically in few areas
where the pulpal repair process was still delayed. One week after replantation, reparative
dentin was deposited by newly-differentiated odontoblast-like cells in most samples, and
the number of OX6+ and ED1+ cells returned to normal. Scattered OX6+ cells remained at
the pulp periphery and shifted their location to the subodontoblastic layer. From week 2 to
up to 90 days, at least three distinct regeneration patterns were observed in the dental pulp
of replanted teeth: reparative dentin, bone-like tissue, and a mixed form of reparative dentin
and bone-like tissue. Interestingly, ED1+ cell aggregation and the appearance of abundant
nerve fibers preceded the bone-like tissue healing pattern [43,45]. The spatiotemporal
relationship between odontoblasts and OX6+ cells during the early stages of the pulpal
defense response after the tooth replantation in rat molars is summarized in Figure 4b.

Although there are some differences between the cavity preparation and tooth replan-
tation models, the results of both models provided valuable information on the possible
role of DCs during the pulpal regeneration/repair process. The replantation procedure
provoked an abrupt interruption of the neural and vascular supply, inducing a low-oxygen
environment that delayed the biological mechanisms driving the pulpal defense response.
Odontoblasts slowly degenerated due to the progressive lack of oxygen, which delayed
the initiation of the apoptotic activity. Therefore, if the initiation of the apoptotic activity is
delayed in the pulpal tissue of replanted teeth, pulpal DC aggregation and the subsequent
steps, including odontoblast-like cell differentiation, will also be delayed. This constitutes
one of the major reasons to explain the timing of odontoblast-like cell differentiation in both
models. Instead, the injury provoked by the preparation of cavities causes a direct impact
on odontoblasts, leading to a faster progression of the pulpal healing process. Besides,
other intervening factors, such as the release of growth factors from the preexisting dentin
and the increased proinflammatory cytokine levels, could also influence the changes in
the timing of appearance of OX6+ cells and the newly-differentiated odontoblast-like cells
between the cavity preparation and tooth replantation models.

5. Responses of DCs to Bacterial Infection in the Dental Pulp

In established deep carious lesions, oral pathogens and related molecules effectively
reach the pulp-dentin interface through the exposed dentinal tubules, causing a severe
inflammatory reaction. The afflicted odontoblasts steadily release chemokines aiming to
recruit local immune cells, such as macrophages and DCs, at the exposure site to initi-
ate both innate and adaptive defense responses in the pulpal tissue [96,97]. Kamal et al.
established for the first time an experimentally-induced caries model in rat molars. Ex-
perimental animals were orally inoculated with Streptococcus mutans and subjected to a
controlled cariogenic diet. The initial pulpal response was characterized by a marked
but transient OX6+ cell accumulation, showing dendritic features localized in and around
the odontoblast layer, especially under the exposed area. Additionally, when reparative
dentin was observed in the teeth, the number of OX6+ cells was considerably reduced.
However, when the reparative dentin was invaded by caries, OX6+ cell accumulation
reappeared [98]. In human samples, few studies have addressed the dynamics of immuno-
competent cells in vivo. Izumi et al. described HLA-DR cells in the pulp of intact and
carious teeth at different stages of infection. In the early stages of carious lesions, a small
number of HLA-DR+ cells were observed under the affected area, whereas they increased
according to the progression of the carious lesions [99]. Similarly, another study reported
the behavior of HLA-DR+ dendritic-like cells in the dental pulp of teeth with established
carious lesions. In early-stage carious lesions, HLA-DR+ cells were recruited under the
subodontoblastic layer, whereas, in severe carious lesions, positive cells expanded along
the odontoblast layer. In the most severe situations, HLA-DR+ cells migrated toward the
core of the pulp. Moreover, the presence of HLA-DR+ cells was lower in carious teeth



J. Clin. Med. 2021, 10, 3348 10 of 23

with reparative dentin than those with active lesions [81]. Interestingly, the occurrence of
nerve fibers and DCs in the pulpal tissue under carious lesions showed a synchronized
density and distribution according to the severity of the lesions. These observations may
suggest an unexplored neuroimmune interaction contributing to the initial response and
modulation of the pulp-dentin complex [100,101]. Another study has proven that the
cavity depth alters the HLA-DR+ DC distribution. A half-reduction of the dentin thickness
directly changed the DC distribution, whereas a two-third reduction directly induced the
replacement of odontoblasts with HLA-DR+ cells until 1 month after treatment. Clusters of
immunocompetent cells, such as DCs and T lymphocytes, and nerve fibers remained in the
subodontoblastic layer under the affected area 6 months after treatment [83,102].

