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Due to limitations of surgical dissection and tumor heterogeneity, tumor samples collected for cancer genomics studies are
often heavily diluted with normal tissue or contain subpopulations of cells harboring important aberrations. Methods for
profiling tumor-associated allelic imbalance in such scenarios break down at aberrant cell proportions of 10%–15% and
below. Here, we present an approach that offers a vast improvement for detection of subtle allelic imbalance, or low
proportions of cells harboring aberrant allelic ratio among nonaberrant cells, in unpaired tumor samples using SNP
microarrays. We leverage the expected pattern of allele-specific intensity ratios determined by an individual’s germline
haplotypes, information that has been ignored in existing approaches. We demonstrate our method on real and simulated
data from the CRL-2324 breast cancer cell line genotyped on the Illumina 370K array. Assuming a 5 million SNP array,
we can detect the presence of aberrant cells in proportions lower than 0.25% in the breast cancer sample, approaching the
sensitivity of some minimal residual disease assays. Further, we apply a hidden Markov model to identify copy-neutral
LOH (loss of heterozygosity) events as short as 11 Mb in mixtures of only 4% tumor using 370K data. We anticipate our
approach will offer a new paradigm for genomic profiling of heterogeneous samples.

[Supplemental material is available for this article.]

Genetic instability is a hallmark of tumors and results in a high

prevalence of aneuploidy and copy-neutral loss of heterozygosity

(cn-LOH) events. Since these events typically impact many bases

in a single hit, they are important players in the accumulation of

mutations that lead to cell dysregulation and tumor progression

(Knudson 1971). Characterization of these mutations has myriad

applications in cancer studies. For example, the presence of spe-

cific aberrations may allow classification of patients into risk or

therapeutic sensitivity categories. In addition, characterization

across samples will help to elucidate the basic dynamics of tumor-

associated mutations.

One of the challenges in identifying mutations in a tumor

sample comes from the presence of normal cell contamination

within the sample, which dilutes the signal from the aberrant

cells. Recently, specialized methods have been developed to

characterize aneuploidy and cn-LOH occurring in a fraction of

a sample using data from single nucleotide polymorphism (SNP)

genotyping arrays. Here, we present methods that lower the

boundary of sample purity at which aberrant events may be

robustly estimated.

Our method relies on allelic imbalance (AI), or the alteration

from the normal one-to-one allele ratio at markers heterozygous

in the germline. For example, consider a heterozygous marker with

alleles arbitrarily labeled as A and B. A duplication covering the

marker results in either an AAB or ABB genotype with a corre-

sponding allele ratio of 2:1 or 1:2; cn-LOH results in an AA or BB

genotype with a more severe distortion (2:0 or 0:2). At high sample

purity, the observed genotypes will reflect the tumor genome, and

copy number changes can be inferred directly with standard soft-

ware designed originally for germline data (Wang et al. 2007; Korn

et al. 2008); cn-LOH can be inferred via comparison to paired

normal tissue. However, when the sample is a mixture of mostly

normal cells with a small number of tumor cells, the called geno-

types will reflect the germline genotypes only. Thus, inferences of

aberrations in the tumor must be made by detecting more subtle

signals of allelic imbalance using additional data from the SNP

microarrays.

These data include the B allele frequency (BAF) and the log R

ratio (logRR). The BAF is derived from the ratio of the allele-

specific signal intensities observed at the marker and may be

interpreted as the proportion of chromosomes carrying the B

allele; in a normal diploid sample, the expected BAF values are 0,
1⁄2, and 1, corresponding to the three possible diploid genotypes

AA, AB, and BB. The logRR is a function of the sum of the allele-

specific signal intensities at a marker and informs the total copy

number. The logRRs are informative for mutation detection as

long as the mutation creates a change in total copy number, and

the BAFs are informative as long as the mutation creates allelic

imbalance.

In a mixture sample, the BAF and logRR at each marker is an

average of the signals from each of the cell populations, i.e., the

tumor cells and the normal cells. Multiple segmentation-based

methods exist to detect allelic imbalance and copy number changes

in DNA from heterogeneous tumor samples (Beroukhim et al. 2006;

Assié et al. 2008; Staaf et al. 2008a; Popova et al. 2009; Sun et al.

