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Summary. Quantitative fitness analysis (QFA) is a high throughput experimental and compu-
tational methodology for measuring the growth of microbial populations. QFA screens can be
used to compare the health of cell populations with and without a mutation in a query gene to
infer genetic interaction strengths genomewide, examining thousands of separate genotypes.
We introduce Bayesian hierarchical models of population growth rates and genetic interactions
that better reflect QFA experimental design than current approaches. Our new approach models
population dynamics and genetic interaction simultaneously, thereby avoiding passing informa-
tion between models via a univariate fitness summary. Matching experimental structure more
closely, Bayesian hierarchical approaches use data more efficiently and find new evidence for
genes which interact with yeast telomeres within a published data set.
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1. Introduction

There are many reasons to study the growth of microbes, including to prevent the growth of
pathogenic bacteria or fungi and to encourage the growth of yeasts in industrial applications or
during food production. Another reason is the study of eukaryotic microbes, such as the yeasts
Saccharomyces cerevisiae (S. cerevisiae) and Schizosaccharomyces pombe, as biological models
of cells in higher eukaryotes (e.g. of human cells).

Evolutionary fitness in a given environment: the probability of genetic material from an
individual contributing to the gene pool of the next generation is an important characteristic of
a population that is optimized by natural selection. The rate of cell division is a major component
of fitness, directly affecting the ability of individuals to compete for resources such as space and
nutrients. By measuring and comparing the growth rates of microbial populations (cultures) we
can assess and rank the fitness or health of such populations in a given environment or in a
given genetic background.

Quantitative fitness analysis (QFA) is a method for measuring the growth and fitness of
independent microbial cultures inoculated onto solid agar surfaces (Banks et al., 2012; Addinall
et al., 2011). During QFA we inoculate cell cultures at densities of between 96 and 1536 cultures
per plate of agar, repeatedly photographing cultures as they grow, converting photographs
to quantitative estimates of cell density (Lawless et al., 2010). We summarize observations of
increasing cell density with time (growth curves) by fitting population growth models to observed
data. We use fitted model parameters, such as the intrinsic growth rate parameter of the logistic
growth model, to define several measures of culture fitness (Addinall et al., 2011).
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Quantifying the fitness of hundreds of strains on a single plate, under identical environmental
conditions, allows a range of powerful experimental designs. Biological experiments examining
the effect of a condition on selected populations, or the effect of selected conditions on one
population, are often called screens. Screening independent replicate cultures with the same
genotype allows us to measure biological heterogeneity and to capture technical error (which
represents the effect of measurement error, fungal and bacterial contamination, positioning
errors and agar cracking in these experiments). Comparing cultures with different genotypes
allows us to explore the relative importance of genes and gene products in a given environment
or genetic background. An important reason for carrying out QFA is to compare the fitnesses of
cultures with distinct genotypes to quantify the strength of interaction between genes (epistasis).
Screening fitnesses and genetic interaction strengths on a genomewide scale allows us to study the
behaviour of gene products in living cells systematically. Ready-made genomewide libraries of
strains with distinct genotypes (each with an individual gene deleted, for example) are available
and can be mated with selected strains to generate libraries targeted at particular biological
processes of interest. A typical high throughput, genomewide QFA screen, examining the fitness
of replicate cultures of 5000 different genotypes, includes hundreds of plates that are inoculated,
photographed and incubated by laboratory robots.

The genomewide QFA experiments that we reanalyse in this paper (see Section 4) were de-
signed to inform us about telomere biology in eukaryotic cells. Telomeres are the ends of linear
chromosomes found in most eukaryotic organisms (Greider and Blackburn, 1985), capping
chromosome ends to ensure genetic stability, and are usually required for cells to progress
through the cell cycle. Functional telomere caps help to prevent cancer and, since human
telomeres shorten at each round of cell division (Olovnikov, 1973), some researchers claim
that telomere-induced replicative senescence is an important component of human aging. QFA
experiments were carried out by using S. cerevisiae (brewer’s yeast), which is a model eukaryotic
organism that is widely used to study genetics. Yeasts are ideal for genomewide analysis of gene
function, as genetic modification of yeast cells is relatively straightforward and yeast cultures
grow quickly; millions of yeast cells can be grown overnight, whereas the same number of human
cells could take weeks to grow.

In these experiments, we used a genomewide collection of S. cerevisiae strains, each carrying
one of the set of about 5000 single open reading frame deletions that are not essential for cell
survival. An open reading frame is a deoxyribonucleic acid (DNA) sequence containing no stop
codons, which means that it has the potential to be translated into a protein or peptide. We
refer to the mutations in this collection as orf Δs; Δ is the standard genetics nomenclature for a
deletion. Identifying open reading frame deletions from sequences is the first step in identifying
genes, and using a library of open reading frames allows the possibility of discovering biological
function for sequences that were previously thought to be untranslated. However, the majority
of open reading frames in the collection that we analyse have been confirmed as genes of known
function and so orf Δs are largely equivalent to gene deletions.

The strain collection was mated with a (query) background strain carrying the cdc13-1 mu-
tation, which was chosen for its relevance to telomere biology, to give a new library of strains
carrying two mutations. Comparing fitnesses with a second new library of strains, built from
the deletion collection mated with a strain carrying a neutral control background mutation
(ura3Δ) allows the separation of the effect of the cdc13-1 mutation from that of deletions from
the original collection.

More generally, we use QFA to infer genetic interaction strengths by comparing fitnesses in
two QFA screens: a control screen and a query screen. All strains within a query screen differ from
their control screen counterparts by a common condition such as a background gene mutation,
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drug treatment, temperature or other treatment. To identify strains that interact with the query
condition we can compare the corresponding fitness responses for each strain in the library
under the query and control conditions. Interactions with the query condition are identified
by finding gene disruptions in the query screen whose fitnesses deviate significantly from those
predicted by a theoretical model of genetic independence, given the fitness of corresponding
gene disruptions in the control screen. Independent replicate cultures are inoculated and grown
across several agar plates for each strain under each condition to capture biological heterogeneity
and measurement error.

In the original analysis that was presented by Addinall et al. (2011), logistic models of popula-
tion growth were fitted to observed cell density time courses by least squares, thereby generating
a univariate fitness estimate for each time course. A linear model, predicting query strain fitness
given control strain fitness, consistent with Fisher’s multiplicative model of genetic indepen-
dence, was used to test for genetic interaction between the query mutation and each deletion
from the deletion collection. The significance of observed interactions was assigned by using a
simple frequentist linear modelling approach. A major limitation of the statistical model that
was used in Addinall et al. (2011) is that it assumes that replicate culture fitness variances are the
same for each orf Δ. We expect that explicit modelling of heterogeneity will allow more robust
identification of interactions, particularly where variability for a particular strain is unusually
high (e.g. due to experimental difficulties).

Other large-scale quantitative genetic interaction screening approaches exist, such as epistatic
miniarray profiles (Schuldiner et al., 2006) and synthetic genetic array analysis (Tong and Boone,
2006), but we expect QFA to provide higher quality fitness estimates by using a culture inoc-
ulation technique which results in a wider range of cell densities during culture growth and
by capturing complete growth curves instead of using single-time-point assays (Lawless et al.,
2010). QFA as presented by Addinall et al. (2011) and alternative genetic interaction screen-
ing approaches mentioned above use frequentist statistical methods that cannot account for all
sources of experimental variation and do not partition variation into population, genotype and
repeat levels. Further, the frequentist statistical approaches that are used in the methods above
cannot incorporate prior beliefs.

With the Bayesian approach (Bernardo and Smith, 2007) that we adopt in this paper, we
have more flexibility of model choice, allowing us to match model structure more closely to
experimental design. Bayesian analysis allows us to use binary indicators to describe the evidence
that each orf Δ interacts with the query mutation in terms of probability. Currently there is
no standard frequentist approach which can deal with inference for a hierarchical model that
simultaneously models logistic growth parameters and the probability of genetic interaction.
Using Bayesian hierarchical modelling (Zhang et al., 2014; Gelman and Hill, 2006) we look to
extract as much information as possible from valuable QFA data sets.

