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ABSTRACT  Spatial and temporal behavior of chromosomes and their regulatory proteins is 
a key control mechanism in genomic function. This is exemplified by the clustering of the 32 
budding yeast telomeres that form foci in which silencing factors concentrate. To uncover the 
determinants of telomere distribution, we compare live-cell imaging with a stochastic model 
of telomere dynamics that we developed. We show that random encounters alone are inad-
equate to produce the clustering observed in vivo. In contrast, telomere dynamics observed 
in vivo in both haploid and diploid cells follows a process of dissociation–aggregation. We 
determine the time that two telomeres spend in the same cluster for the telomere distribu-
tion observed in cells expressing different levels of the silencing factor Sir3 protein, limiting 
for telomere clustering. We conclude that telomere clusters, their dynamics, and their nuclear 
distribution result from random motion, aggregation, and dissociation of telomeric regions, 
specifically determined by the amount of Sir3.

INTRODUCTION
The nucleus is spatially and functionally organized, and its archi-
tecture is a key contributor to genomic function (Gotta et  al., 
1996; Heard and Bickmore, 2007; Misteli, 2007; Hübner and Spec-
tor, 2010), yet the underlying principles are poorly understood. 
The clustering of specific DNA sequences forming subnuclear 
compartments in which specific factors concentrate is a process 
conserved through evolution (de Laat, 2007). In budding yeast, 
the 32 telomeres of a haploid cell can associate in several clusters, 
leading to the unequal distribution of telomeres and telomere-
associated factors (Taddei et al., 2010). Understanding the princi-
ples of telomere organization in yeast is a key step to elucidating 

the general mechanisms governing chromosome trans-interac-
tions in eukaryotes.

In vivo studies show that telomeric foci undergo fusion and fis-
sion events over a time scale of minutes (Schober et al., 2008), but 
the physical principles underlying telomere dynamics are elusive. Of 
interest, interactions between subtelomeres have been proposed to 
be nonspecific and governed only by some structural constraints, 
including chromosome structure, attachment to the spindle pole 
body, and nuclear crowding (Therizols et  al., 2010; Zimmer and 
Fabre, 2011; Wong et al., 2012).

To investigate the mechanisms underlying cluster formation and 
their overall dynamics, we analyze data from live-cell imaging, using 
a novel stochastic model that we built based on a coarse-grained 
description of telomere motion, aggregation, and dissociation. 
Finite dissociation–aggregation systems were analyzed at a mole-
cular level by using a stochastic description (Lushnikov, 1978; 
Edelstein-Keshet and Ermentrout, 1998; Aldous, 1999; Wattis, 
2006). We first show that random encounter of telomeres does not 
account for the observation that telomere clusters are observable 
for minutes (Schober et al., 2008). To resolve this issue, we account 
for direct molecular interactions between telomeres and estimate 
the number and size of clusters in experimental and simulation 
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tions observed in vivo (Schober et al., 2008; Therizols et al., 2010). 
In summary, this overall analysis represents a first attempt to 
model and quantify telomere organization, clustering, and dy-
namics in Saccharomyces cerevisiae based on elementary physi-
cal properties.

RESULTS
Random encounter does not account for the dynamics 
of telomere foci observed in vivo
To test whether telomere foci observed in vivo could result from the 
random encounters of telomeres at the nuclear periphery, we first 
generated a stochastic simulation of noninteracting telomeres, de-
scribed as 32 independent Brownian particles diffusing on the pe-
riphery of a nucleus of radius 1 μm, excluding the nucleolus, which 
occupies about one-third of the total surface.

We used 300 nm as the distance to define the upper size of a 
telomere cluster (Materials and Methods and Figure 1A). As the sim-
ulations were running, we counted at each moment of time the num-
ber of spots generated by telomeres within a size of 300 nm. We 
found that on average, 13.7 telomeres were isolated, 7.2 telomeres 
were in pairs (3.6 pairs), and the remaining 11 telomeres were in 
clusters of three or more (Figure 1B). To compare this numerical 

histograms that agree. This result shows that dissociation/associa-
tion of telomeres moving by random motion on the nuclear surface 
explains the formation of visible clusters. Whereas the association 
rate depends on geometrical parameters such as telomere diffusion 
and the physical properties of the nucleus, the dissociation rate that 
we estimate here is regulated by the local organization of telomeres 
in clusters and the Sir proteins mediating interactions between te-
lomeres. Indeed, telomere clustering can be modulated by chang-
ing the cellular amount of Sir3 molecules (Ruault et al., 2011). Of 
importance, our model is able to predict telomere distribution when 
changing the geometry of the nucleus or when varying the affinity 
between telomeres. These predictions agree with experimental data 
obtained in vivo in diploids cells (data that we present here for the 
first time) or by varying the number of Sir3 molecules engaged in 
telomere clustering.