2009; Yau et al. 2010; Li et al. 2011). Each method attempts to detect

heterogeneity by detecting increased dispersion or multimodality

of BAFs at heterozygous loci. For example, BAFsegmentation (Staaf

et al. 2008a) folds the BAFs over the expected value of 0.5 to create

a ‘‘mirrored BAF,’’ the mean value of which can then be modeled

using circular binary segmentation to detect a difference rela-

tive to adjacent regions. Along with the other aforementioned

methods, the assumption is made that consecutive markers af-

fected by the same aberration will exhibit consistent evidence

of sample heterogeneity. At low tumor proportions, the effect

of AI on the BAFs is so small that it is difficult to distinguish

from the inherent stochastic deviation present in all array data.
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As a consequence, current SNP array-based methods have limited

sensitivity for identifying specific events; a typical limit occurs at

sample purities of 10%–15% for an unpaired sample.

Homer et al. (2008) overcame a similar problem, in a setting of

forensics. They determined whether specific individuals had con-

tributed to a pooled DNA sample by comparing the pooled sample

allele frequencies to frequencies from a population reference

sample. Although the allele frequency deviations attributable to

any one individual are small, they may still be anticipated using

the individual’s genotypes. Our approach is reminiscent of this

method. Here, we know the ‘‘individuals’’ in the pool are the two

germline chromosomes and instead attempt to detect whether

they have made differential contributions to the pool as a result of

allele-specific loss or gain. We use a key feature of the data ignored

by other methods, which is the correlation among BAFs within an

allelic imbalance region created by the underlying molecular

event.

In Figure 1, we illustrate the input data and intermediate out-

put of the method. Briefly, we first determine what the BAF data

indicate to be the ‘‘excess haplotype’’ by applying a threshold at

each marker independently. If no imbalance exists, this BAF-based

haplotype reflects only stochastic deviation and may as well have

been generated from a series of independent coin flips. Otherwise,

if there is even a trace level of cells with AI, the BAF deviations

reflect true underlying molecular imbalance, and the BAF-based

haplotype should bear at least a subtle resemblance to one of the

germline haplotypes. The germline haplotypes may be obtained

via statistical estimation using the observed genotype calls, a

matched reference sample, and principles of population genetics

(Templeton et al. 1988; Clark 1990; Excoffier and Slatkin 1995;

Stephens et al. 2001). We then quantify phase concordance be-

tween the BAF-based and statistical haplotypes using a local

metric, switch consistency, which accommodates errors in the

statistical reconstructions.

We draw a parallel between our approach and two existing

methods for slightly different settings. One is the trio-based algo-

rithm of PennCNV (Wang et al. 2007), which uses parental geno-

types to validate de novo copy-number variants (CNVs)—within

a putative de novo CNV region, it identifies sites at which the

maternal and paternal genotypes allow unambiguous determi-

nation of the chromosome on which the mutation occurred and

then tests for consistency with a single chromosomal event by

counting the number of sites that implicate the same chromo-

some. Another method with similarities to one of our specific ap-

plications is HATS (Dewal et al. 2012), which applies to data from

next-generation sequencing. It uses a set of reference haplotypes to

inform which haplotype has been deleted, demonstrating strong

sensitivity for detecting deletion in a 10% tumor sample at mod-

erate sequencing depths. To do so, they construct a hidden Markov

model (HMM) to search reference haplotypes for likely sequences

of nondeleted alleles that are consistent with the observed sample

data.

Below, we demonstrate three applications of our method,

which we call hapLOH, on real and simulated data. First, we at-

tempt to detect the presence of aberrant cells in a sample by for-

mally testing the phase concordance for deviations from the value

expected in normal samples. This approach is analogous to testing

for an unfair coin (subtle AI) with a large number of flips (many

heterozygous markers). We then apply an HMM to identify specific

regions harboring subtle levels of AI. Finally, given a region of AI,

we call the specific alleles that are overrepresented. Although we

focus on LOH (hemizygosity and cn-LOH), hapLOH captures AI

resulting from any chromosomal mechanism that would affect

consecutive markers and result in a haplotype imbalance, in-

cluding duplications and more severe aneuploidies.

Results

Detection of tumor cells in highly diluted samples

We applied our method to Illumina 370K data from 10 lab dilution

samples of the CRL-2324 breast cancer cell line and the matched

lymphoblastoid (normal) cell line, ranging from 10% to 79% tu-

mor. The cancer cell line genome is severely aneuploid, with over

three-fourths of the genome having cn-LOH or aberrant copy

number. We applied tQN (Staaf et al. 2008b) to the BAFs and

logRRs to reduce allele-specific biases and also masked some sites

that were aberrant in the normal sample (see Methods).