Following the approach for determining epistasis from the comparison of two QFA screens
presented by Addinall et al. (2011), we developed a two-stage approach to this problem:

(a) a hierarchical logistic growth curve model is fitted to cell density measurements to estimate
fitness; then

(b) fitness estimates are inputted to a hierarchical interaction model.

Next, we developed a unified approach which we refer to as the joint hierarchical model
(JHM). The JHM models mutant strain fitnesses and genetic interactions simultaneously, with-
out having to pass information between two separate models. The JHM can also allow two
important, distinct, microbial fitness phenotypes (the population growth rate and carrying cap-
acity) to provide evidence for genetic interaction simultaneously.



370 J. Heydari, C. Lawless, D. A. Lydall and D. J. Wilkinson

The paper is organized as follows: Section 2 describes the data from a typical QFA experiment.
The two new models for Bayesian QFA are outlined in Section 3. In Section 4 the new Bayesian
models are applied to a previously analysed QFA data set for identifying yeast genes interacting
with a telomere defect. Section 5 discusses the relative merits of the newly developed Bayesian
methods.

2. Defining fitness

Observing changes in cell number in a microbial culture is the most direct way to estimate
the culture growth rate, which is an important component of microbial culture fitness. Direct
counting of cells in a high throughput experiment is not practical and so, during QFA, cell
density estimates are made instead from culture photographs. Robotic assistance is required
for both culture inoculation and image capture during genomewide screens which can include
approximately 5000 independent genotypes. We use estimates of the integrated optical density
generated by the image analysis tool Colonyzer (Lawless et al., 2010) to capture cell density
dynamics in independent cultures during QFA (Fig. 1(a)).

Density estimates, scaled to normalize for camera resolution, are gathered for each culture
and a dynamic model of population growth, the logistic model ẋ= rx.1−x=K/ (Verhulst, 1845),
is fitted to the data. The logistic model ordinary differential equation has three parameters:
K, P and r, the carrying capacity (maximum achievable population density), culture inoculum
density (initial condition) and culture growth rate respectively, and has the following analytical
solution:

x.t; θ/= KP exp.rt/

K +P{exp.rt/−1} P =x.0/, θ= .K, r, P/: .1/

This model describes self-limiting populations undergoing approximately exponential growth
which slows as the population density increases. During QFA, self-limited growth occurs because
nutrients that are found in the solid agar substrate are consumed by the growing cell population.
Ultimately the population density saturates at the carrying capacity once available nutrients have
been exhausted (see Fig. 1).

We can construct several distinct, quantitative fitness measures based on fitted logistic model
parameters. Addinall et al. (2011) presented three univariate measures that are suitable for QFA:
the maximum doubling rate DR and the maximum doubling potential DP, and their product
DRDP, where

DR = r

log{2.K −P/=.K −2P/} ,

DP = log.K=P/

log.2/
:

.2/

DR captures the rate at which microbes divide immediately after inoculation, when experiencing
minimal intercellular competition or nutrient stress. A strain’s growth rate largely dictates its
ability to outcompete any neighbouring strains. DP captures the number of divisions that the
culture is observed to undergo before saturation. A strain which can divide more often than its
neighbours in a specific environment also has a competitive advantage.

The choice of a single overall fitness score depends on the aspects of microbial physiology
that are most relevant to the biological question at hand. Typically the fitness definition DRDP
is used in QFA to account for both attributes simultaneously.
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(a)

(b)

Fig. 1. QFA image data and growth curves: (a) time lapse images for two genetically modified S. cerevisiae
with genotypes his3Δ (�, upper photographs) and htz1Δ (4, lower photographs) corresponding to the time
series measurements plotted in (b) time course cell density estimates derived from analysis of the time lapse
images in (a) together with (least squares) fitted logistic growth curves

2.1. Epistasis
Epistasis is the phenomenon where the effects of one gene are modified by those of one or
several other genes (Phillips, 1998). As presented in Addinall et al. (2011), here we use Fisher’s
multiplicative model of genetic independence (Cordell, 2002; Phenix et al., 2011) to represent the
expected relationship between control strain fitness phenotypes and those of equivalent query
strains in the absence of genetic interaction. We interpret genotypes for which the query strain
fitness deviates significantly from this model of genetic independence as interacting significantly
with the query mutation. Here, we use square bracket notation to represent a quantitative
fitness measure. For example [wt] and [query] represent wild-type and query mutation fitnesses
respectively. orf Δ is standard genetics nomenclature for the genotype of a strain with a single
gene orf deleted. We use this standard nomenclature to refer to an arbitrary strain from the
deletion collection. We define new nomenclature to describe a strain containing two mutations.
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For example, query:orf Δ represents a strain with the query mutation along with an arbitrary
single-gene deletion. We use this nomenclature to refer to an arbitrary strain from the new
query strain library constructed by crossing or mating a strain containing the query mutation
with each of the strains in the genomewide deletion collection. Fisher’s multiplicative model of
genetic independence can be written as follows:

[query: orfΔ]× [wt]= [query]× [orfΔ] .3/

⇒ [query: orfΔ]= [query]
[wt]

× [orfΔ]: .4/

In expression (4), [query]/[wt] is a constant for a given pair of QFA screens, meaning that,
if this model holds, there should be a linear dependence between [query:orf Δ] and orf [Δ] for
all deletions orf Δ. During genomewide screens of thousands of independent orf Δs we can
assume that the majority of gene mutations in the library do not interact with the chosen query
mutations. Therefore, even if the query or wild-type fitnesses are not available to us, we can still
estimate the slope of this linear model by fitting it to all available fitness observations, before
testing for strains which deviate significantly from the linear model. Any extra background
condition, such as a gene mutation that is common to both the control and the query strains
(e.g. triple- instead of double-deletion strains for the query and control data sets), may change the
biological interpretation of the interaction, but the same linear relationship is applicable. Besides
the multiplicative model, there are other definitions for epistasis such as additive, minimum and
logarithmic (Mani et al., 2008). Minimum is a suboptimal approach which may allow ‘masking’
of interactions (Mani et al., 2008). In this paper, we use a multiplicative interaction model (3),
but we note that this is equivalent to an additive interaction model when looking at fitnesses on
the log-scale (Aylor and Zeng, 2008). Multiplicative and additive models are equivalent provided
that fitness data are scaled appropriately (Cordell, 2002).

2.2. Previous quantitative fitness analysis methodology
Addinall et al. (2011) presented QFA where the logistic growth model (1) is fitted to experimental
data by least squares to give parameter estimates .K̂, r̂/ for each culture time course (each
orf Δ replicate). The inoculum density is assumed known and the same across all orf Δs and
their repeats. After inoculating approximately 100 cells per culture, during the first several cell
divisions there are so few cells that culture cell densities remain well below the detection threshold
of cameras that are used for image capture and so, without sharing information across all orf Δ
repeats, P cannot be estimated directly. It is therefore necessary to fix P to the same value for
both screens, using an average estimate of P from preliminary least squares logistic growth
model fits. Fitting the model to each orf Δ repeat separately means that there is no sharing of
information within an orf Δ or between orf Δs when determining K̂ and r̂.

Quantitative fitness scores (Fcm =DR,cmDP,cm) for each culture were defined (see equations (2)
for definitions of DR and DP). The index c identifies the condition for a given orf Δ: c = 0 for
the control strain and c = 1 for the query strain. m identifies an orf Δ replicate. Scaled fitness
measures F̃ cm are calculated for both the control and the query screen such that the mean
across all orf Δs for a given screen is equal to 1. After scaling, any evidence that F̃0m and F̃1m

are significantly different will be evidence of genetic interaction.
The linear model

F̃ cm =μ+γc + "cm, γ0 =0,

"cm
IID∼ N .0,σ2/

.5/
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was fitted to the control and query strain scaled fitness measure pairs for all unique orf Δs
in the gene deletion library. In expression (5), γ1 represents the estimated strength of genetic
interaction between the control and query strain. If the scaled fitnesses for the control and query
strain are equivalent for a particular orf Δ such that they are both estimated by some μ, i.e. no
evidence of genetic interaction, we would expect γc = 0. The model was fitted by maximum
likelihood, using the R function lmList (Pinheiro and Bates, 2000) with variation assumed to
be the same for all strains in a given screen and the same for both control and query screens.
Hence, for every gene deletion from the library an estimate of γ1 was generated together with a
p-value for whether it was significantly different from 0.