Moreover, we obtain several refined quantifications regarding 
cluster dynamics. We estimate the mean time that two telomeres 
spend in the same cluster (while the cluster changes identity by 
accepting or losing telomeres) and the mean time that two telom-
eres meet again after they separate from a given cluster. These 
two characteristic times give precise quantification parameters 
that could be used to analyze the dynamics of telomere interac-

FIGURE 1:  Model of random encounter of telomeres. (A) Schematic representation of randomly located telomeres at 
the nuclear periphery. Two telomeres at a distance <300 nm are considered to belong to the same cluster. (B) Mean 
number of clusters of a given size (n = 5000). On average, 20.9 telomeres are isolated or in pairs and are thus 
nonobservable. (C) Number of clusters per cell containing more than three telomeres (n = 5000). Mean ± SD, 2.5 ± 1.1. 
(D) Schematic representation of the dispersion of a telomere focus. The telomeres start at the same initial position and 
diffuse on the surface of a sphere (D = 0.005 μm2/s). The mean separation time for three (E) or four (F) telomeres is, 
respectively, <t> = 2.1 or 3.5 s (n = 1500). (G) Rap1-GFP fluorescence images extracted from Supplemental Movie S1. 
yAT340 was grown in glucose complete medium. The z-stack images were acquired every 10 s for 100 times. Bar, 2 μm.
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transient encounter of independent telomeres moving by random 
motion. To resolve this issue, we now show that telomere clustering 
dynamics is driven by diffusion–aggregation–dissociation.

Coarse graining the motion of telomeres at the nuclear 
envelope in a dissociation–aggregation model
We first show that telomere clustering can be studied by coarse 
graining the polymer dynamics into an equivalent Brownian particle. 
The physical reason is that the arrival time to a cluster (which occu-
pies a small fraction of the surface) is a rare event and takes a long 
time (Schuss et al., 2007). To validate the coarse graining description 
of a telomere, we ran a Brownian simulation of a Rouse polymer, 
which models the chromosome dynamics (Supplemental Informa-
tion, Polymer Simulations). In this simulation, the telomere motion 
occurs on the surface of a sphere, which represents the nuclear sur-
face (Figure 2A), whereas the remainder of the monomers in the 
chain evolve inside the nucleus. We found that the distribution of 
telomere arrival time to a small target, which can represent another 
telomere or a small cluster, is well approximated by a single expo-
nential (Figure 2B). This result shows that the encounter rate of te-
lomeres at the nuclear periphery can be characterized by a single 
parameter (the arrival rate or equivalently by an effective diffusion 
constant): even though telomere motion involves complex polymer 
chains accounting for the physical chromosomal chain, encounter 
is a rare event, and its rate is Poissonian. Consequently, to model 

simulation with live-cell imaging data monitoring the telomeric pro-
tein Rap1 fused to green fluorescent protein (GFP), we used our 
previously estimated detection threshold for telomere cluster of 
N = 2 (Ruault et al., 2011). We thus retained only clusters containing 
at least three telomeres (which we call observable clusters). After 
running the numerical simulations, we ordered the distribution of 
cells according to their number of observable clusters (Figure 1C) 
and obtained a mean of 2.5 ± 1.1 (SD), in agreement with the 
experimental observations (Schober et al., 2008; Ruault et al., 2011; 
see later discussion of Figure 3B). The similarity between the histo-
grams for the percentage of cells according to their number of 
observable clusters was evaluated as the maximum of the absolute 
difference of the experimental and simulated cumulative distribu-
tion functions for the number of clusters (distribution error function, 
DE). We found DE = 0.24, which could support at this stage the 
hypothesis of noninteracting telomeres. We next extracted the 
cluster dynamics from the simulations; we simulated the motion of 
telomeres found within a 300-nm disk (Figure 1D) and computed 
the time these telomeres need to spread apart and become non
observable. Using the motion parameters described, we obtained 
that clusters of three or four telomeres would be observable only 
for few seconds (Figure 1, E and F). This result is in contrast with in 
vivo observations of telomere foci over minutes (Schober et  al., 
2008; Figure 1G and Supplemental Movies S1 and S2). We thus 
conclude that telomere clusters cannot result simply from the 