Application of the method to the 10% tumor sample data

(103,556 heterozygous sites) results in a phase concordance of

0.65, which differs significantly from the expected null con-

cordance of 0.5 (P-value = 10�2140). Eager to query the limits of

detection in this data set using our method, we created computa-

tional dilutions, literal averages of the BAFs, at much lower pro-

portions of tumor, as well as at the proportions targeted in the lab

dilutions. We also extrapolated the results from the observed 370K

data to predict the results that would be observed from applica-

tion of 1M and 5M SNP chips with 30% and 25% heterozygous

markers, respectively.

We present these results in Table 1. We observe that, in the

pure normal sample, the phase concordance is 0.5005, which is

slightly higher than the expected null concordance rate of 0.5.

This deviation could be due to somatic nontumor-associated events

in the individual or mutation during the growth of the cell line. To

obtain the correct type I error rate for detecting tumor cells, we

show power results using both the expected normal phase con-

cordance rate of 0.5 and the observed ‘‘normal’’ rate of 0.5005.

Our results indicate potential to detect aberrant cells for this

particular breast cancer genome at concentrations on the order

of two or three in 1000 using a hypothetical 5M SNP array (power

> 50%). These levels may be close to a lower bound for this data set

with our method, since at these levels we start to observe slightly

erratic measures (phase concordance at 0.05% tumor is higher

than at 0.10% tumor).

To further investigate the sensitivity of our method to somatic

variation in normal tissue, we applied the method to 86 normal

Figure 1. Quantification of phase concordance. We illustrate the de-
termination of local switch consistency using a hypothetical data set from
10 heterozygous loci. The plotted circles represent the BAFs at each
marker. The shaded haplotypes, h(g) and h(g)9, represent the germline
haplotypes, obtained by statistical estimation using the called genotypes.
We call each allele in haplotype h(b) by comparing each BAF to a threshold
(depicted as a dotted line). Then we assess local switch consistency, in-
dicated in vector x, between the two haplotype reconstructions at each
pair of consecutive heterozygous markers by looking for a match between
h(b) and either h(g) or h(g)9.
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liver samples taken from patients who had liver cancer. We ob-

served a slightly increased phase concordance relative to the

expected null rate of 0.5 in many samples (Supplemental Fig. S1).

This deviation may be due to slight contamination from nearby

cancerous cells or to benign somatic variation. We applied our

method to 12 control samples from a GWA study of lung cancer

(Amos et al. 2008), conducted with an Illumina 317K SNP array. As

expected, these data showed negligible signals of AI, with an av-

erage phase concordance of 0.501.

Instead of testing all markers genome-wide, one could test

specific loci, such as gene regions or chromosome arms, to detect

tumor cells with mutations at these regions. The power of the

method depends on the number of observed heterozygous mark-

ers in the test region and the magnitude of the phase concordance

for the region, which, in turn, depends on the type of imbalance

event, the proportion of tumor cells in the sample, and the size of

the aberration. In Supplemental Figure S2, we present the power to

detect events across different values of these characteristics.

Identification of specific regions of allelic imbalance

In the manner above, our method can aid in the detection of very

low levels of tumor cells. However, this approach is naive because

it ignores spatial clustering of the signal, which we would ex-

pect, given the underlying mechanisms of chromosomal loss or

cn-LOH. Further, it is naturally of interest to identify specific re-

gions of the genome exhibiting aberrations to look for known or

potential tumor suppressor genes or oncogenes. To address this,

we implemented a simple hidden Markov model with a latent

process for two types of allelic imbalance, one for AI arising from

deletions (lower imbalance) and one for AI from cn-LOH (higher

imbalance). The HMM is applied to the switch consistency obser-

vations from a curated data set described in Methods. The curated

data set includes 15 deletions and 10 cn-LOH events ranging in size

from 2.39 Mb to 95 Mb. At each marker, the pointwise evidence of

imbalance is summarized by the conditional probability of being

in an AI state, given the data and parameters (‘‘posterior proba-

bilities’’) (Fig. 2). We also applied BAFsegmentation with the mBAF

threshold set to 0.526, which corresponds to deletion events oc-

curring in at least 10% of the sampled cells; at thresholds corre-

sponding to 9% tumor and below, the calls are highly unlocalized,

usually covering entire chromosomes (data not shown).