False discovery rate corrected q-values were then calculated to determine levels of signifi-
cance for each orf Δ. Addinall et al. (2011) used the Benjamini–Hochberg test (Benjamini and
Hochberg, 1995) for false discovery rate correction. This test is commonly used in genomic anal-
yses as, although it assumes independence of test statistics, even if positive correlation exists
between tests, the result is that false discovery rate estimates are slightly conservative. Finally a
list of orf Δ names, ranked by q-values, was outputted and orf Δs with q-values below a signif-
icance cut-off of 0.05 were classed as showing significant levels of genetic interaction with the
query mutation.

2.3. Random-effects model
We attempted to improve on the modelling approach of Addinall et al. (2011) within the fre-
quentist paradigm by accounting for the hierarchical structure of the data with a random-effects
model (REM) (Pinheiro and Bates, 2000) of genetic interaction:

fclm =μc +Zl +γcl + "clm,

μc =
{
μ+α if c=0,
μ if c=1,

γcl =
{

0 if c=0,
γl if c=1,

Zl ∼N .0,σ2
Z/,

"clm ∼N .0,σ2/: .6/

In the REM (6) and in models presented below, c identifies the condition for a given orf Δ,
l identifies a particular orf Δ from the gene deletion library and m identifies a repeat for a
given orf Δ. In expression (6) we use previously estimated Fcm to quantify interaction for all
orf Δs simultaneously. Introducing a random effect Zl allows us to account for between-subject
variation by estimating a single σ2

Z. Unlike the approach of Addinall et al. (2011), we do
not scale the observed values Fclm and instead introduce a parameter to model a condition
effect μc. γcl represents the estimated strength of genetic interaction between an orf Δ and our
query mutation. For a multiplicative model of epistasis we use an additive model to describe
log-transformed data fclm = log.Fclm + 1/, where Fclm are our observed fitnesses. We use the
Benjamini–Hochberg test to correct for multiple testing to make a fair comparison with the
approach of Addinall et al. (2011).

We find that orf Δ level variation in fitness cannot be modelled efficiently as random effects
under the frequentist paradigm, which forces us to assume constant variance for all orf Δs. The
large number of random effects required (control and query observations for each of about
5000 orf Δs in a genomewide screen) to model variances at the orf Δ level resulted in inference
involving large matrix computations that either took too long to complete or were not possible
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by using the computing hardware that was available to us. Similarly we found that it is not
practical to model genetic interaction and cell population growth curves simultaneously as
random effects under the frequentist paradigm. We attempted to model repeat level variation
with a normal distribution by fitting a model with a log-link function; however, none of the
non-linear model maximum likelihood algorithms that we tried converged.

3. Bayesian hierarchical model inference

As an alternative to the maximum likelihood approach that was presented by Addinall et al.
(2011) and the REM, we present a Bayesian hierarchical methodology where a priori uncertainty
about each parameter value is described by probability distributions (Bernardo and Smith, 2007)
and information about parameter distributions is shared across orf Δs and conditions. Plausible
frequentist estimates from across 10 independent, unpublished QFA data sets, including a wide
range of background mutations and treatments were summarized to establish and quantify our
a priori uncertainty in model parameters.

First and foremost, prior distributions describe our beliefs about parameter values. Priors
should be at least sufficiently diffuse to capture all plausible values (to capture the full range of
observations in the data sets) and at least sufficiently restrictive to rule out physically implausible
values (to ensure efficient inference). Priors that are excessively vague are not consistent with the
Bayesian paradigm and if they are unnecessarily diffuse can also result in computational diffi-
culties during inference (see below for further details). The computational time that is required
to overcome mixing problems from a careless choice of prior distributions is likely to be consid-
erable when fitting a large hierarchical model to a rich data set. Although using conjugate priors
would allow slightly faster inference, we find that, for this particular application, the conjugate
priors that are available for variance parameters (Gelman, 2006) are either too restrictive at low
variance (inverse gamma), not sufficiently restrictive at low variance (half t family of prior dis-
tributions) or are non-informative or largely discard the prior information that is available (uni-
form). Here we have chosen the non-conjugate log-normal distribution as a prior for precision
parameters as we find that when appropriately parameterized the distribution reflects our prior
beliefs about precision parameters and is only restrictive at extremely high and low variances.

We use three types of distribution to model parameter uncertainty: the log-normal, normal
and scaled t-distribution with 3 degrees of freedom. Particular care is needed in the choice of
distributions for parameters which are in some sense close to the data, to ensure that the model is
sufficiently flexible to describe high resolution data sets such as those captured during QFA. We
use the log-normal distribution to describe parameters which are required to be non-negative
(e.g. parameters describing precisions, or repeat level fitnesses) or parameter distributions which
are found by visual inspection to be asymmetric. We use the normal distribution to describe pa-
rameters which are symmetrically distributed (e.g. some prior distributions and the measurement
error model) and we use the t-distribution to describe parameters whose uncertainty distribu-
tion is long tailed (i.e. where using the normal distribution would result in excessive shrinkage
towards the mean). For example, after visual inspection of the variation of frequentist orf Δ level
means about their population means in historical data sets, we found many unusually fit, dead or
missing orf Δs and concluded that orf Δ fitnesses would be well modelled by the t-distribution.

Instead of manually fixing the inoculum density parameter P as in Addinall et al. (2011)
our Bayesian hierarchical models deal with the scarcity of information about the early part of
culture growth curves by estimating a single P across all orf Δs (and conditions in some of our
models). Our new approach learns about P from the data and gives us a posterior distribution
to describe our uncertainty about its value.
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The new hierarchical structure (Goldstein, 2011) that was implemented in our models reflects
the structure of QFA experiments. Information is shared efficiently among groups of parameters,
such as between repeat level parameters for a single mutant strain. Examples of the type of
Bayesian hierarchical modelling which we use to model genetic interaction can be seen in Zhang
et al. (2014) and Yi (2010), where hierarchical models are used to account for group effects.

In Phenix et al. (2011) the signal of genetic interaction is chosen to be ‘strictly on or off’
when modelling gene activity. We include this concept in our interaction models by using the
posterior probability of a Bernoulli-distributed indicator variable (O’Hara and Sillanpaa, 2009)
to describe whether there is evidence of an orf Δ interacting with the query mutation; the more
evidence of interaction, the closer posterior expectations will be to 1.

Failing to account for all sources of variation within the experimental structure, such as the dif-
ference in variation between the control and query fitnesses, may lead to inaccurate conclusions.
By incorporating more information into the model with prior distributions and a more flexible
modelling approach, we shall increase statistical power. With an improved analysis it may then
be possible for a similar number of genetic interactions to be identified with a smaller sample
size (fewer replicate cultures), saving on the experimental costs that are associated with QFA.

Inference is carried out by using Markov chain Monte Carlo methods. The algorithm that was
used is a Metropolis-within-Gibbs sampler where each full conditional is sampled in turn either
directly or by using a simple normal random-walk Metropolis step. The scheme that was used is
similar to that presented by Jow et al. (2014). Owing to the large number of model parameters
and the large quantity of data from high throughput QFA experiments, the algorithms that are
used for carrying out inference often have poor mixing and give highly auto-correlated samples,
requiring thinning. Posterior means are used to obtain point estimates where required.

In what follows, we present a two-stage Bayesian, hierarchical modelling approach (Section 3.1
and 3.2) where we generate orf Δ fitness distributions and infer genetic interaction probabilities
separately. We then present a one-stage approach (Section 3.3) for inferring fitness and genetic
interaction probabilities simultaneously. For the new approaches that are described in Section
3.1, 3.2 and 3.3 model fitting is carried out by using the techniques discussed above, implemented
in C for computational speed, and the code is freely available in the R package qfaBayes at
https://r-forge.r-project.org/projects/qfa.