FIGURE 2:  Computational model of telomere cluster formation. (A) Snapshot from a Brownian dynamics simulation of a 
polymer with one end anchored on the nuclear surface. The polymer is composed of 100 monomers with average 
distance between monomers of l0 = 50 nm, and the nucleus is a reflecting sphere of size R = 250 nm. (B) Histogram of 
the arrival times for a polymer of size 100 monomers freely diffusing in the nucleus and one end constrained to the 
surface. A fit of the form f(t) = a exp(−bt) gives a = 1.014 and b = 0.76. (C) The diffusion–aggregation–dissociation model 
of telomere organization. Telomeres are represented as Brownian particles diffusing on the nuclear surface, and two 
telomeres coalesce with a rate kf and a cluster of n splits at a rate (n − 1)kb. (D) Schematic representation of the cluster 
dissociation model, in which a cluster of n telomeres has n − 1 bonds. Any of these bonds can break at a rate kb, and the 
cluster effective dissociation rate is (n − 1)kb.
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We also tested initially the effect of varying kb across clusters and 
observed a distribution similar to the ones obtained for simulations 
in which we chose a single value (the mean value) of dissociation kb: 
this is thus equivalent to making a simulation with no variation in kb. 
Thus we conclude that the only way to introduce a variability in the 
cluster number is by assigning a random value for kb to each cell and 
then performing the statistic analysis. Simulations show an excellent 
adequacy to the experimental cluster distribution (Figure 3B), size 
(Figure 3C), and size distribution (Figure 3D), with a DE score of 
0.07. In addition, we observed an average of three detectable clus-
ters per cell and very few cells with more than eight clusters. Of in-
terest, in our simulations, we found that half of the telomeres are not 
in visible clusters: indeed, 10.1 are isolated and 8.4 are in pairs. In 
addition, the number of telomeres per cluster obtained in our simu-
lations reflects very well the cluster intensity obtained experimen-
tally: in both simulated and experimental data, we found that the 
average cluster intensity does not vary with the number of clusters 
per cell (Figure 3C). Because there are 32 telomeres and the inten-
sity is an increasing function of the number of telomeres, we con-
clude that there is on average no more than four telomeres per 
cluster. Consistently, the median/average number of telomeres per 
observable cluster was 3/3.4 ± 1.4 (SD) in our simulations. To get 
better precision on the cluster distribution, we plotted the distribu-
tion of the first three brightest clusters for both experimental and 
simulated data (Figure 3D) and found that in both cases the three 
brightest clusters contain four telomeres. We also found from our 
modeling and numerical simulations that the clusters contain on av-
erage four telomeres. This small number is a result of the associa-
tion/dissociation kinetics at equilibrium but is not imposed by direct 
physical constraints. Indeed, a cluster containing four telomeres dis-
sociates on average in 15 s, much faster than the mean time for two 
clusters to associate (9 min for two clusters).

In addition, we estimated the influence of chromosome arm 
lengths on the telomere aggregation–dissociation process, using an 
extension of our simulations (Supplemental Figure S2), and found 
cluster distributions similar to the ones described previously. Thus 
we conclude that geometrical and motility parameters, such as 
number of telomeres, nucleus radius, exclusion from the nucleolus, 
telomere physical properties, and diffusion constant, determine the 
association rate kf (Holcman and Schuss, 2004). All these factors, 
together with the dissociation rate kb, shape the number and 
average size of the clusters (four telomeres per cluster), and the 
equilibrium parameter a = kf/kb integrates all the determinants of 
telomere distribution.

The organization of telomeres in diploid cells confirms the 
aggregation–dissociation model of clustering
Our model predicts the effect of the equilibrium parameter on the 
telomere distribution. To test the robustness of our model, we 
checked whether it could account for the organization of telom-
eres in diploid cells in which nuclear volume (nucleus radius, 
1.25 μm) and number of telomeres are doubled. These changes in 
the cell geometry affect the forward rate, which we recomputed 
from Brownian simulations and found for the association rate 
kf = 1.1 × 10−3 s−1. Considering that the backward rate is unchanged 
and taking the value found in the preceding section, we obtained 
for the new equilibrium constant the value a = 0.047 ± 0.017 
(compared with 0.083 ± 0.031 for the haploid). We next imaged 
telomere foci in diploid cells (Figure 3E) and found that the number 
of telomere foci obtained by simulation is similar to the number 
measured in live cells. They have on average six clusters contain-
ing three to six telomeres per cell (Figure 3, F and G). We found 

clustering, we use this property to approximate the arrival time of a 
chromosome to a small cluster by the Poissonian dynamics, as long 
as the chromosome length does not restrict the motion of the 
telomere on the nuclear surface. Two telomeres encounter at a 
Poissonian rate kf.

We conclude from the polymer simulations (Figure 2B) that 
we can simulate the arrival time of a telomere to a cluster using a 
Poissonian distribution approach. In that case, we can restrict our 
study to the dynamics of 32 stochastic particles (Figure 2C). Thus, 
using a molecular dynamics simulation of two Brownian particles on 
the surface of a sphere (Carlsson et al., 2010), we ran simulations for 
a Brownian motion occurring on the two-dimensional sphere except 
for a region of the size of the nucleolus (see earlier discussion). We 
obtained an approximation for the forward rate of kf ≈ 1.9 × 10−3 s−1, 
where the encounter disk is of radius δ = 0.015 μm and the effective 
diffusion constant is D = 0.005 μm2/s (Bystricky et al., 2004). When a 
telomere aggregates to a cluster, it only slightly varies in size. In-
deed, in the complex environment of the nuclear surface, the diffu-
sion constant varies with the log of the radius of the effective diffus-
ing particle. Thus any changes in the radius will result only in a small 
change in the diffusion coefficient. We neglected any possible 
changes in the scattering cross section and motility, which could 
modify the forward binding rate (Hozé and Holcman, 2012). Thus 
the encounter rate between clusters or telomeres will be approxi-
mated by a constant independent of the size.