Other infection models focused on the distribution and fate of MHC+ class II cells in
rat molars considering a variation in experimental models, such as the use of laser ablation
for cavity preparation, and their treatment with temporal fillings, including the use of a
combination of antibacterial drugs for the in situ disinfection of oral-exposed cavities [46,48].
For instance, cavity preparation with chromium, thulium, erbium: yttrium-aluminum-
garnet (CrTmEr:YAG) laser causes the immediate appearance of exudative lesions and the
separation of odontoblasts from the pulp-dentin border. OX6+ cells showing a dendritic
appearance at the affected site shifted inward together with the separated and damaged
odontoblasts. From 6 to 12 h after the cavity preparation, exudative lesions seemed to
disappear, and numerous OX6+ cells appeared along the pulp-dentin border, extending
their processes deep into the exposed dentinal tubules of nontreated cavities. One day after
the operation, inflammatory cells rapidly increased in number and were recruited between
the predentin and the damaged or survival odontoblasts. OX6+ cells shifted their location
from the pulp-dentin border to around the inflammatory lesions. These cells lost their
cytoplasmic processes and appeared rounded. Laser ablation induced the easy infiltration
of PMLs to form an abscess lesion in the dental pulp in most samples of the nontreated
group at days 3–5 after the operation.

Scattered OX6+ cells were observed at a distance from the inflammatory abscess in
the dental pulp (Figure 5b). At higher magnification, the penetration of masses of oral
bacteria was identified in dentinal tubules beneath the untreated cavity (Figure 5c,d).
In contrast, samples sealed with temporal cement after the cavity preparation showed
no abscess formation in the dental pulp, coinciding with the results of a similar study
using the same laser type [103]. Few OX6+ cells were identified along the pulp-dentin
border under the affected area. At higher magnification, these cells extended their cellular
processes into the dentinal tubules, although the penetration was slight compared to the
group without treatment (Figure 5a). The findings of this study suggested that bacterial
infection and subsequent abscess formation impaired DC recruitment, which may have
contributed to the delay in the pulpal repair/regeneration process [46]. To further analyze
the influence of bacterial contamination on DC recruitment in the afflicted pulpal tissue,
Sato et al. introduced the use of an α-tricalcium phosphate (αTCP) cement containing
antimicrobials, such as ciprofloxacin, metronidazole, and cefaclor (3Mix). The study aimed
to clarify the responses of neural and immune cells to antimicrobials during the healing
process of infected pulps in a rat cavity preparation model. After exposure to the oral
environment for 12–24 h, the exposed cavities were covered with αTCP cement (control
group) or αTCP cement containing 3Mix (experimental group), followed by restoration
with glass ionomer cement. In the control group, large abscess lesions, including numerous
neutrophils, were observed from day 3 to week 2 in the mesial half of the coronal pulp
(Figure 5e). Neutrophil accumulation was observed at the exposed area covered with αTCP
cementum, whereas OX6+ cells or PGP 9.5+ nerves were not consistently seen around the
abscess lesions (Figure 5f). In contrast, numerous OX6+ cells accumulated along the pulp-
dentin border of cavities treated with αTCP cement containing a 3Mix drug combination
(Figure 5g). In situ disinfection induced by the mixture of antibiotics accelerated tertiary
dentin deposition (Figure 5h) by newly differentiated odontoblast-like cells located beneath
the newly formed dentin matrix (asterisk in Figure 5h) two weeks after the injury. PGP 9.5+
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nerve fibers were densely distributed in the coronal pulp, whereas OX6+ cells retreated
beneath the odontoblast-like cells (arrows in Figure 5h). Statistical difference in the number
of OX6+ cells was found between the experimental and control groups [48].
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Figure 5. Responses of DCs to bacterial infection in the dental pulp. (a–d) Cavity preparation
injury model using laser ablation (cited from Suzuki et al. [46], with permission from Springer
Nature and Sato et al. [48], with permission from Archives of Histology and Cytology). (e–h) Cavity
preparation and pulp capping model with αTCP cementum or αTCP cementum containing a 3Mix
drug combination. (a–h) Immunohistochemistry with OX6 antibody. (f,h) Semithin sections. (a) OX6+