For the Bayesian models presented, the flow of information within the models and how each
parameter is related to the data can be seen from the plate diagrams in Section 1 of the on-line
supporting materials.

3.1. Separate hierarchical model
The separate hierarchical model (SHM), given in expression (7), models the growth of multiple
yeast cultures by using the logistic model described in equation (1), whose analytic solution is
indicated by x.t/. The observational model at the time point level is given by

ylmn ∼N{ŷlmn, .νl/
−1},

ŷlmn =x.tlmn; Klm, rlm, P/,

where l = 1, 2, : : : , L .orfΔ level), m= 1, : : : , Ml (repeat level) and n= 1, 2, : : : , Nlm (time point
level). At the next level of the hierarchy (the repeat level), we have

log.Klm/∼N{Ko
l , .τK

l /−1}I.−∞,0], log.τK
l /∼N{τK,p, .στ ,K/−1}I[0,∞/,

log.rlm/∼N{ro
l , .τ r

l /−1}I.−∞,3:5], log.τ r
l /∼N{τ r,p, .στ ,r/−1}:
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Moving up, at the orf Δ level we have

exp.Ko
l /∼ t{Kp, .σK,o/−1, 3}I[0,∞/, log.σK,o/∼N{ηK,o, .ψK,o/−1},

exp.ro
l /∼ t{rp, .σr,o/−1, 3}I[0,∞/, log.σr,o/∼N{ηr,o, .ψr,o/−1},

log.νl/∼N{νp, .σν/−1}, log.σν/∼N{ην , .ψν/−1}:

Finally, at the population level, we take

log.Kp/∼N{Kμ, .ηK,p/−1},

log.rp/∼N{rμ, .ηr,p/−1},

log.P/∼N{Pμ, .ηP/−1},

νp ∼N{νμ, .ην,p/−1},

τK,p ∼N{τK,μ, .ητ ,K,p/−1},

log.στ ,K/∼N{ητ ,K, .ψτ ,K/−1},

τ r,p ∼N{τ r,μ, .ητ ,r,p/−1},

log.στ ,r/∼N{ητ ,r, .ψτ ,r/−1}: .7/

Dependent variable observations ylmn (scaled cell density measurements) and independent
variable tlmn (the time since inoculation) are model inputs, where n indicates the time point for
a given orf Δ repeat. A directed acyclic graph for this model can be seen in section 1 of the
supporting on-line information. In this first hierarchical model, the logistic model is fitted to
query and control data separately.

To measure the variation between orf Δs, parameters (Kp, σK
o ) and (rp,σr

o) are included at the
population level of the hierarchy. Within-orf Δ variation is modelled by each set of orf Δ level
parameters (Ko

l , τK
l ) and (ro

l ,τ r
l ). Learning about these higher level parameters allows informa-

tion to be shared across parameters that are lower in the hierarchy. A three-level hierarchical
model is applied to .K, Ko

l , Klm/ and .r, ro
l , rlm/, sharing information on the repeat level and

the orf Δ level. Note that orf Δ level parameters Ko
l and ro

l are on the log-scale (exp.Ko
l / and

exp.ro
l / are on the scale of the observed data).

Assuming a normal error structure, random measurement error is modelled by the νl-
parameters (one for each orfΔ). Information on random error is shared across all orf Δs by
drawing log.νl/ from a normal distribution parameterized by (νp, σν). A two-level hierarchical
structure is also used for both the τK

l - and the τ r
l -parameters.

Modelling logistic model parameter distributions on the log-scale ensures that parameter
values remain strictly positive (a realistic biological constraint). Truncating distributions allows
us to implement further realistic constraints on the data. Truncating log.rlm/ values greater than
3.5 corresponds to disallowing biologically unrealistic culture doubling times faster than about
30 min and truncating of repeat level parameters log.Klm/ above 0 ensures that no carrying
capacity estimate is greater than the maximum observable cell density, which is 1 after scaling.

orf Δ level parameters exp.Ko
l / and exp.ro

l / are on the same scale as the observed data.
Realistic biological constraints (positive logistic model parameters) are enforced at the repeat
level; however, both exp.Kl

o/ and exp.rl
o/, which are assumed to have scaled t-distributions, are

truncated below 0 to keep exponentiated parameters strictly positive.
Identifiability problems can arise for parameters Klm and rlm when observed cell densities are

low and unchanging (consistent with growth curves for cultures which are very sick, dead or miss-
ing). In these cases, either Klm or rlm can take values near 0, allowing the other parameter to take
any value without significantly affecting the model fit. In the approach of Addinall et al. (2011)
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identification problems are handled in an automated post-processing stage: for cultures with low
K-estimates (classified as dead), r is automatically set to 0. Computing time wasted on such iden-
tifiability problems is reduced by truncating repeat level parameters rlm, preventing the Markov
chain Monte Carlo algorithms from becoming stuck in extremely low probability regions when
Klm takes nearly 0 values. Similarly, log.τK

l / parameters are truncated below 0 to overcome
identifiability problems between parameters Klm and rlm when rlm takes nearly 0 values.

The SHM (7) is fitted to both the query and the control strains separately. Means are taken to
summarize logistic growth parameter posterior distributions. Summaries .K̂lm, r̂lm, P̂/ for each
orf Δ repeat are converted to univariate fitnesses Fclm where c identifies the condition (query or
control), with any given fitness measure, e.g. DRDP (see equation (2) and Addinall et al. (2011)).

3.2. Interaction hierarchical model
After the SHM fit, the interaction hierarchical model (IHM), given in expression (8), can then
be used to model estimated fitness scores Fclm and to determine, for each orf Δ, whether there is
evidence for interaction: c = 0, 1 (condition level), l = 1, : : : , Lc (orf Δ level) and m= 1, : : : , Mcl

(repeat level). At the repeat level,

Fclm ∼N{F̂ cl, .νcl/
−1},

F̂ cl = exp.αc +Zl + δlγcl/;

at the orf Δ level,

exp.Zl/∼ t{Zp, .σZ/
−1

, 3}I[0,∞/, log.σZ/∼N.ηZ,ψZ/,

log.νcl/∼N{νp, .σν/−1}, log.σν/∼N.ην ,ψν/,

δl ∼Bern.p/,

exp.γcl/=
{

1 if c=0,
t{1, .σγ/−1, 3}I[0,∞/ if c=1,

log.σγ/∼N{ηγ , .ψγ/−1};

at the condition level,

αc =
{

0 if c=0,
N .αμ, ηα/ if c=1;

at the population level,

log.Zp/∼N{Zμ, .ηZ,p/
−1},

νp ∼N{νμ, .ην,p/−1}: .8/

Fclm are the observed fitness scores. A directed acyclic graph for this model can be found in
section 1 of the supporting on-line materials. Fitnesses are passed to the IHM where query screen
fitnesses are compared with control screen fitnesses, assuming genetic independence. Deviations
from predicted fitnesses are evidence for genetic interaction. The interaction model accounts
for between-orf Δ variation with the set of parameters (Zp,σZ) and within-orf Δ variation by
the set of parameters (Zl,νl). A linear relationship between the control and query orf Δ level
parameters is specified with a scale parameter α1. Deviation from this relationship (genetic
interaction) is accounted for by the term δlγ1l. A scaling parameter α1 allows any effects due
to differences in the control and query data sets to be scaled out, such as differences in genetic
background, incubator temperature or inoculum density. The Bernoulli probability parameter p

is our prior estimate for the probability of a given orf Δ showing evidence of genetic interaction.



378 J. Heydari, C. Lawless, D. A. Lydall and D. J. Wilkinson

For the data set that is considered in Section 4 p is set to 0.05 as the experimenter’s belief
before the experiment was carried out was that 5% of the orf Δs would interact with the query.
Observational noise is quantified by νcl. The νcl-parameter accounts for a difference in variation
between condition, i.e. the query and control data sets, and for a difference in variation between
orf Δs.