In the absence of specific information about the molecular orga-
nization of clusters, we tested several dissociation rules and found 
that only the one described later could account for the experimental 
observations (data not shown). In this model, a cluster containing n 
telomeres can dissociate with a Poissonian rate of (n − 1)kb, where kb 
is the dissociation rate between two telomeres (Figure 2D). This rate 
implies that a possible telomere organization in a cluster consists of 
a linear succession of telomeres in which each of them is connected 
to its two closest neighbors. Such organization is an ideal abstrac-
tion, and the true organization would require a spatial resolution 
that is not yet accessible. Thus any dissociation event gives rise to 
two clusters of random size p and n − p, respectively, where the dis-
sociation probability is uniform.

In the present model, free telomeres can bind together to form 
clusters with a forward rate kf and dissociate with a backward rate kb. 
The ratio a = kf/kb defines the equilibrium parameter. Because the 
association and dissociation rates are Poissonian, to study the clus-
ter distributions, we simulated telomere dynamics using the classic 
Gillespie algorithm (Supplemental Information, Numerical simula-
tions of telomere dynamics using Markovian equations).

Live-cell data agree with the stochastic aggregation 
of telomeres
To validate our aggregation–dissociation model for telomere orga-
nization, we compared our stochastic simulations (see Supplemen-
tal Information) with live-cell imaging data (Figure 3A). We first de-
termined the dissociation rate kb by comparing the experimental 
and simulation histograms for the number of clusters containing 
more than two telomeres (Figure 3B). The optimal value of the DE 
score was 0.11, which was obtained for kb = 2.4 ×10−2 s−1. However, 
to account for the higher variance observed in the histogram of the 
experimental number of clusters, we introduced a fluctuation in the 
dissociation rate kb of each cell. We generated random values of kb 
following a Gaussian distribution, kb = 2.3 × 10−2 ± 1.3 × 10−2 s−1 
(mean ± SD), which corresponds to a ratio of a = kf/kb = 0.083 ± 
0.031, and we obtained an optimal fit for the distribution of the 
number of clusters (see Supplemental Table S1 for the parameters). 
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together is the silencing factor Sir3, which was shown to be limit-
ing for telomere clustering (Ruault et al., 2011). To further test the 
robustness of our model, we sought a value for the equilibrium 
parameter a that could account for the telomere foci distribution 
observed in vivo in cells expressing different levels of SIR3. We 
previously showed that overexpressing by 6- or 12-fold the en-
dogenous level of Sir3 protein, induced, respectively, by the 
GALS and GAL1 promoters, leads to a higher degree of telomere 
clustering, with clusters mainly found in the nuclear interior 
(Figure 4A; Ruault et al., 2011). We thus fitted the parameter a to 
the experiments and found that increasing a = 0.083 ± 0.031 (wild 
type) to a = 5.9 (GALS) and a = 8.3 (GAL1) allows us to reproduce 
the histogram of number of observable foci per cell obtained in 
vivo (DE scores, 0.02 and 0.03). To estimate the corresponding 
detachment rate kb, we had to take into account the rate of clus-
ter formation in the nuclear interior. To this aim, we ran a three-
dimensional Brownian simulation inside the nucleus and esti-
mated the forward association rate to be kf

3D = 9.0 × 10−4 s−1 
(recall that in the wild-type case, we found that the forward con-
stant is kf

2D = 1.9 × 10−3 s−1, which was estimated for telomeres 
moving on the nuclear periphery). As expected, the encounters 
are less frequent in three versus two dimensions, and this is quan-
tified by the ratio kf

3D/kf
2D = 0.48.

also that the light intensity and telomere distribution of measured 
and simulated telomeres per cluster were very similar (Figure 3, 
F–H). Indeed, the DE score for the histograms describing the 
number of observable foci per cell was 0.067 (Figure 3F), and 
the predicted distribution of foci intensity was in good agreement 
with the experimental data. Of interest, the median cluster size is 
four in both haploid and diploid cells, that is, there are four telom-
eres per cluster, suggesting that the number of telomeres per cell 
does not influence the number of telomeres per cluster. Further-
more, according to our simulations, in diploid cells, telomeres 
cluster in five to nine foci containing three to six telomeres, 
whereas 18.7 telomeres are single and 16.4 are in pairs. The match 
between the experimental data and our numerical simulations 
confirms the robustness of the model to parameter changes while 
the physical properties of the telomeres and the cluster dissocia-
tion rate were fixed.