cells extend their processes deep into the dentinal tubules (arrows). (b) Laser ablation induces the
infiltration of PMLs to form an abscess lesion in the dental pulp in most samples of the nontreated
group from days 3 to 5 after the operation. Scattered OX6+ cells are observed at a distance from
the abscess formation. (c,d) Higher magnification of the boxes in (b) and (c). The penetration
of masses of oral bacteria can be identified in the dentinal tubules beneath the untreated cavity.
(e) From day 3 to week 2 large abscess lesions, including numerous neutrophils, are still observed
in injured teeth covered with αTCP cementum, particularly in the mesial half of the coronal pulp.
(f) Neutrophil accumulation is observed at the exposure area covered with αTCP cementum. OX6+

cells are not consistently seen around the abscess lesions. (g) Numerous OX6+ cells accumulate along
the pulp-dentin border of cavities treated with αTCP cementum containing a 3Mix drug combination.
(h) Tertiary dentin deposition is accelerated in cavities covered with αTCP cementum containing a
3Mix drug combination. The newly formed dentin matrix is observed at the injury site (asterisk).
OX6+ cells retreated beneath the odontoblast-like cells at this stage (arrows). A abscess, C cavity, D
dentin, DP dental pulp, Bar = 100 µm (b,e,g), 50 µm (f,h), 25 µm (a,c).
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The findings obtained using infection models demonstrate the importance of DCs as
initiators of the pulpal immune response and suggest another putative role during the
pulpal healing process [46,48,98,103]. The pulpal immune responses may vary according to
the local conditions and the stimuli intensity, as the antigen-presenting capacity of pulpal
DCs may persist for many months, even after caries treatment [83,100,102]. During the
early stages after oral exposure, an active DC recruitment is described in the dental pulp
under the exposure site [81,99]. Once an abscess lesion is formed, numerous neutrophils
with phagocytotic activity occupy the afflicted odontoblast layer, whereas the remaining
DCs migrate toward the center of the pulp and/or the surrounding areas. Changes
in DC distribution may be related to the normal transit from the infection site to the
regional lymphatic nodes for their maturation and the activation of the innate tissue-specific
response of the dental pulp. This phenomenon does not occur if the infection is prevented
by either covering the exposed cavity or using special filling materials, such as αTCP
cement containing 3Mix drugs, for the in situ disinfection of the pulpal microenvironment.
Although the signaling pathway connecting odontoblast-like cells and pulpal DCs is still
unknown, it is evident that the interplay of odontoblasts and immunocompetent cells
influences the healing of the pulpal tissue even under infection conditions, as all presented
studies have shown that the number of OX6+ cells consistently decreased after tertiary
dentin deposition [46,48,81,83,96–103]. Further research should confirm whether DCs
play dual roles in both the initial immune response and the differentiation process of
odontoblast-like cells under pathological conditions.

6. Relationship between DCs and Osteopontin (OPN) during Pathological Dentinogenesis

OPN is a complex cytokine and adhesion protein that contains an integrin-binding
RGD (arginine-glycine-aspartic acid) sequence commonly found in ECM molecules. OPN
is encoded by a single copy gene located in the SIBLING (small integrin-binding ligand, N-
linked glycoproteins) cluster on human chromosome 4 and mouse chromosome 5 [104,105].
Although OPN was originally identified as a sialoprotein produced by osteoblasts, it is now
proven that a wide variety of cell types such as endothelial cells, smooth muscle cells, ep-
ithelial cells, odontoblasts, and immunocompetent cells including activated macrophages,
NK cells, and DCs, also produce OPN in response to various stimuli [106–109]. Therefore,
the role of OPN is critical for fundamental physiological functions, such as tissue remodel-
ing, cellular immune responses, and calcium homeostasis in milk and urine. However, in
inflamed and injured tissue, OPN is strongly upregulated and involved in the pathogenesis
of various inflammatory disorders, such as autoimmune disorders, several cancers, and
cardiovascular diseases [104,110].