The linear relationship between the control and query fitness scores, consistent with the
multiplicative model of genetic independence, described in expression (4), is implemented in
the IHM as F̂ = exp.αc +Zl + δlγcl/= exp.αc/ exp.Zl + δlγcl/. Strains whose fitnesses lie along
the linear relationship defined by the scalar α1 show no evidence for interaction with the query
condition. In contrast, deviation from the linear relationship, represented by the posterior mean
of δlγ1l, is evidence for genetic interaction. The larger the posterior mean for δl is, the higher
the probability or evidence there is for interaction, whereas γ1l is a measure of the strength of
interaction. Where the query condition has a negative effect (i.e. decreases fitness on average,
compared with the control condition), query fitnesses which are above and below the linear
relationship are suppressors and enhancers of the fitness defect that is associated with the query
condition respectively. A list of genes ranked by strength and direction of interaction with the
query condition is ordered by the posterior means of δlγcl. The orf Δs with δ̂l >0:5 are classified
and labelled as showing ‘significant’ evidence of interaction.

3.3. Joint hierarchical model
The JHM, given in expression (9), is an alternative, fully Bayesian version of the two-stage
approach that was described in Sections 3.1 and 3.2: c = 0, 1 (condition level), l = 1, : : : , Lc

(orf Δ level), m = 1, : : : , Mcl (repeat level) and n = 1, : : : , Nclm (time point level). At the time
point level,

yclmn ∼N{ŷclmn, .νcl/
−1},

ŷclmn =x.tclmn; Kclm, rclm, P/;

at the repeat level,

log.Kclm/∼N{αc +Ko
l + δlγcl, .τK

cl /−1}I.−∞,0], log.τK
cl /∼N{τK,p

c , .στ ,K
c /−1}I[0,∞/,

log.rclm/∼N{βc + ro
l + δlωcl, .τ r

cl/
−1}I.−∞,3:5], log.τ r

cl/∼N{τ r,p
c , .στ ,r

c /−1};

at the orf Δ level,

exp .Ko
l /∼ t{Kp, .σK,o/−1, 3}I[0,∞/, log.σK,o/∼N{ηK,o, .ψK,o/−1},

exp .ro
l /∼ t{rp, .σr,o/−1, 3}I[0,∞/, log.σr,o/∼N{ηr,o, .ψr,o/−1},

log.νcl/∼N{νp, .σν/−1}, log.σν/∼N{ην , .ψν/−1},

δl ∼Bern.p/,

exp.γcl/=
{

1 if c=0,
t{1, .σγ/−1, 3}I[0,∞/ if c=1,

log.σγ/∼N.ηγ ,ψγ/,

exp.ωcl/=
{

1 if c=0,
t{1, .σω/−1, 3}I[0,∞/ if c=1,

log.σω/∼N.ηω,ψω/;
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at the condition level,

αc =
{

0 if c=0,
N .αμ, ηα/ if c=1,

βc =
{

0 if c=0,
N .βμ, ηβ/ if c=1,

τK,p
c ∼N{τK,μ, .ητ ,K,p/−1},

log.στ ,K
c /∼N{ητ ,K, .ψτ ,K/−1},

τ r,p
c ∼N{τ r,μ, .ητ ,r,p/−1},

log.στ ,r
c /∼N{ητ ,r, .ψτ ,r/−1};

at the population level,

log.Kp/∼N{Kμ, .ηK,p/−1},

log.rp/∼N{rμ, .ηr,p/−1},

νp ∼N{νμ, .ην,p/−1},

log.P/∼N{Pμ, .ηP/−1}: .9/

Here, the dependent variable yclmn (scaled cell density measurements) and independent vari-
able tclmn (the time since inoculation) are inputted to the JHM. The JHM incorporates the key
modelling ideas from both the SHM and the IHM with the considerable advantage that we can
learn about logistic growth model, fitness and genetic interaction parameters simultaneously,
thereby avoiding having to choose a fitness measure or point estimates for passing information
between models. The JHM is an extension of the SHM with the presence or absence of genetic
interaction being described by a Bernoulli indicator and an additional level of error to account
for variation due to the query condition. Genetic interaction is modelled in terms of the two
logistic growth parameters K and r simultaneously.

By fitting a single JHM, we need only to calculate posterior means, to check model diagnos-
tics and to thin posterior samples once. However, the computing time taken to reach conver-
gence for any given data set is roughly twice that of the two-stage approach for a genomewide
QFA.

All of the SHM and IHM modelling assumptions that were described in Sections 3.1 and
3.2, such as distributional choices and hierarchical structure, are inherited by the JHM. Sim-
ilarly to the interaction model in Section 3.2, linear relationships between control and query
carrying capacity and growth rate (instead of fitness score) are assumed: .exp.αc +Ko

l + δlγcl/,
exp.βc + ro

l + δlωcl//.

4. Reanalysis of quantitative fitness analysis experiments designed to learn
about telomere biology

In this section we present a reanalysis of a previously published experiment, designed to inform
us about the ways that eukaryotic cells respond to the loss of telomere caps that normally
protect the ends of chromosomes from being erroneously recognized as a type of DNA damage.
A pair of genomewide QFA screens were carried out in the model eukaryotic organism S.
cerevisiae (brewer’s yeast), comparing the fitness of control ura3Δ strains with query cdc13-
1 strains. These comparisons were made to identify genes that show evidence of interaction
with the query mutation cdc13-1. CDC13 is an S. cerevisiae protein which binds to telomeres
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and regulates telomere capping. cdc13-1 is a temperature-sensitive allele of the CDC13 gene.
The ability of the altered cdc13 protein produced by strains carrying the cdc13-1 gene to cap
telomeres is reduced at temperatures above 26 ◦C (Nugent et al., 1996), inducing a fitness
defect that can be measured by QFA. The original experimental data that were used are freely
available from http://research.ncl.ac.uk/colonyzer/AddinallQFA/. Addinall
et al. (2011) presented a list of inferred interaction strengths and p-values for significance of
interaction, together with a fitness plot for this experiment.

Here, we shall compare lists of genes classified as interacting with cdc13-1 by the non-
hierarchical frequentist approach that was presented by Addinall et al. (2011) and the hier-
archical REM with those classified as interacting by our hierarchical Bayesian approaches.

4294 non-essential orf Δs were selected from the yeast deletion collection and used to build the
corresponding double-deletion control and query strains. Independent replicate culture growth
curves (time course observations of cell density) were captured for each control and query strain.
The median and range for the number of replicates per orf Δ are 8 and [8, 144] respectively. The
range for the number of time points for growth curves captured in the control experiment is
[7, 22] and [9, 15] in the query experiment.

As in the analysis of Addinall et al. (2011), a list of 159 genes are stripped from our final list of
genes for biological and experimental reasons. Priors for the models used throughout Section 4
are provided in Table 1. We have ensured that these priors are sufficiently diffuse to describe any
QFA data set by inspecting 10 historical QFA data sets.

4.1. Model application
The Heidelberger–Welch (Heidelberger and Welch, 1981) and Raftery–Lewis (Raftery and
Lewis, 1995) convergence diagnostics are used to determine whether convergence has been
reached for all parameters. Posterior and prior densities are compared by eye to ensure that sam-
ple posterior distributions are not restricted by the choice of prior distribution. Auto-correlation
function plot diagnostics are checked visually to ensure that serial correlation between sample

Table 1. Hyperparameter values specifying priors for the SHM, IHM and JHM

Results for the Results for the Results for Results for
SHM and JHM SHM and JHM the JHM the IHM

Parameter Value Parameter Value Parameter Value Parameter Value
name name name name

τK,μ 2.20 ηr,p 0.13 αμ 0.00 Zμ 3.66
ητ ,K,p 0.02 νμ 19.82 ηα 0.25 ηZ,p 0.70
ηK,o −0:79 ην,p 0.02 βμ 0.00 ηZ 0.10
ψK,o 0.61 Pμ −9.04 ηβ 0.25 ψZ 0.42
τ r,μ 3.65 ηP 0.47 p 0.05 ην 0.10
ητ ,r,p 0.02 ηγ −0:79 ψν 2.45
ηr,o 0.47 ψγ 0.61 νμ 2.60
ψr,o 0.10 ηω 0.47 ην,p 0.05
ην −0:83 ψω 0.10 αμ 0.00
ψν 0.86 ητ ,K 2.20 ηα 0.31
Kμ −2:01 ψτ ,K 0.02 p 0.05
ηK,p 0.03 ητ ,r 3.65 ηγ 0.10
rμ 0.97 ψτ ,r 0.02 ψγ 0.42
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values of the posterior distribution is low, ensuring that the effective sample size is similar to
the actual sample size.