The aggregation model accounts for telomere distribution 
for two levels of Sir3 overexpression
The present model predicts that molecular factors physically link 
telomeres in a reversible manner. Any changes in this factor 
concentration should thus directly affect the number of clusters 
and telomeres per cluster. One candidate to link telomeres 

FIGURE 3:  Comparison of experimental and simulation results of telomeres clustering in yeast. (A, E) Live-cell imaging 
of telomere clusters. Representative fluorescence image of the telomere-associated protein Rap1 tagged with GFP 
(scale bar, 2 μm) in haploid (yAT340) and diploid cells (yAT352). (B, F) Histogram of the number of clusters per cell. 
(C, G) Mean ± SD of the intensity distributions of the clusters in live cells and distribution of the cluster size in the 
Brownian simulations. In the haploid cells, clusters are made of four telomeres, with a small dispersion that does not 
depend on the cluster number. (D, H) Fluorescence intensity (experiments) and sizes defined as the number of 
telomeres per cluster (simulations) for the three brightest clusters. The frequency of occurrence (y-axis) of a given 
cluster size is plotted as a function of the intensity of a cluster (x-axis), proportional to the telomere number.
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formation of much bigger clusters when SIR3 is overexpressed 
under the GALS promoter (the average cluster size is 1.8 in wild 
type vs. 10.7 for GALSp), consistent with the variation of intensity 
observed in vivo. Similarly, the size of clusters predicted in our 
model is consistent with the intensity observed when SIR3 expres-
sion is driven by the stronger GAL1 promoter. Thus our model was 
also able to reproduce the distribution of clusters in both cases of 
Sir3 overexpression (GALSp and GAL1p, Figure 4B).

From this, we deduced that there is a large increase of the 
binding time, kb

−1 = 109 min for GALSp and kb
−1 = 154 min for 

GAL1p, in strains overexpressing Sir3 compared with WT, kb
−1 = 

43.5 s (Figure 4B).
Of importance, due to the detection threshold, the simulation 

histograms for wild-type and GALSp are similar, although they are 
obtained for very different values of the equilibrium ratio a, which 
changes by a factor of 100. This increase is associated with the 

FIGURE 4:  Telomere hyperclustering under Sir3 overexpression. (A) Fluorescence images of the telomere-associated 
protein Rap1 tagged with GFP in wild-type, GALSp-SIR3 (yAT369), and GAL1p-SIR3 (yAT370) cells after 8 h in raffinose 
plus galactose medium. Bar, 2 μm. (B) Histogram of the number of clusters per cell. (C) Intensity distributions of the 
clusters in live cells and in simulations (mean ± SD). (D) Size distribution for the first three brightest clusters. The 
frequency of occurrence of a given cluster size is plotted as a function of the intensity of a cluster, proportional to the 
number of telomeres.
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(4.0 ± 1.4) and clusters brighter than in the wild-type case, which sug-
gests that Sir3 is liberated and redistributed to telomeres.

Using our simulations, we found that these results are obtained 
from our model with a new equilibrium constant a = 0.12, which 
implies that the dissociation time is 1.5 times longer in the short-
rDNA case than in the wild-type case. Of interest, the long-rDNA 
and wild-type cases are very similar (Figures 3B and 5B), although 
we noticed a higher variance in the number of clusters in the wild-
type case that could be related to the variability in the rDNA tandem 
repeat number in strains with a wild-type FOB1 gene. The cluster 
sizes were very similar in numerical simulations and experiments 
(Figure 5, C and D).

Mean time two telomeres spend in the same cluster 
and before they meet again for the first time
To further investigate the cluster dynamics in which telomeres are 
constantly exchanged between these clusters, we looked for quanti-
ties that could be conserved during cluster dynamics. We studied 
the colocalization time TC that two telomeres spend in the same 
cluster (including cluster of two telomeres), where they can poten-
tially exchange factors or share or compete for similar regulation 
processes. This time is not equal to the classic dissociation time, 
which represents the lifetime of a bond between two telomeres 
(1/kb = 43.5 s), because it accounts for all events of binding and 
unbinding leaving the two telomeres inside the same cluster (Figure 
6). For an average of four telomeres per cluster, using the dissocia-
tion rate (n − 1)kb, we find that the mean time until the cluster splits 

Unlike wild-type cells, some GALSp and GAL1p cells contain a 
single, large visible “hypercluster” containing 28 ± 1 telomeres for 
GAL1p strains (Supplemental Table S1).

Plotting the distribution of the first three brightest clusters 
(Figures 3D and 4D) reveals that our simulations could accurately 
reproduce the experimental intensity. Whereas in wild-type cells the 
three brightest clusters have almost the same number of telomeres, 
this distribution is much more spread for GALSp or GAL1p.

Thus our model accounts not only for telomere distributions ob-
served in wild-type cells, but also for two biological situations in 
which the backward rate is decreased by overexpressing different 
amounts of Sir3.