In dental tissue, OPN constitutes one of the fundamental non-collagenous dentin
matrix proteins. It is identified in odontoblasts during dentinogenesis and in the predentin
of erupted teeth [108]. Besides its role during physiological dentinogenesis, OPN partici-
pates in initiating the pulpal reparative process after tooth injuries. Previous studies have
identified OPN expression on the boundaries between the predentin and the newly-formed
dentin matrix in the transplanted tooth [56]. Also, OPN expression was found between the
necrotic matrix and reparative dentin after the direct capping of mineral trioxide aggregates
on the mechanically exposed dental pulp [60].

OPN has anti-inflammatory actions, as it regulates innate and adaptive immune re-
sponses [110–112]. Human macrophages and DCs synthesize OPN, contributing to the
differentiation, maturation, activation, and survival of DCs, through autocrine and/or
paracrine pathways. In macrophages, OPN is important for the migration of these cells and
plays an important role in phagocytosis and bacterial cell killing [104,109,113]. Likewise,
the presence of other molecules in the local microenvironment, such as the granulocyte
macrophage colony stimulating factor (GM-CSF) and M-CSF, is also known to induce
DC and macrophage differentiation from the common myeloid precursor cells, respec-
tively [114].
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In the heavily afflicted tooth, the local microenvironment plays a major role in de-
termining the healing patterns in the dental pulp. In a detailed in vivo study, Saito et al.
analyzed the influence of intervening molecules from the pulpal microenvironment, such
as GM-CSF and OPN, in the reparative dentin formation process by tracking the differentia-
tion process of odontoblast-like cells. They used a modified allogenic tooth transplantation
model, where only the coronal portion of the tooth, without periodontal tissue, was trans-
planted into the sublingual region of mice. The sequence of cellular events was analyzed
by immunohistochemistry for nestin (an odontoblast marker), OPN, MHC class II, and
GM-CSF and in situ hybridization was performed for OPN. On day 1, the pulp cavity
was mainly occupied by inflammatory lesions, and some cells that extended their cellular
processes into the dentinal tubules showed GM-CSF+ reactions. OPN+ reactions were
recognized in the fibrin networks of the pulp cavity and the pulp-dentin border, whereas
Opn mRNA+ cells were scattered spotted in the pulpal tissue. On day 3 after transplanta-
tion, double immunofluorescent staining showed that MHC+ class II cells with dendritic
features, located along the pulp-dentin border, were also positive for OPN, indicating
that OPN+ cells were immunocompetent cells, such as macrophages and DCs (Figure 6a).
Intense OPN+ reactions were seen only at the mineralization front of the preexisting dentin
on day 5, Opn mRNA+ cells were recognized at the pulp-dentin border on days 5 and 7
(Figure 6b,c), and nestin-positive newly differentiated odontoblast-like cells were arranged
along the pulp-dentin border where OPN+ cells had previously existed (Figure 6d). On
day 7, tubular dentin formation began to be deposited next to the preexisting dentin.
Interestingly, GM-CSF expression began to disappear from the pulp-dentin border and
dentinal tubules on days 5-7, except for the sites where inflammatory reactions remained.
Nevertheless, GM-CSF+ cells reappeared beneath the differentiated odontoblast-like cells
from day 5 to week 2. Finally, 2 weeks after the operation, sustained OPN immunoreactions
were observed at the boundary between the predentin and the newly-formed dentin matrix.
OPN+ osteoblasts surrounded the bone matrix (Figure 6e). In summary, the results of this
study showed that GM-CSF and OPN secretion by pulpal macrophages and DCs is impor-
tant for pulpal DC maturation and the subsequent acceleration of the odontoblast-like cell
differentiation process.