To assess how well the logistic growth model describes cell density observations we generate
plots of raw data with fitted curves overlaid. Figs 2(a), 2(b) and 2(c) show time series data for
three different mutant strain repeats at 27 ◦C, together with fitted logistic curves. Alternative
fitness plots can be found in section 3 of the on-line supporting material. We can see that each
orf Δ curve fit represents the repeat level estimates well as each orf Δ level (red) curve lies in the
region where most repeat level (black) curves are found. Sharing information between orf Δs
will also affect each orf Δ curve fit, increasing the probability that the orf Δ level parameters are
closer to the population parameters. Comparing Figs 2(a), 2(b) and 2(c) shows that the SHM
captures heterogeneity at both the repeat and the orf Δ levels.

Fig. 2(d) demonstrates the hierarchy of information about the logistic model parameter K

generated by the SHM for the rad50Δ control mutant strain (variation decreases going from
population level down to repeat level). Fig. 2(d) also shows that the posterior distribution for K is
much more peaked than the prior, demonstrating that we have learned about the distribution of
both the population and the orf Δ parameters. Learning more about the repeat level parameters
reduces the variance of our orf Δ level estimates. The posterior for the first time course repeat
Kclm-parameter shows exactly how much uncertainty there is for this particular repeat in terms
of carrying capacity K.

4.1.1 Fitness plots
Fitness plots are used to show which orf Δs show evidence of genetic interaction. The plots are
typically mean orf Δ fitnesses for query strains against the corresponding control strains.

Fig. 3(a) is a fitness plot from Addinall et al. (2011) where growth curves and evidence for
genetic interaction are modelled by using the frequentist, non-hierarchical methodology that
was discussed in Section 2.2. Fig. 3(b) is a fitness plot for the frequentist hierarchical approach
REM, described in equation (6), applied to the logistic growth parameter estimates that were
used in Addinall et al. (2011). The number of genes identified as interacting with cdc13-1 by
Addinall et al. (2011) and by the REM are 715 and 315 respectively (Table 2). The REM has
highlighted many strains which have low fitness. To fit a linear model to the fitness data and
to interpret results in terms of the multiplicative model we apply a log-transformation to the
fitnesses, thereby affecting the distribution of orf Δ level variation.

The REM accounts for between-subject variation and allows for the estimation of a query
mutation and orf Δ effect to be made simultaneously, unlike the model that was presented
by Addinall et al. (2011). Owing to the limitations of the frequentist hierarchical modelling
framework, the REM model assumes equal variances for all orf Δs and incorrectly describes
orf Δ level variation as log-normal: assumptions that are not necessary in our new Bayesian
approaches.

4.2. Application of the two-stage modelling procedure to a suppressor–enhancer data
set
Fig. 3(c) is an IHM fitness plot with orf Δ level fitness measures generated by using the new
Bayesian two-stage methodology with fitness in terms of DRDP. 576 genes are identified by the
IHM as genetic interactions (Table 2). Logistic parameter posterior means are used to generate
fitness measures. For a gene l from the gene deletion library, exp.Zl/ is the fitness for the control
and exp.α1 +Zl + δlγc,l/ for the query. Similarly to Figs 3(a) and 3(b), Fig. 3(c) shows how the
majority of control strains are more fitted than their query strain counterparts, with a mean
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Fig. 2. Hierarchy of model fits and parameter estimates (data for orfΔ repeats have been plotted in (a),
(b) and (c) with SHM-fitted curves overlaid in black for repeat level parameters and red for the orfΔ level
parameter fit): (a) SHM scatter plot for 144 his3Δ ura3Δ repeats at 27 ıC; (b) SHM scatter plot for 48 rad50Δ
ura3Δ repeats at 27 ıC; (c) SHM scatter plot for 56 exo1Δ ura3Δ repeats at 27 ıC; (d) SHM density plot of
posterior predictive distributions for rad50Δ ura3Δ carrying capacity K hierarchy (the prior distribution for
K p is flat over this range; parameters K p, exp.K o

l / and Kclm are on the same scale as the observed data)
( , posterior predictive for exp.K o

l /; , posterior predictive for Kclm; , posterior distribution of
the first time course repeat Kclm-parameter)

fitted line lying below the line of equal fitness. Comparing the fitted lines in Figs 3(a) and 3(b)
with Fig. 3(c) the IHM shows that the largest deviation between the fitted line and the line of
equal fitness is largely due to the difference in P estimated with the SHM for the control and
query data sets being scaled out by the parameterα1. If we fix P in our Bayesian models, as in the
frequentist approach, genetic interactions identified are similar, but we then have the problem
of choosing P . We recommend estimating P simultaneously with the other model parameters
because, if the choice of P is not close to the true value, growth rate r estimates must compensate
and do not give accurate estimates for time courses with low carrying capacity K.
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Fig. 3. Fitness plots comparing mean fitnesses .F D DRDP / for each orfΔ in a query and control screen
(orfΔs significantly suppressing or enhancing the cdc13-1 fitness defect are highlighted in red and green
respectively): (a) non-Bayesian, non-hierarchical fitness plot, based on Table S6 from Addinall et al. (2011);
(b) non-Bayesian, hierarchical fitness plot, from fitting the REM to data in Table S6 in Addinall et al. (2011);
(c) IHM fitness plot; (d) JHM fitness plot (orfΔs are classified as suppressors or enhancers on the basis
of an analysis of growth parameter r : some strains are fitter in the query experiment than predicted on the
basis of the control but are classified as enhancers); (a), (b) significant interactors are classified as those with
false discovery rate corrected p-values less than 0:05; (c), (d) significant interactors have posterior probability
δl >0:5 (labelled genes are annotated with gene ontology terms from Table 2, ‘telomere maintenance’, ‘aging’,
‘response to DNA damage stimulus’ or ‘peroxisomal organization’, as well as genes identified as interactions
by using the JHM by considering K (Fig. 4) (blue) or by considering r (cyan) and the MRX complex genes
(pink) ( , line of equal fitness; , linear model fit)

It can be seen that many of the interacting orf Δs have large deviations from the genetic
independence line. This is because of the indicator variable in the model, used to describe
genetic interaction. When there is enough evidence for interaction the binary variable is set to
1; otherwise it is set to 0. It is interesting to note that non-significant orf Δs, which are marked
by grey points, lie among some of the significant strains. Many such points have high variance
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Table 3. Genes interacting with cdc13-1 and gene ontology terms overrepresented
in the list of interactions according to each approach†

REM:0 REM:1

Add:0 Add:1 Add:0 Add:1

(a)
IHM:0 JHM:0 3097 54 31 10

JHM:1 231 78 29 29
IHM:1 JHM:0 1 2 1 0

JHM:1 30 327 0 215
(b)
IHM:0 JHM:0 5813 21 58 7

JHM:1 46 8 6 10
IHM:1 JHM:0 20 15 3 12

JHM:1 13 54 2 147

†Panel (a), number of genes identified for each approach (Addinall et al. (2011), REM,
IHM and JHM) and the overlap between the approaches. 4135 genes from the S. cere-
visiae single-deletion library are considered. Panel (b), number of gene ontology terms
identified for each approach and the overlap between the approaches. 6107 S. cerevisiae
gene ontology terms were available.

and we are therefore less confident that these interact with the query mutation. This feature of
our new approach is an improvement over that presented in Addinall et al. (2011), which always
shows evidence for an epistatic effect, for a given number of replicates, when the mean distance
from the genetic independence line is large, regardless of actual strain fitness variability.