In the 4% tumor sample, the phase

concordance rates for the deletions and

cn-LOH events are not differentiated

enough to classify the two types of events

into different states with our current

implementation. Still, even at this low

tumor proportion, signal is obvious at

the cn-LOH events. At 7% tumor, hapLOH

discriminates between regions with differ-

ent levels of imbalance. BAFsegmentation

begins to identify the stronger (cn-LOH)

signals at this tumor proportion; how-

ever, we have specified an approximate

value of the true mixture proportion,

a parameter of the algorithm for that

method, which confers some advantage

and in practice would not be known. At

14% tumor, virtually all events are picked

up by both methods, although hapLOH

produces only modest signal for at least

one true event (1.52 Mb on chromosome 21) that was picked up by

BAFsegmentation. At higher concentrations of tumor (>21%), the

BAFs diverge so strongly from the expected normal value that the

phase concordance reaches the upper limit; at these proportions,

hapLOH no longer separates deletions and cn-LOH. We compare

hapLOH and BAFsegmentation at multiple levels of sensitivity and

specificity in Supplemental Figure S3.

Estimation of alleles overrepresented in the tumor genome

The tumor genotype profile can be inferred from the allele-specific

counts at loci that have become imbalanced. Existing methods

provide some knowledge of total copy number, and several at-

tempt to provide allele-specific (or ‘‘parent of origin’’) tabulation of

copy number (Sun et al. 2009; Chen et al. 2011). Here, we assess the

ability of hapLOH to provide this information. We developed an

HMM to infer the over- and underrepresented haplotypes in AI

regions, assuming a dominant tumor clone. In order to assess our

allele calls, we used the BAFs for the pure tumor sample that was

used in the creation of the dilution samples to get what we be-

lieved would be a highly accurate representation of the over-

represented haplotype. For each marker within the simulated

event regions of our curated data set, we called a ‘‘B’’ if the pure

tumor BAF was greater than 0.8 and an ‘‘A’’ if the BAF was less

than 0.2.

We then compared the overrepresented haplotype constructed

using our HMM to these calls at a range of tumor proportions

(Fig. 3). For comparison, we also constructed a naive estimate of the

overrepresented haplotype by simply taking the allele with the

highest frequency at each site. Integrating the statistical phase

estimates with the BAF information using the HMM improves

accuracy over the naive calls at the lower tumor proportions. For

example, at 5% tumor content and within our simulated events,

hapLOH achieved accuracies of 80% and 89% for deletions and

cn-LOH, respectively, compared to 64% and 75% using the naive

method. Our method may thus facilitate association studies of

abundant or deficient haplotypes in diluted tumor samples using

an allelic disequilibrium test (Dewal et al. 2010).

Discussion
While surgical microdissection may yield greater tumor purity for

studies of cancer genomics, in reality the available sample may be

Table 1. Power to detect presence of CRL-2324 cells

Power with type I error rate = 0.05
Null phase concordance 0.5 (and 0.5005)

Tumor content Phase concordance 370K array 1M SNPs 5M SNPs

0% (no tumor) 0.5005 0.09 (0.05) 0.13 (0.05) 0.28 (0.04)
0.05% 0.5010 0.16 (0.09) 0.30 (0.14) 0.74 (0.31)
0.10% 0.5007 0.12 (0.07) 0.20 (0.08) 0.51 (0.14)
0.25% 0.5012 0.20 (0.12) 0.39 (0.20) 0.87 (0.51)
0.50% 0.5014 0.22 (0.14) 0.44 (0.24) 0.92 (0.61)
0.75% 0.5025 0.49 (0.36) 0.87 (0.72) 1 (1)
1.00% 0.5035 0.73 (0.61) 0.99 (0.95) 1 (1)
2.00% 0.5071 1 (1) 1 (1) (1)