In this model, transplantation involved the complete excision of the tooth out of its
alveolar socket inducing a low oxygen environment in the remaining pulpal tissue. It
was previously reported that hypoxia significantly increases OPN production in immature
and mature DCs with critical implications for tumor pathogenesis and inflammatory and
autoimmune diseases [104,115]. In addition, other studies highlighted that OPN might be
a fundamental factor for cell survival regardless of cell lineage, preventing apoptosis. Thus,
the role of locally synthesized OPN in DC survival appears to be beneficial for maintaining
homeostasis at the inflammation site [109]. The release of growth factors from various
sources, such as the preexisting dentin matrix, inflammatory cells, or autolytic odontoblast
and pulpal cells, may favor DC recruitment at the injury site; subsequently, the odontoblast
differentiation process will proceed steadily [7]. Although further experimental data are
needed, it can be hypothesized that OPN secretion during the odontoblast differentia-
tion process by pulpal macrophages and DCs may induce positive feedback not only for
immature DC maturation but also by preventing them from extensive apoptosis [109].
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permission from SAGE). (a) OPN and MHC class II double immunofluorescence staining. (b,c) OPN in situ hybridization
and immunohistochemistry for (d) nestin and (e) OPN on day 3 (a), day 5 (b,d), day 7 (c), and day 14 (e) after tooth allogenic
tooth transplantation. (a) MHC+ Class II cells (red) with dendritic features are also positive for OPN (green) on day 3 after
transplantation, indicating that OPN+ cells are immunocompetent cells, such as macrophages and DCs. (b,c) Intense OPN
reactions are seen at the mineralization front of the preexisting dentin on day 5. Opn mRNA+ cells are recognized at the
pulp-dentin border in days 5 and 7. (d) Nestin-positive newly-differentiated odontoblast-like cells are arranged along the
pulp-dentin border where OPN+ cells had previously existed. (e) Two weeks after the operation, OPN immunoreactions are
observed at the boundary between the predentin and the newly-formed dentin matrix (arrows). OPN+ osteoblasts surround
the bone matrix. B bone, D dentin, OB odontoblasts, PC pulp cavity, TD tertiary dentin, Bar = 100 µm (c,d,e), 50 µm (e),
10 µm (a).

7. Relationship between DCs and Stem/Progenitor Cells in the Dental Pulp after Injuries

Stem cells of the dental pulp are called DPSCs or, in immature teeth, stem cells from
human exfoliated deciduous teeth. Other similar cells include dental pulp from the apical
papilla and dental follicle progenitor cells. These cell populations have the capacity to
differentiate into odontogenic cells and other cell lineages [7]. Bone marrow resident MSCs
are located in perivascular areas of the bone marrow microenvironment, where they can be
in close contact with immune cells, including B cells, T cells, and DCs [104,116]. Likewise,
MSCs in the dental pulp harbor in perivascular niches, where they display a phenotype
consistent with pericytes. It was proven that perivascular DPSCs are directly involved in
the regulation of the tissue regeneration after mild or severe injuries, as in the formation of
reactionary or reparative dentin [117–119]. Therefore, the ability of both young and old
teeth to respond to injury by the induction of pathological dentinogenesis suggests that
a small population of competent progenitor cells or pulp stem cells may exist within the
dental pulp throughout life [7].

Previous in vitro experiments demonstrated that MSCs in a steady state exhibit in-
hibitory effects on DC differentiation, which resemble immature/semimature/tolerogenic
DCs, even upon exposure to pro-maturation stimuli. In contrast, targeted downregulation
of suppressive mechanisms by which MSCs act on DC differentiation and functions could
break the immune tolerance in immunosuppressive environments such as tumors [120].
In addition, it has been proven that resting MSCs can further increase OPN production
when cocultured with DCs. In contrast, in the presence of proinflammatory cytokines,
MSCs exert an opposite effect inhibiting OPN production. OPN production by DCs and
DC-conditioned medium enhances the osteogenic differentiation of MSCs, leading to
the upregulation of the osteogenic markers alkaline phosphatase (ALP) and RUNX2 and
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the expression of the bone-anabolic chemokine CCL5. In contrast, OPN may play an
inhibitory role in adipogenic differentiation. Thus, the interplay between DCs and MSCs
may contribute to the upregulation of OPN production with the consequent inhibition of
MSC-derived adipogenesis and the induction of osteogenic differentiation [104,110].

Although most evidence on the crosstalk between MSCs and DCs has been retrieved
from nondental tissue, a previous study highlighted that periapical lesion-derived MSCs
(PL-MSCs) could differentially modulate DC functions and Th-cell response in periodontal
lesions. At the beginning of the disease, PL-MSCs could activate resident DCs, inducing
their maturation and Th1 polarization. In contrast, in the later stages of PLs, PL-MSCs
could potentiate DC tolerogenic differentiation and the polarization of immune response
toward Th2 and Treg cells, which are important for the healing stage of periodontal lesions.
Thus, this study showed that PL-MSCs could either augment the inflammatory response
or contribute to the resolution of the disease, depending on the dynamics of the two cell
types [120].