The aggregation model further accounts for telomere 
clustering when amount of Sir3 available for telomere 
clustering varies
We then sought to study natural variations of kb by varying the num-
ber of Sir3 molecules engaged in telomere clustering. Sir3 was shown 
to associate not only at telomeres, but also at the ribosomal DNA 
(rDNA) locus, the size of which is variable and contains on average 
150 repeats of 9.1 kb coding for rRNA (Radman-Livaja et al., 2011). 
We reasoned that strains containing a small rDNA should have more 
Sir3 available for telomere clustering. We thus monitored telomere 
distribution in strains that have a fixed number of repeats (Cioci et al., 
2003; 190 repeats = long rDNA; 25 repeats = short rDNA) and quan-
tified the intensity and number of telomere foci in these strains 
(Figure 5A). In the case of short rDNA, we obtained more clusters 

FIGURE 5:  Comparison of the experimental and simulation results of telomeres clustering in strains with a short or a 
long rDNA array. (A) Live-cell imaging of telomere clusters. Representative fluorescence image of the telomere-
associated protein Rap1 tagged with GFP (scale bar, 2 μm) in a fob1Δ strain with a long rDNA (yAT1782) and in a fob1Δ 
strain with a short rDNA (yAT1783). The rest of the information is the same as for Figure 3.



1798  |  N. Hozé et al.	 Molecular Biology of the Cell

when varying the amount of Sir3 available 
for binding at telomeres (Figure 7A). This 
can be achieved either by varying the size of 
the rDNA that competes with telomeres for 
Sir3 binding or artificially increasing Sir3 cel-
lular levels. It thus came as a surprise that so 
many different situations could be ac-
counted for by varying a single parameter, 
a = kf/kb. Given that the forward rate kf can 
be deduced from the motion of telomeres 
measured in vivo, the geometry of the nu-
cleus, and the number of telomeres, the 
only free variable is the backward rate, kb, 
which we showed to be directly related to 

the amount of Sir3 available for binding at telomeres (Figure 7). We 
also showed that although telomere motion results from the com-
plex behavior of the chromosomal polymer, the arrival time of a te-
lomere to a cluster is Poissonian and can thus be characterized by 
the encounter rate.

Our modeling approach allows us to report for the first time that 
the dissociation rate of a telomere pair is kb = 2.3 × 10−2 s−1 and the 
association rate of a telomere to a cluster is independent of the 
cluster size and is kf ≈ 1.9 × 10−3 s−1. Our model also predicts that 
the recurrence time for two telomeres to return in the same cluster 
is of the order of 480 s, whereas they stay together in a given cluster 
for 23 s only, consistently with experimental observations (Therizols 
et al., 2010). Furthermore, in our simulations one telomere spends 
∼30% of the time in a visible cluster, in agreement with the dynamics 
of telomere Tel14L observed in vivo (Schober et al., 2008).

We propose that telomere organization in wild-type cells results 
from three physical processes: aggregation mediated by direct in-
teractions between telomeres, dissociation resulting from the sepa-
ration from a cluster, and telomere random motion located on the 
nuclear envelope. In this model, clusters are constantly reshaped 
due to binding and unbinding, leading on average to three to five 
detectable foci of four telomeres.

Levels of Sir3 available for telomere clustering govern 
telomere distribution and dynamics
At the molecular level, telomeres are brought to the nuclear surface 
by telomere-associated proteins interacting with components of 
the nuclear envelope (for review see Taddei and Gasser, 2012), 
whereas the silencing factor Sir3 contributes to telomere clustering 
(Ruault et al., 2011). Indeed, Sir3 overexpression affects drastically 
the organization and the composition of the telomere clusters. In 
our simulation, cells with a unique cluster (Figure 4C) contain around 
25 telomeres, which is more than five times higher than in the hap-
loid case. This result suggests that by invading subtelomeric re-
gions (Hecht et al., 1996), Sir3 can generate an increased binding 
region (gluing zone) promoting telomere/telomere interactions. 
However, Sir3 spreading in subtelomeric regions is not necessary to 
promote telomere clustering, as shown for a specific sir3 mutant 
(Ruault et al., 2011). It is thus possible that Sir3 not only spreads on 
subtelomeric regions when overexpressed, but also accumulates at 
the tip of telomeres and form multimers that allow binding of te-
lomeres to each other. In both cases, increasing the amount of cel-
lular Sir3 proteins leads to additional interacting bonds between 
telomeres. We also report that the size of the rDNA affects telom-
ere distribution, probably by affecting the amount of Sir3 available 
for telomere clustering. Interestingly, spontaneous variations of 
rDNA size are observed in vivo in wild-type cells (Michel et  al., 
2005) and could be responsible for the variation of telomere 

into two is 1/3kb ≈ 14.5 s. Using our stochastic simulations, we found 
that the colocalization time TC is ∼23.4 s (n = 500 runs; Supplemental 
Table S1), which is in perfect agreement with in vivo data monitoring 
association between various pairs of telomeres (Bystricky et  al., 
2004; Schober et al., 2008; Therizols et al., 2010).