4.3. Application of the joint hierarchical model to a suppressor–enhancer data set
Fig. 3(d) is a JHM DRDP fitness plot using the new, unified Bayesian methodology. 939 genes
are identified by the JHM as genetic interactions (Table 2). Posterior means of model parameters
are used to obtain the following fitness measures. For a gene l from the gene deletion library,
.exp.Ko

l /, exp.ro
l // are used to evaluate the fitness for the control and .exp.α1 +Ko

l + δlγc,l/,
exp.β1 + ro

l + δlωc,l// for the query.
Instead of producing a fitness plot in terms of DRDP, it can also be useful to analyse carrying

capacity K and growth rate r fitness plots as, in the JHM, evidence for genetic interaction comes
from both of these parameters simultaneously. Fitness plots in terms of logistic growth parame-
ters are useful for identifying some unusual characteristics of orf Δs. For example, an orf Δ may
be defined as a suppressor in terms of K but an enhancer in terms of r. To enable direct com-
parison with the analyses of Addinall et al. (2011). we generated a DRDP fitness plot: Fig. 3(d).

4.4. Comparison with previous analysis
4.4.1. Significant genetic interactions
Of the genes identified as interacting with cdc13-1 some are identified consistently across all
four approaches (215 out of 1038; Table 3, part (a)). Of the hits identified by the JHM (939),
the majority (639) are common with those in the previously published approach of Addinall
et al. (2011). However, 231 of 939 are uniquely identified by the JHM and could be interesting
candidates for further study.
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(a)

(c)

(b)

Fig. 4. Hierarchy of growth curve model fits for the JHM for some example genotypes (JHM data for orfΔ
repeats, with fitted curves overlaid in black for repeat level parameters, red for the orfΔ level query parameter
fit and green for the expected orfΔ level query parameter fit with no genetic interaction): (a) JHM scatter plot
for eight chz1Δ cdc13-1 repeats; (b) JHM scatter plot for eight pre9Δ cdc13-1 repeats; (c) JHM scatter plot
for eight pex6Δ cdc13-1 repeats

To examine the evidence for some interactions uniquely identified by the JHM in more detail
we compared the growth curves for three examples from the group of interactions identified only
by the JHM. These examples (chz1Δ, pre9Δ and pex6Δ) are genetic interactions which can be
identified in terms of carrying capacity K, but not in terms of growth rate r (which is a unique
feature of the JHM; Fig. 4). By observing the difference between the fitted growth curve (red)
and the expected growth curve, given no interaction (green) in Figs 4(a), 4(b) and 4(c) we test
for genetic interaction. Since the expected growth curves in the absence of genetic interaction
are not representative of either the data or the fitted curves on the repeat and orf Δ level, there
is evidence for genetic interaction.
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We chose a prior for the probability p of a gene interacting with the background mutation
as 0.05, and we explore the effect of alternative choices below. We therefore expected to find
215 genes interacting. Using the Bayesian models, for which a prior is applicable (the IHM
and JHM), we find more genes than expected (576 and 939 interactions respectively; Table 2),
demonstrating that this data set is sufficiently information rich to overcome prior expectations.
The JHM identifies the highest proportion of genes as hits out of all the methods considered,
particularly identifying suppressors of cdc13-1 (Table 2). In fact, the JHM identifies more hits
than the approach, of Addinall et al. (2011) even when constrained to using only half of the
available data. An important advantage of our new Bayesian approaches is that we no longer
have to choose a q-value threshold. For the approach of Addinall et al. (2011) to have similar
numbers of interactions to that of the JHM, a less stringent q-value threshold would have to be
justified a posteriori by the experimenter.

4.4.2. Previously known genetic interactions
To compare the quality of our new, Bayesian hierarchical models with existing frequentist al-
ternatives, we examined the lists of genetic interactions that were identified by all the methods
discussed and presented here. Comparing results with expected or previously known lists of in-
teractions from the relevant literature, we find that genes coding for the MRX complex (MRE11,
RAD50 and XRS2), which are known to interact subtly with cdc13-1 (Foster et al., 2006), are
identified by all four approaches considered and can be seen in a similar position on all four
fitness plots (Figs 3(a), 3(b), 3(c) and 3(d)).

By observing the genes labelled in Figs 3(a) and 3(b) we can see that the frequentist approaches
cannot identify many of the interesting genes identified by the JHM as these methods cannot
detect interactions for genes that are close to the genetic independence line. It seems likely
that the JHM has extracted more information from deletion strain fitnesses observed with high
variability than the approach of Addinall et al. (2011) by sharing more information between
levels of the hierarchy, consequently improving our ability to identify interactions for genes
that are found closer to the line of genetic independence (subtle interactions). CTI6, RTC6 and
TGS1 are three examples of subtle interactors identified only by the JHM (interaction in terms
of r but not K) which all have previously known telomere-related functions (Franke et al., 2008;
Keogh et al., 2005; Addinall et al., 2008).

We tested the biological relevance of results from the various approaches by carrying out
unbiased gene ontology (GO) term enrichment analyses on the hits (lists of genes classified
as having a significant interaction with cdc13-1) using the bioconductoR package GOstats
(Falcon and Gentleman, 2007) (see section 2 of the on-line supporting materials). As an example,
fitness plots with genes co-annotated with the ‘telomere maintenance’ highlighted can be seen
in section 3 of the on-line supporting materials.

Extracts from the list of top interactions identified by both the IHM and the JHM are provided
in section 4 of the on-line supporting materials. Files including the full lists of genetic interactions
for the IHM and JHM are also provided (http://research.ncl.ac.uk/qfa/Heydari
QFABayes/). Since we can use the JHM to identify interactions in terms of both K and r

simultaneously, it is useful to order lists of suppressors and enhancers in terms of K and r as
well as a fitness measure such as DRDP for reviewing the results; see section 5 of the on-line
supporting materials.

All methods identify a large proportion of the genes in the yeast genome annotated with
the GO terms telomere maintenance and ‘response to DNA damage stimulus’ (see Table 2 and
the on-line supporting materials), which were the targets of the original screen, demonstrating
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that they all correctly identify previously known hits of biological relevance. Interestingly, the
JHM identifies many more genes annotated with the ‘aging’ GO term, which we also expect
to be related to telomere biology (though the role of telomeres in aging remains controversial)
suggesting that the JHM is identifying novel relevant interactions that were not previously iden-
tified by the screen of Addinall et al. (2011) (see Table 2). Similarly, the JHM identifies a much
larger proportion of the PEX ‘peroxisomal’ complex (included in GO term ‘peroxisome organ-
ization’) as interacting with cdc13-1 (see Table 2) including all of those identified in Addinall
et al. (2011). Many of the PEX genes show large variation in both K and r; an example can be
seen in Fig. 4(c) for pex6Δ. Members of the PEX complex cluster tightly, above the fitted line in
the fitness plot Fig. 3(d) (fitness plots with highlighted genes for GO terms in Table 2 are given in
section 3 of the on-line supporting materials), demonstrating that, although these functionally
related genes are not strong interactors, the same behaviour is reproduced independently by
multiple members of a known functional complex, suggesting that the predicted interactions
are real. The results of tests for significant overrepresentation of all GO terms can be found on
line: http://research.ncl.ac.uk/qfa/HeydariQFABayes/.

Overall, within the lists of genes identified as interacting with cdc13-1 by the approach of
Addinall et al. (2011) and the REM, IHM and JHM, 274, 245, 266 and 286 GO terms were
significantly overrepresented respectively (out of 6235 possible GO terms; see Table 3, part
(b)). 147 were common to all approaches and examples from the group of GO terms over-
represented in the JHM analysis and not in the Addinall et al. (2011) analysis seem inter-
nally consistent (e.g. the peroxisome organization GO term) and consistent with the biological
target of the screen, telomere biology (significant GO terms for genes identified only by the
JHM are also included in the spreadsheet document provided in the on-line supporting mate-
rials).