We compare the expected power across tumor proportions (first column) and genotyping array den-
sities. The primary power results were calculated assuming a null concordance of 0.5; in parentheses,
we give the power assuming a null concordance of 0.5005. For the 370K results, we used the observed
phase concordance rates from the computational dilution data and the heterozygous marker count
from the pure normal sample. For the 1M and 5M array results, we used the same concordance rates
and assumed 30% and 25% of markers would be heterozygous, respectively.
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a significant admixture of tumor and normal cells. We have pre-

sented a new method, hapLOH, for the detection and profiling of

allelic imbalance in tumor samples heavily diluted with cells from

normal tissue. hapLOH may also be useful for studying samples

with tumor heterogeneity, where aberrant events exist in a fraction

of the tumor cells. Within an AI event that covers multiple het-

erozygous markers, at some markers the BAF will shift toward 1 and

at others toward 0, creating a two-component mixture distribu-

tion. Existing SNP array-based methods interpret the detection of

a two-component mixture as evidence of AI. When the AI event is

subtle and the shifts thus small, determining whether there exist

two distributions instead of one becomes a challenge, since the

shifts produce an increased dispersion of the BAFs rather than an

obvious change in the density. We use estimates of the germline

haplotypes to capitalize on an alternative hypothesis of reduced

dimension—the deviations of the BAFs will follow a very specific

pattern determined by the molecular allele configuration. We es-

sentially deconvolute a mixture by ‘‘imputing’’ jointly the com-

ponent memberships of the BAF at each marker. We avoid the need

to label lost or gained haplotypes by using phase concordance,

which compares unordered haplotypes. The strength of the

method comes from the highly specific alternative hypothesis,

which allows even subtle imbalance to create a significant signal.

We note that our method may also be applied to data from Affy-

metrix genotyping arrays; in Supplemental Table S1, Supplemental

Figure S4, and the Supplemental Note, we describe an analysis

using our method of normal-karyotype acute myeloid leukemia

samples genotyped on the Affymetrix SNP 6.0 array.

Several aspects of our procedure are suboptimal and may be

improved. For one, we do not consider the magnitude, per se, of

the BAFs and ignore the total intensities; that is, we may do better

by modeling more explicitly the distribution of the BAF signals and

incorporating the logRR values into the method. In addition, more

flexible modeling of the germline haplotypes may improve the

sensitivity of our method, although the use of local switch con-

sistency provides robustness to germline phasing errors (Supple-

mental Fig. S5). In ongoing work, we are addressing these issues.

The sensitivity and resolution of the method depends in part

on the number of heterozygous markers in the germline DNA.

Data from next-generation sequencing (NGS) may enable arbi-

trarily precise assessments of allelic imbalance, and we are adapt-

ing our methods to these data for studies of whole genomes and

exomes. Due in part to the popularity of large population genetic

surveys using NGS, such as The 1000 Genomes Project (The 1000

Genomes Project Consortium 2010), commercially available

microarrays are available in increasing marker densities and offer

Figure 2. Local posterior probabilities of allelic imbalance at various dilutions. These whole-genome results are from a three-state HMM, accommo-
dating two levels of imbalance. Horizontal lines at the top of each plot show the locations of simulated deletions (orange) and cn-LOH (green). Below
these, purple bars show the regions identified by BAFsegmentation to contain AI. Vertical axes range from 0 to 1 for both the BAFs (gray points) and
posterior probabilities (orange for deletions, blue for deletions and cn-LOH combined).
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the potential for highly sensitive yet affordable diagnostics. For

example, we estimate that a 5M marker array would allow de-

tection of tumor cells at very low concentrations, on the order of

0.25%, which may approach the sensitivity of some minimal re-

sidual disease (MRD) assays. More generally, application of

hapLOH in this manner facilitates treatment of aberrant genomes

as biomarkers. We note that low levels of nonmalignant somatic

variation will also create a signal in our method and may not be

uncommon in some tissue types such as epithelial tissue. When

attempting to detect very subtle tumor aberrations in these tissues,

a paired sample will be useful to determine an appropriate null

phase concordance rate.

hapLOH also includes methods to locate allelic imbalance

regions and to call the lost or gained haplotype within these re-

gions, both of which employ HMMs. The profiling HMM imposes

a geometric size distribution on mutations, though we provide

options for flexible estimation of the parameters governing mu-

tation size and genome-wide rate. We have shown that, in our

curated data set, we are able to identify specific regions of cn-LOH

at tumor proportions of about 4% and discern deletions from cn-

LOH at 6%–7% tumor. Our HMM for identifying haplotypes

gained or lost incorporates information about the confidence

of the haplotype reconstructions.