The relationship between DCs and DPSCs/progenitor cells during the healing pro-
cess was evaluated in vivo in two different studies using cavity preparation and tooth
replantation mouse models. The most recent study in this topic elucidated the responses
of the oral microflora-exposed dental pulp to capping with a triple antibiotic paste (TAP:
metronidazole, ciprofloxacin, and minocycline) in mouse molars, compared to those to
calcium hydroxide (CH) cement, in addition to the combination of macrogol and propy-
lene glycol (MP, control group), followed by a glass ionomer cement filling. Quantitative
real-time polymerase chain reaction (qRT-PCR) analysis was performed using specific
primers for cDNA encoding Nestin (odontoblast differentiation), Cd11c (DCs), and Nanog
(stem/progenitor cells). Cd11c mRNA sharply increased from weeks 1 to 2 in the TAP
group, followed by the CH group, and correlated with a peak in the cell proliferative
activity. In contrast, the MP group markedly decreased its expression 2 weeks after treat-
ment, with significant differences between the TAP and MP groups regarding the mRNA
expression of Cd11c on week 1. mRNA expression of the odontoblast differentiation marker
Nestin was higher in the TAP group than in the CH and MP groups at week 1, followed
by a steady decrease of its expression in all groups on week 2. TAP group also showed
the highest mRNA expression of the stem cell marker Nanog among the three groups on
week 1, whereas its expression decreased by week 2. These results demonstrated that TAP
might contribute to a sterile environment that allows active pulpal cell proliferation and the
simultaneous activation of DCs. Moreover, high mRNA expression of the stem cell marker
Nanog on week 1 after treatment suggested that the use of TAP favored the activation
of stem cells/progenitors residing in the injured dental pulp (Figure 7a) [37]. Likewise,
another study evaluated the effectiveness of the combination of antibacterial drugs to
heal the dental pulp. The maxillary first molars of 3-week-old mice were extracted and
immersed in the 3Mix solution for 30 within compared to phosphate buffered saline (PBS)
alone. Although no significant difference was found between the 3Mix and PBS groups, the
study showed chronological changes in the gene expression of differentiation markers such
as Nestin, Dspp, Alp, Ocn, and Opn, and the evaluation of DC (Cd11c) and DPSC (Oct3/4A
and B) activity during the pulpal healing process. High expression levels of Cd11c mRNA
were first observed in the 3Mix group on day 1 and later on days 5 and 7, whereas, in the
PBS group, these levels progressively increased from days 1 to 7. Moreover, the Oct3/4A
and B transcript leves were greatly enhanced on day 1 in both groups, correlating with the
increase of Cd11c mRNA in the 3Mix group (Figure 7b).
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Figure 7. Relationship between DCs and stem/progenitor cells during the dental pulp healing process
(cited from Quispe-Salcedo et al. [36,37], with permission from Elsevier). Dental pulp samples from
(a) cavity preparation and (b) intentionally delayed tooth replantation models in mice. (a) qRT-PCR
analysis for Nestin, Cd11c, and Nanog of dental pulp samples on weeks 1 and 2 after the cavity
preparation and capping treatment with a triple antibiotic drug combination (3Mix). (b) qRT-PCR
analysis for Nestin, Cd11c and Oct3/4B from day 0 to week 2 of dental pulp samples of intentionally
delayed replanted teeth (30 min) treated with 3Mix solution. Student’s t-test * p < 0.05.

Hence, immersion of replanted teeth in the 3Mix solution may have promoted DC
migration in the dental pulp shortly after repositioning the tooth into the alveolar socket.
The similar timing in the expression of DC and DPSC markers may involve hidden crosstalk
between these two cell populations that might trigger stem/progenitor cell-mediated cell
differentiation into odontoblast-like cells to begin the reparative dentin matrix deposi-
tion [36]. Further research is necessary to identify the possible crosstalk between DPSCs
and pulpal DCs in the context of the odontoblast differentiation process after tooth injuries.