Another significant and complementary quantity is the recur-
rence time TR, which is the mean time for two telomeres to meet 
again in a cluster after they separate. This recurrence time TR is the 
sum of the time that both telomeres spend separately in different 
clusters plus the time to travel between clusters until they meet 
again as a pair or in an observable cluster (Figure 6). Using our 
Gillespie simulations, we found that TR = 480 s ≈ 8 min (n = 500 runs; 
Supplemental Table S1). Surprisingly, the recurrence time is shorter 
than the forward time kf

−1 = 526 s (n = 500), indicating that clustering 
favors the encounter of telomeres. Therefore, although the back-
ward and forward rates characterize classical chemical reactions, 
they are not well suited to describe the clustering dynamics: two 
telomeres colocalized in the same cluster undergo events such as 
clustering with other telomeres or dissociations that do not separate 
them. Finally, we estimated from the simulations the probability to 
find two given telomeres in the same cluster (including in a pair), 
which is equal to the ratio of times, P2 = TC/(TC + TR).

This probability is ∼0.047, consistent with the result of Therizols 
et al. (2010), where the probabilities for two telomeres to belong to 
the same cluster were determined experimentally to be mostly in 
the range 0.04–0.09 (Supplemental Table S1).

In cells overexpressing SIR3 under the GAL1p, we estimated the 
equilibrium probability to find two telomeres in the same cluster 
(Supplemental Table S1) to be 53%, again in agreement with experi-
mental data (Ruault et al., 2011). Remarkably, although the present 
model was designed to account for the spatial distribution of telom-
eres, it also predicts accurately the dynamics of telomere interac-
tions in different experimental contexts.

DISCUSSION
We showed that the dynamics of telomere clusters observed in vivo 
cannot result simply from the transient stochastic encounter of inde-
pendent telomeres. Instead, clustering dynamics appears to be 
driven by aggregation and dissociation. We propose an aggrega-
tion–dissociation model that accounts for the distribution of telom-
eres but also their dynamics as monitored in living cells. In our 
model, free telomeres can bind together to form clusters with a for-
ward rate kf and dissociate with a backward rate kb. The ratio of 
these two constants defines an equilibrium parameter, the ratio a = 
kf/kb. This equilibrium constant is sufficient to characterize both the 
distribution and dynamics of telomere foci observed in wild-type 
cells. Furthermore, we found specific values for the equilibrium pa-
rameter a that reflect the variation of telomere clustering observed 

FIGURE 6:  Schematic representation of cluster formation and dissociation. The colocalization 
time TC is the mean time two specific telomeres (black) spend in the same cluster. Before they 
separate, they can form clusters with other telomeres (gray). The recurrence time TR is the mean 
time the two telomeres are separated.
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the telomere organization might allow the cell to adapt rapidly to 
environmental changes, a question that will be important to explore 
in the future.

MATERIALS AND METHODS
Media and growth conditions
Yeast cells were grown in synthetic medium (yeast nitrogen base; 
MP Biomedicals, Solon, OH) supplemented with 2% glucose (wt/
vol) and a complete supplement mixture (BIO 101). Liquid synthetic 
media were enriched for complete synthetic medium (2× complete 
synthetic medium as final concentration). For galactose induction 
(GAL1p-SIR3 and GALSp-SIR3 strains), cells were precultured in syn-
thetic medium containing 2% raffinose (wt/vol), and galactose was 
added to a final concentration of 2% (wt/vol) to start the induction. 
Induction was carried out for 8 h. All the strains were grown at 30°C 
around OD600 nm of 2–3.

Yeast strains
Strains derived from the W303 background: yAT340 MATα ade2-
1::ADE2 his3-11 his3-15 leu2-3 leu2-112 rap1::GFP-RAP1(LEU2) 
sik1::SIK1-mRFP(KanMX); yAT352 MATa/α ade2-1::ADE2/ade2-
1::ADE2 his3-11/his3-11 his3-15/his3-15 leu2-3/leu2-3 leu2-112/

clustering observed in different strains or backgrounds (Supple-
mental Movies S1 and S2), as we accounted for here by considering 
that the dissociation rate kb varies according to a Gaussian law cen-
tered around the mean (Figure 3).

It would be interesting to refine the model by accounting for 
the precise structure of the telomere and derive the expression 
for the binding rate constant. Furthermore, the present model 
could also be used to study other long-range interactions that 
affect genomic functions in many organisms. This model could 
be further used to analyze how silent chromatin clustering can 
be modulated in response to change in environmental condi-
tions. Interestingly, similar clustering of telomeres occurs in the 
parasite Plasmodium (Scherf et al., 2008) and regulates the ex-
pression of its virulence factors. In summary, understanding the 
principles of telomere organization in yeast might help to eluci-
date general mechanisms governing chromosome trans-interac-
tion in eukaryotes.