In addition to the applications considered here, hapLOH may

be utilized in other settings, such as for time-course monitoring of

subtle changes in tumor genome profiles and cell concentrations

or for monitoring response to therapy. We hope it may also aid

in studies of cancers that require complicated filtration steps to

enrich for tumor cells, such as myelomas. Finally, we note that

nothing inherent in our method restricts its application to cancer

genomics. Indeed, our method may be used to elucidate subtle

somatic copy number variation or gene conversion in healthy in-

dividuals, such as in studies of twins or across tissue types.

Methods
Our method leverages the expectation that when imbalance exists
in haplotypes rather than merely single-nucleotide alleles, a hap-

lotype signal will be captured, however noisily, in the BAFs. We
assess haplotypic imbalance by comparing crude haplotype re-
constructions based on the BAFs with highly accurate statistical
haplotype estimates. Since our method is designed for mixtures
with a high proportion of normal cells, we use genotype calls
obtained from the mixed sample and assume they are representa-
tive of the germline. For convenience, we assume the two alleles at
a heterozygous site are arbitrarily labeled as A and B. Sites that are
homozygous in the germline are ignored since the genotypes
are uninformative with respect to phase and the BAFs are un-
informative for AI (assuming no somatic point mutations at the
typed SNPs).

Phase concordance

To provide further details, we will introduce the following notation
for data from M heterozygous loci from a single individual. Let bm

denote the BAF at heterozygous marker m (m = 1, . . ., M), and let
h bð Þ

m 2 A;Bf g represent the BAF-based estimate of the allele on the
overrepresented haplotype. Our algorithm for calling alleles using
the BAFs is simply the following:

h bð Þ
m ¼

B; bm > ~b
A; bm < ~b:

�

where ~b is some threshold. When h bð Þ
m is equal to ~b, the alleles are

assigned with equal probability. In principle, this threshold should
be the median BAF for a diploid heterozygous genotype at marker
m; in practice, we use the median of observed BAFs at all hetero-
zygous loci. For convenience, at sites where the BAF is missing,
we randomly assigned an allele. Let h(b) denote the haplotype de-
fined by the set of h bð Þ

m alleles at all m. Similarly, let h(g) denote one of
the two germline haplotypes at heterozygous loci estimated statis-
tically using homozygous genotypes as well (see below for details).

We assess phase concordance between h(b) and h(g) with
switch accuracy (Lin et al. 2002), or more aptly ‘‘switch consis-
tency,’’ since, in our setting, phase is not known but estimated.
Formally, let xi be an indicator of consistency between the two
sets of two-site haplotypes defined by h

bð Þ
i ;h

bð Þ
iþ1

� �
and h

gð Þ
i ;h

gð Þ
iþ1

� �
(i = 1, . . ., M � 1), i.e.,

xi ¼ 1; h
bð Þ

i ¼ h
gð Þ

i ; h
bð Þ

iþ1 ¼ h
gð Þ

iþ1 or h
bð Þ

i 6¼ h
gð Þ

i ; h
bð Þ

iþ1 6¼ h
gð Þ

iþ1
0; otherwise:

�
:

Across a set of consecutive heterozygous markers ( j, . . ., k),

+
k

i¼j

xi ; Binom k� jð Þ; pð Þ;

where p is the true concordance rate in the marker region. From
this distribution, it is straightforward to test for imbalance at ar-
bitrary regions by testing p > 0.5 against the null hypothesis, p =

0.5. Implicitly above, we are assuming no marker-specific bias in
the BAFs toward alleles that tend to cosegregate in the population,
which could possibly arise if ‘‘B’’ allele designations were made
based on population frequencies or in order of discovery, in-
tentionally or otherwise, and there existed some biased intensity
for alleles of the same label.

A hidden Markov model to identify regions of imbalance

Due to the segmental nature of AI events, signal in the data would not
be distributed uniformly across the genome, but rather in clusters of
phase-concordant heterozygotes (subsets of x where 1s are observed
at a frequency higher than 0.5). To use this pattern to discover regions
of LOH or other sources of AI, we implemented a simple HMM. Let Li