A major advantage of the Bayesian approaches that are presented here over that of Addi-
nall et al. (2011) is the measure that is used for classifying significant interactions. Classifying
interactions with a posterior estimate for δl (the probability that an interaction exists) greater
than 0:5 as significant is less arbitrary than the traditional frequentist approach of classifying
interactions with p-values less than 0:05 as significant. Examining how the number of over-
represented GO terms found in lists of interactors varies with the classification threshold shows
that the Bayesian JHM approach is also less sensitive to the precise threshold values that are
used. Fig. 5 shows that the number of overexpressed GO terms found among hits is relatively
stable in the region of δl =0:5 for the JHM compared with the equivalent number in the region
of q = 0:05 for the approach of Addinall et al. (2011). Significantly overexpressed GO terms
were identified by using the hyperGTest function in the GOstats R package. Note that the
values that are used to classify whether a gene interacts with cdc13-1 at 27 ◦C (the q-value
and δ; red vertical lines as presented in Section 4.4) are not directly comparable; however, the
full range of possible cut-offs for both values are plotted. In particular, using the frequen-
tist approach of Addinall et al. (2011), the number of overexpressed GO terms falls rapidly
where q<0:05. We tested whether this observation depended on our choice of the parameter p,
which represents our prior expectation of the proportion of genes interacting with the query,
by generating similar sensitivity plots for p between 0.01 and 0.2 (section 6 of the on-line sup-
porting materials). We observed similar profiles of overexpressed GO terms for all values of p

tested.
Comparing the genetic interaction strengths generated by the Bayesian hierarchical models

and frequentist analysis, we find that the results are largely similar (section 6 of the on-line sup-
porting materials); however, the GO term analysis described above suggests that the differences
are important.
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Fig. 5. Sensitivity to significance thresholds: (a)–(c) comparison of the number of significantly overexpressed
GO terms expressed in lists of significant interactors found by using the method of Addinall et al. (2011)
( ), and by using the JHM ( ), and frequency histograms showing distributions of classifier values
after looking for genes interacting with cdc13-1 at 27 ıC by using (d) the JHM or (e) the method of Addinall
et al. (2011)

The results of a simulation study comparing the sensitivity and specificity of the approach
of Addinall et al. (2011), the REM, the SHM and the JHM are summarized in section 8 of
the supplementary materials. We find that the JHM correctly identified a higher proportion of
‘true’ interactions in a synthetic data set than did the approach of Addinall et al. (2011).

4.4.3. Hierarchy and model parameters
The hierarchical structure and model choices that were included in the Bayesian JHM and IHM
are derived from the known experimental structure of QFA. Different levels of variation for
different orf Δs are expected and can be observed by comparing distributions of frequentist
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estimates or by visual inspection of yeast culture images. The direct relationship between ex-
perimental and model structure, together with the richness of detail and number of replicates
included in QFA experimental design, reassures us that overfitting is not an issue in this analysis.
For the ura3Δ 27 ◦C and cdc13-1 27 ◦C experiment with about 4294 orf Δs there are roughly
1.25 times the number of parameters in the JHM (of the order of 200000) compared with the
two-stage REM approach (of the order of 160000) but when compared with the large number
of pairs of data points (of the order of 830000) there are sufficient degrees of freedom to justify
our proposed Bayesian models.

4.4.4. Computing requirements
Our Bayesian hierarchical models require significant computational time. As expected, the mix-
ing of chains in our models is weakest at population level parameters such as Kp and αc. For
the ura3Δ 27 ◦C and cdc13-1 27 ◦C data set, running with a Markov chain Monte Carlo burn-in
of 800000 updates, followed by generating 1000 samples thinned by a factor of 100, the JHM
takes about 4 weeks to converge and produce a sufficiently large sample. The two-stage Bayesian
approach takes 1 week (with the IHM part taking about 1 day), whereas the REM takes about
3 days and the approach of Addinall et al. (2011) takes about 3 h. A QFA experiment can take
over a month from start to finish and so the analysis time is acceptable in comparison with the
time taken for the creation of the data set but is still a notable inconvenience. We expect that,
with further research effort, the computational time can be decreased by using an improved in-
ference scheme and that inference for the JHM could be completed in less than a week without
parallelization.

5. Discussion

We have joined a hierarchical model of microbial growth with a model for genetic interac-
tion to learn about strain fitnesses, evidence for genetic interaction and interaction strengths
simultaneously. By introducing Bayesian methodology to QFA we have been able to model
the hierarchical nature of the experiment and to expand the multiplicative model for genetic
interaction to incorporate many sources of variation that previously had to be ignored.

We propose two new Bayesian hierarchical models to replace the current statistical analysis
for identifying genetic interactions within a QFA screen comparison. The two-stage approach
fits the SHM followed by the IHM, with univariate point estimate fitness definitions gener-
ated as an intermediate step. The two-stage approach can therefore be regarded as a Bayesian
hierarchical version of the approach of Addinall et al. (2011). In contrast, the one-stage ap-
proach fits the JHM, which does not require a separate definition of fitness, allowing inter-
action to be identified by either growth rate (logistic parameter r) or final biomass achiev-
able (logistic parameter K) by a given genotype. Our one-stage approach is a new method for
detecting genetic interaction that further develops the interpretation of epistasis within QFA
screens.

We present a hierarchical, frequentist approach using random effects, namely the REM, in
an attempt to improve on the approach of Addinall et al. (2011). Owing to the lack of flexibility
in modelling assumptions allowable, the REM is unsuitable for modelling the distribution of
orf Δ level variation or for simultaneously modelling genetic interaction and logistic growth
curves.

The data from which logistic parameter estimates are derived during QFA are the result
of a technically challenging, high throughput experimental procedure with a diverse range of
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possible technical errors. Our Bayesian hierarchical models allow us the flexibility to make
distributional assumptions that more closely match the data. This allows us to switch between
modelling parameter uncertainty with the normal, log-normal and Student t-distribution where
appropriate.

QFA experimental design is intrinsically multilevel and is therefore more closely modelled
by our hierarchical scheme. Consequently the JHM and IHM capture sources of variation
that were not considered by Addinall et al. (2011). By sharing information across levels in the
hierarchy, our models have allowed us to learn more about orf Δs with weaker genetic interac-
tion. Our more flexible model of variance also avoids misclassification of individual genotypes
with high variance as having significant interactions. Without fully accounting for the variation
that is described in the Bayesian hierarchical models, the previous approach of Addinall et al.
(2011) may have relatively poor power to detect subtle interactions, obscuring potentially novel
observations.

Many subtle, interesting genetic interactions may remain to be identified in the data from
the QFA experiments that we reanalyse in this paper. The JHM is better able to identify subtle
interactions. For example, strains with little evidence for interaction with a background mutation
in terms of growth rate but with strong evidence of interaction in terms of carrying capacity are
sometimes classified as interactors by using the JHM (see Fig. 4). In our two-stage approaches,
univariate fitness measures such as DRDP are used in the intermediate steps, occasionally causing
interaction in terms of one parameter to be masked by the other.

As expected, many genes that were previously unidentified by Addinall et al. (2011) have
been identified as showing evidence of interaction by using both of our Bayesian hierarchical
modelling approaches. Genes which have been identified only by the JHM (see Fig. (3d)), such
as those showing interaction only in terms of r, are found to be related to telomere biology
in the literature. Currently sufficient information is not available to identify the proportion of
identified interactions that are true hits and so we use unbiased GO term enrichment analyses
to confirm that the lists of genetic interactions closely reflect the true underlying biology. GO
term annotations that are relevant to telomere biology are available for well-studied genes in
the current literature. Unsurprisingly all of the approaches considered closely reflect the most
well-known GO terms (see Table 2).

Computational time for the new Bayesian approach ranges from 1 to 4 weeks for one of the
data sets that was presented in Addinall et al. (2011). This is of the same magnitude as the time
taken to design and execute the experimental component of QFA (approximately 6 weeks).

Overall we recommend a JHM or ‘Bayesian QFA’ for analysis of current and future QFA
data sets as it accounts for more sources of variation than the QFA methodology of Addinall
et al. (2011). With the JHM we have outlined new genes with significant evidence of interaction
in the ura3Δ 27 ◦C and cdc13-1 27 ◦C experiment. The new Bayesian hierarchical models that
we present here will also be suitable for identifying new genes showing evidence of genetic
interaction in backgrounds other than telomere activity. We hope that further reductionist
laboratory work by experimental biologists will give additional insight into the mechanisms by
which the new genes that we have uncovered interact with the telomere.
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