To conclude, the model developed here accounts for self-organi-
zation principles that can be modulated by controlling protein-driven 
interactions. Consistent with this idea, we observed different levels 
of clustering in different genetic backgrounds and in different growth 
conditions (M. Guidi and A. T., unpublished results). The plasticity of 

FIGURE 7:  Influence of the equilibrium parameter a on clustering organization. (A) Comparison of the intensity of the 
brightest foci and the maximal size of the clusters in the simulations. The intensity of the brightest foci is reported on 
the right y-axis in arbitrary units, with the corresponding values of a. (B) The sum of foci intensity compared with the 
total number of visible telomeres in the simulations. The number of observed clusters (C) and the size of the largest 
cluster (D) are represented as a function of the equilibrium ratio a (logarithmic scale). An increase in the amount of Sir3 
in cells corresponds to an increase of a. The number of visible clusters is equal to 0 for a = 0, tends to 1 (a hypercluster 
containing all the telomeres) for large a, and reaches a maximum at a = 0.51, corresponding to an intermediate level of 
Sir3 proteins. The number in parentheses is the total number of clusters, including isolated telomeres and pairs of 
telomeres. Although wild-type and GALSp cells contain the same number of clusters, the structure of the clusters is very 
different (D). The size of the biggest cluster is ∼5 for wild-type cells, 19 for GALSp, and 21 for GAL1p.
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leu2-112 rap1::GFP-RAP1(LEU2)/rap1::GFP-RAP1(LEU2) sik1::SIK1-
mRFP(KanMX)/sik1::SIK1-mRFP(KanMX). Strains with different sizes 
of rDNA array are derived from NOY1064 and NOY1071 from the 
Nomura laboratory (University of California, Irvine, Irvine, CA; Cioci 
et al., 2003): yAT1782 MATa ade2-1 his3-11 his3-15 leu2-3 leu2-
112 rap1::GFP-RAP1(ADE2) sik1::SIK1-mRFP(KanMX) fob1∆::HIS3 
rDNA copy number 190; yAT1783 MATa ade2-1 his3-11 his3-15 
leu2-3 leu2-112 rap1::GFP-RAP1(ADE2) sik1::SIK1-mRFP(KanMX) 
fob1∆::HIS3 rDNA copy number 25.

Strain derived from JS306 (J. D. Boeke laboratory, Johns Hop-
kins University School of Medicine, Baltimore, MD): yAT1565 MATa 
his3∆200 leu2∆1 met15∆0 trp1∆63 ura3-167 RDN1::Ty1-MET15 
mURA3/HIS3 rap1::GFP-RAP1(LEU2).

Strains derived from the YPH499 background: yAT369 
MATa adh4::URA3-TEL ppr1∆::HIS3 rap1::GFP-RAP1(LEU2) 
sir3::GALSp(KanMX) VR::ADE2-TEL; yAT370 MATa adh4::URA3-
TEL ppr1∆::HIS3 rap1::GFP-RAP1(LEU2) sir3::GAL1p(KanMX) 
VR::ADE2-TEL

Microscopy
Live-cell images were acquired using a wide-field microscopy sys-
tem based on an inverted Nikon TE2000 (Nikon, Melville, NY) 
equipped with a 100×/1.4 numerical aperture (NA) oil immersion 
objective, a charge-coupled device (CCD) camera (CoolSNAP 
HQ2; Photometrics, Tucson, AZ), a xenon arc lamp for fluores-
cence (Lambda LS; Sutter Instruments, Novato, CA), a collimated 
white light-emitting diode for transmission, ultraviolet filter (LP 
400, GG400; Nikon), and a filter set adapted to green fluores-
cence (GFP; excitation bandpass, 465–500 nm; dichroic, 506 nm, 
emission bandpass, 516–556 nm; Semrock, Rochester, NY). The 
theoretical resolution of the system (1.4 NA; emission wavelength, 
528 nm; refractive index, 1.515) is 200 nm in x and y and 400 nm 
in z. The depth of a voxel (along the z-dimension) has typically only 
half of the resolution of the pixel in the x- and y-dimensions. All 
fluorescence live-cell images are presented as maximal intensity 
projection of three-dimensional stack images. The axial (z) step is 
200 nm.

The movies were obtained using a spinning-disk confocal micro-
scope (Revolution XD Confocal System; Andor Technology, South 
Windsor, CT) equipped with a spinning-disk unit (CSU-X1; Yokogawa, 
Tokyo, Japan), a microscope (Ti 2000; Nikon) with a 100 Å∼/1.4 NA 
oil immersion objective, and an electron-multiplying CCD camera 
(iXON DU-885; Andor Technology). The axial (z) step is 300 nm. A 
z-stack was acquired every 10 s for 100 times.

Foci quantification
Quantification of telomere clusters on live-cell images was per-
formed using a home-made Matlab (MathWorks, Natick, MA) ap-
plication (Q-foci; Ruault et  al., 2011). Images were deconvolved 
before quantification using the Meinel algorithm in MetaMorph 
(eight iterations; sigma, 0.8; frequency, 3; MDS Analytical Technolo-
gies, Sunnyvale, CA), nuclei were segmented by Otsu thresholding, 
and local intensity maxima were detected in segmented nuclei. 
Each local intensity maximum was considered as a potential telom-
ere cluster candidate. Because Rap1-GFP foci brightness is highly 
variable, depending on the number of telomeres in the cluster, the 
results did not show a clear cut-off in scores between small clusters 
and false positives. Consequently the threshold for classification of 
a possible telomere cluster (candidate) was set manually based on 
the control experiments (wild type). This threshold was used for 
other data sets.
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