be an indicator for whether the interval between heterozygous loci

Figure 3. Identification of the overrepresented haplotype. Solid lines
indicate the accuracy of hapLOH’s haplotype calls at deletions (orange)
and cn-LOH (green) in the curated data set at various tumor proportions.
Dotted lines indicate accuracy of the naive BAF-based calls. Accuracy was
calculated as the proportion of correct calls at sites where we could con-
fidently call LOH using the BAFs from the 100% tumor sample—about
18,000 markers for deletions and 8000 markers for cn-LOH.
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i and i + 1 (i = 1, . . ., M � 1) is contained within a region of LOH (or
aberration leading to AI) in the tumor genome and also what type of
aberration. We assume L1, . . ., LM�1 form a Markov chain on three
states, but this could be generalized further. The states are defined
as follows: 0, no AI; 1, low level of AI; 2, higher level of AI. Each
nonzero state may represent a different copy number in the aber-
rant cells or may capture one event type occurring in different
proportions of the sample; that is, they are defined in terms of
imbalance level, not explicitly in terms of underlying mutation
characteristics. The transition probability matrix is constructed as

where l0 and l1 are assumed to be constant across marker in-
tervals. This assumption could be relaxed or replaced by different
modeling assumptions on mitotic processes underlying LOH, for
example. Here, we have made the assumption that events con-
sistent with states 1 and 2 have the same distribution for their
tract lengths. Further, states 1 and 2 cannot directly communi-
cate; the process must pass through the non-AI state to go be-
tween deletion and cn-LOH events. These assumptions are made
mainly for reasons of parsimony but seem prudent based on pre-
sumed underlying mechanisms. Regardless, they may be general-
ized, and hapLOH accommodates such flexibility.

We let al (l = 0,1,2) denote the emission probability Pr(xi = 1 |
Li = l). The emission probability a0 for the non-AI state is set to 0.5.
For the other states, the parameter is estimated from the data using
an EM algorithm. At each iteration, the parameter al is updated to

âl ¼ +
M�1

i¼1

wi;lxi

wi;l
;

where wi,l is the marginal conditional probability that the process
is in state l at marker interval i and is calculated using standard
forward and backward algorithms (Rabiner 1989).

While it is reasonable to fix the transition probabilities l0 and
l1, for the results presented here we estimate them from the data
using pseudocounts for a combination of flexibility and stability.
We obtain maximum a posteriori estimates by combining terms
in the maximum likelihood estimator with pseudocounts in a
‘‘maximization’’ step of a stochastic-EM algorithm (first sampling
L given the data and current values of parameters, then reesti-
mating l0, l1, a1, and a2). Specifically, we assume l1 ; Beta(2.5,
999.5), motivated by a mode of 20 Mb for the average tract length
of an AI event and ;5% mass on average lengths <5 Mb. For l0, we
chose parameters corresponding to a genome-wide rate of 10% for
AI and such that the sums of the parameters of the two beta dis-
tributions were equal (so that total pseudocounts were equal). We
found that fewer than 25 iterations of the EM algorithm were
sufficient to achieve reasonable parameter estimates for these data.

Identifying alleles imbalanced in the tumor genome

Here, we present an approach to calling the over- and un-
derrepresented SNP alleles in regions of AI, assuming a dominant
clone. Our goal is to estimate the haplotype of the overrepresented
chromosome, which we denote by h*. Note, to motivate our
technique, that statistical estimation provides an unordered pair of
haplotypes (represented by h(g) and its complement h gð Þ9) with a low
but nonzero switch error rate. Thus, h* is a mosaic of h(g) and h gð Þ9,

switching between the two when there has been a phasing error.
Also note that, in AI regions, the haplotype h(b) represents a guess at
the allele in excess at each marker, although with low accuracy at the
tumor proportions we consider. Nevertheless, when there is at least
subtle imbalance, h(b) contains information useful for determining
which of the two haplotypes h(g) and h gð Þ9 is the source for h* at each
marker.

To utilize this information, we assume a series of hidden states
at M heterozygous loci, denoted by H1, . . ., HM, form a two-state
Markov chain on {0,1} with transition probabilities specified by the
switch accuracy estimates for h(g) from fastPHASE. In this way,
‘‘prior’’ information from the statistical phasing can be propagated
to inform distributions of the size and locations of ‘‘chunks’’ of h(g)

and h gð Þ9 that likely represent the actual excess chromosome. We let
the observed data for our HMM consist of a series of indicators
y1, . . ., yM, where

ym ¼
0 ;h bð Þ

m ¼ h gð Þ
m

1 ;h bð Þ
m ¼ h gð Þ9

m :