8. Conclusions

This literature review summarized the important findings related to the possible
role of dental pulp DCs during physiological and pathological dentinogenesis retrieved
from several in vivo and in vitro experiments performed over the last 20 years (Figure 8).
Although the presence of DCs has been confirmed based on their morphological features
after histological and immunohistochemical analyses, it is necessary to address the crosstalk
between DCs and other important pulpal cells, such as odontoblasts and DPSCs, using
further state-of-the-art in vitro strategies. To date, extensive research has been published
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elsewhere about the role of DCs toward inflammation caused by dental caries or trauma in
the dental pulp; however, very little information is available on the molecular mechanisms
that control the temporary appearance of DCs during the pulpal healing process. The lack
of knowledge in this matter is particularly critical for establishing new strategies aimed to
achieve the regeneration of the afflicted dental pulp tissue.
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Figure 8. Schematic views summarizing the possible role of DCs (*) during physiological and
pathological dentinogenesis. Osteopontin (OPN) is not, but the enamel epithelium and basement
membrane are necessary for the odontoblast (OB) differentiation during physiological dentinogenesis.
Odontoblasts are classified into immature (a), mature (b), and resting odontoblasts (c), and DCs
associate with the odontoblasts in this process. Mature dental pulp (d) is composed of the frontline
including odontoblasts, the rearguard including progenitor cells (PC), and the main force including
dental pulp stem cells (DPSCs), and DCs associate with all compartments. OPN is deposited at the
dentin-predentin interface during pathological dentinogenesis. OPN and DCs play a role in the
sequential steps of DC activation (e), dental pulp stem/progenitor cell activation (f), and odontoblast-
like cell (OBlc) differentiation (g). CL capillary lumen, D dentin, E enamel, MD mantle dentin, Mϕ

macrophage, PAB preameloblast, PD predentin.
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Since its first description 20 years ago, the concept of “osteoimmunology” has emerged
as a field of study that unifies the complex interactions between bone biology and the
immune system [121–124]. For instance, the study of bone pathologies, such as rheuma-
toid arthritis or osteoporosis, has shown us the great influence of the immune system
on the function of bone-forming cells [122]. Both, skeletal and immune systems share
several regulatory molecules, including cytokines, chemokines, receptors, and transcrip-
tion factors. Therefore, this reciprocal relationship allows the achievement of critical bone
functions, such as body support, regulation of mineral metabolism, and the hematopoietic
process [124,125]. In addition, the study of this emerging discipline (osteoimmunology) is
important not only to clarify the concepts related to its basic biology but also to develop
new therapeutic strategies for bone and/or joint pathologies and immune disorders [123].
Hereby, the term “dentin-pulp immunology” is proposed in a similar fashion to “osteoim-
munology.” The dentin and the pulp tissue share the same embryological origin. Both
structures are derived from the ectomesenchyme of the maxillary and mandibular process
of the first branchial arch and are considered as a functional unit [1]. Moreover, it is exten-
sively proven that the dental pulp owns an innate immune system that allows the tissue
response against oral pathogens or exogenous noxious stimuli. The complex network of
immune cells that interplay with the pulpal cells triggers a phased natural repair process
that varies according to the nature of the injury. The study of the biology of the dental pulp
has shed light on the multiple functions of its inherent cells and the molecules critical for
the execution of the main functions of the dentin-pulp complex. However, it is necessary
to take a comprehensive approach to unify these concepts with the wide complexity of the
immune system behind the healing responses.

Recently, immune-based therapies for the healing of the pulpal tissue, including the
development of new immunomodulatory compounds for dental pulp regeneration or
DPSC activation, are emerging as possible therapeutic alternatives in dentistry [126]. In
this context, synthetic CpG-oligodeoxynucleotides (CpG-ODNs), have been shown to
elicit strong host immunostimulatory responses through the sustained activation of APCs
and are considered suitable adjuvants for treating cancer and infectious diseases [127,
128]. Preliminary data from the authors suggested that the exposure to a CpG-ODN
solution significantly improved the pulpal regeneration of replanted teeth in mice, possibly
through the activation of pulpal DCs. Hence, a new treatment called “DC activation
therapy” is also proposed, aiming to improve the prognosis of severely injured teeth
toward the resolution of inflammatory conditions and their subsequent regeneration, as
in avulsed teeth in children, or deep carious lesions with or without pulpal inflammation.
Nevertheless, these promising in vitro results must be carefully analyzed as they do not
contemplate the crosstalk with other cell populations and the influence of external stimuli.
Further strategies should include using in vivo models and molecular and gene analyses
of samples under experimental conditions to validate the potential therapeutic effects of
new immunomodulatory compounds against pulp pathologies.
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