(

Finally, the emission probabilities are specified as

p ym ¼ 1ja;Hm

� �
¼ a

I ym¼Hmf g 1� að ÞI ym 6¼Hmf g ;

where I{C} is 1 if C is true and 0 otherwise, and a may be estimated
from the data but has a natural relationship with the emission
probabilities a specified above. In practice, we simply substitute âŝ,
where ŝ is the maximum a posteriori estimate of the imbalance
state for the interval to the right of the marker (or to the left for the
last marker). The final step in our algorithm is to summarize the
evidence that a particular allele is in excess by making maximum
a posteriori probability estimates of Hm, (m = 1, . . ., M), which yields
an estimate of h*. We can combine this with information about
ploidy so that, at cn-LOH events, the estimates of genotypes in the
tumor are the homozygotes of alleles in h*; at a deletion, the ge-
notypes would be specified by a single copy of h*, etc. We note
a more sophisticated approach to this problem would be to directly
model the chromosome in putative excess in the HMM introduced
above, and we are pursuing this in concurrent work.

SNP array data and haplotype estimation

Breast cancer cell line data

We downloaded genotypes, BAFs, and logRRs for 11 samples pro-
cessed on the Illumina HumanCNV370-Duov1 BeadChip array
(GEO accession GSE11976). These consisted of a breast cancer cell
line with a paired normal (lymphoblastoid) cell line, and nine
heterogeneous samples created from serial dilutions of these (in
tumor proportions of 10%, 14%, 21%, 23%, 30%, 34%, 45%, 47%,
and 50%). We ignored the 79% dilution, since most genotype calls
did not reflect the germline genotypes. A more complete de-
scription of the data set is given in Staaf et al. (2008a). We applied
tQN (Staaf et al. 2008b) to the BAFs and logRRs to reduce probe-
specific biases so that the data more accurately reflected the true
allele ratios and copy numbers. In an attempt to exclude regions
that may indicate false positives, we removed some marker data
from analysis (see Supplemental Table S2 and Supplemental Fig. S6
for details). After making these exclusions and taking the in-
tersection with the HapMap samples that were used for phasing
(see next section), the data set included 295,548 markers.

To investigate the performance of our method on samples
with more subtle amounts of tumor cells, we created ‘‘computa-
tional dilutions’’ using the pure normal and pure tumor sample
data. To remain consistent with real phenomena, we first visually
inspected the BAFs and logRRs of the pure tumor sample and

0 1 2
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2
1 l1 1 � l1 0
2 l1 0 1 � l1

Haplotype-based profil ing of allelic imbalance

Genome Research 157
www.genome.org



identified regions that had undergone complete cn-LOH or de-
letion. At each marker in these regions, we computed weighted
averages of the normal and tumor BAFs and replaced the normal
BAFs with these averaged BAFs. The weights reflect the proportion
of tumor cells and the copy number of the LOH event. For tumor
proportions below 10%, we assumed the genotypes would be the
same as the normal genotypes. For the higher proportions, we
assembled the set of genotypes for each curated sample by
replacing the normal genotypes in the AI regions with the geno-
types from the lab sample with matching tumor proportion. This
gave us a ‘‘curated data set’’ with known event boundaries and
tumor proportions (see Supplemental Table S3 for a complete list
of events). Regions of AI covered 25% of the markers in the cu-
rated data set.

We note that these simulations are based on the observed
BAFs themselves. To generate the test data for the detection of the
presence of the tumor genome, we averaged the normal and tumor
BAFs assuming hemizygosity for the odd chromosomes and cn-
LOH for the even chromosomes to reflect our observation that
these two event types constituted the majority of events and oc-
curred in roughly equal proportions. Empirical comparisons with
the laboratory-based dilution series indicate this procedure is well
calibrated (Supplemental Fig. S7) and may be more accurate at very
low levels of tumor than laboratory-based dilutions, where phys-
ically mixing such proportions is difficult.

Statistical estimation of haplotypes

To estimate the haplotypes from the observed (presumably germ-
line) genotypes, we applied fastPHASE (Scheet and Stephens 2006)
with default settings. For each data set, we extracted the SNPs in
common with the HapMap (International HapMap Consortium
2005) CEU analysis panel, fit the model to the 120 CEU haplo-
types, and then applied this fitted model to the unphased sample
genotypes to infer haplotypes. From fastPHASE, we also obtained
‘‘switch probabilities’’ (the estimated ‘‘confidence’’ in two-marker
haplotype reconstructions).

Software

The hapLOH software is available for academic, noncommercial
use at scheet.org/software.
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