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Abstract

Motivation: The secondary structure of RNA is of importance to its function. Over the last few years, several papers
attempted to use machine learning to improve de novo RNA secondary structure prediction. Many of these papers
report impressive results for intra-family predictions but seldom address the much more difficult (and practical)
inter-family problem.

Results: We demonstrate that it is nearly trivial with convolutional neural networks to generate pseudo-free energy
changes, modelled after structure mapping data that improve the accuracy of structure prediction for intra-family
cases. We propose a more rigorous method for inter-family cross-validation that can be used to assess the perform-
ance of learning-based models. Using this method, we further demonstrate that intra-family performance is insuffi-
cient proof of generalization despite the widespread assumption in the literature and provide strong evidence that
many existing learning-based models have not generalized inter-family.

Availability and implementation: Source code and data are available at https://github.com/marcellszi/dl-rna.

Contact: marcell.szikszai@research.uwa.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ribonucleic acid (RNA) molecules are extremely versatile polymers
fulfilling numerous roles essential for life, including gene regulation
and catalytic functions (Doudna and Cech, 2002; Serganov and
Patel, 2007). Part of this versatility can be attributed to the struc-
tural diversity of RNA (Caprara and Nilsen, 2000). While chemical-
ly related to DNA, RNA often functions as a single strand. As a
consequence, the molecules often fold back on themselves forming
complex structures. It is well established that these folded configura-
tions are of importance to the function of non-coding RNAs
(ncRNAs) (Seetin and Mathews, 2012).

When discussing RNA, its structure is generally divided into a
hierarchy of three levels. First, the foundation is the primary struc-
ture, which refers to the 1D sequence of the molecule. The sequences
are made up of a succession of nucleobases, represented by four let-
ters: adenine (A), cytosine (C), guanine (G) and uracil (U). Next, the
secondary structure, which refers to the set of canonical base

pairings where bases are paired with one or zero other bases. For
secondary structure, these pairs are formed by Watson–Crick base
pairings (A–U, G–C) and by wobble G–U pairs. Finally—the last level
generally considered—is the tertiary structure which refers to the 3D
structure and the additional interactions that mediate the structure.
However, since the secondary heavily informs the tertiary structure
(Miao et al., 2020; Shapiro et al., 2007; Tinoco and Bustamante,
1999), the secondary structure is usually sufficient for developing
some understanding of function.

Sequencing RNA molecules today is quick, inexpensive and ac-
curate (Stark et al., 2019); however, determining their structure is
not. While high-resolution experimental techniques—such as nu-
clear magnetic resonance spectroscopy, X-ray crystallography and
cryo-electron microscopy—exist, these methods tend to be expensive
and time consuming. The contrast in the difficulty of determining se-
quence versus structure has created a sequence–structure gap, where
there are vast amounts of sequenced RNA molecules without any
known corresponding structure. In order to bridge this gap,
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significant effort has gone into developing algorithms to predict
RNA structures computationally (Hofacker, 2014; Miao et al.,
2020; Seetin and Mathews, 2012).

Broadly speaking, we can divide the secondary structure predic-
tion methods into three categories: homology modelling, compara-
tive analysis and de novo methods. Methods that start with nothing
but the sequence, often termed de novo, have the advantage of being
effective for single sequences without a need for homologous
sequences. However, these de novo methods are not always accurate
and have well- understood limitations (Ward et al., 2017). These
methods are generally implemented with dynamic programming -
based tools and often make use of an underlying thermodynamic
model to determine the minimum free energy (MFE) structures
(Andronescu et al., 2007, 2010; Lorenz et al., 2011; Mathews et al.,
2016; Rivas, 2013). In contrast, homology modelling and compara-
tive analysis are more accurate but require a set of homologous
RNAs (and for homology modelling, their secondary structure). The
sets of homologous RNA sequences are termed an RNA family
(Kalvari et al., 2021). These methods work by predicting a consen-
sus structure that is conserved by evolution (Asai and Hamada,
2014; Havgaard and Gorodkin, 2014; Nawrocki and Eddy, 2013;
Tan et al., 2017).

In the last few years, a number of methodologies were published
based on deep learning that report impressive results for RNA second-
ary structure prediction. However, many of these papers assess per-
formance using k-fold cross-validation or simple train-test splits. We
refer to these splits as intra-family (i.e. within-family), since there is
no expectation that the families contained within the training and test-
ing sets do not intersect. In contrast, we refer to splits where there is
no such intersection as inter-family (i.e. between-family). Since the
structure of RNA is highly conserved intra-family, performance
derived from these metrics does not demonstrate generalization to
novel RNAs (Rivas et al., 2012). Homology modelling, and compara-
tive analysis to an extent, is already well suited to the intra-family
problem, and can not only determine the structure with high accuracy
when used by domain experts, it can also provide other important
insights about the molecule, such as its function (Nawrocki and Eddy,
2013). Because of this, the practical use cases of machine learning
models with poor inter-family performance are limited.

2 Materials and methods

2.1 Demonstrative model
2.1.1 Basic concept

A common way to improve the performance of de novo tools is to
utilize data from structure probing experiments. One example
of such an approach is a technique by Deigan et al. (2009), that
supplements dynamic programming-based methods via selective
2’-hydroxyl acylation analysed by primer extension (SHAPE) (Merino
et al., 2005; Wilkinson et al., 2006), by which the experiment identi-
fies nucleotides that are in more flexible regions of the secondary
structure. SHAPE is an inexpensive probing experiment that scores
the reactivity of each nucleotide in the RNA sequence. The reactiv-
ities found through SHAPE can be used to construct pseudo-free en-
ergy change terms for each nucleotide via the function,

DG0ðiÞ ¼ m log½aðiÞ þ 1� þ b; (1)

where aðiÞ is the SHAPE value for base i; m and b are free parame-
ters, and log is the natural logarithm. Then, DG0 is added as a free
energy change term to each base pair stack involving nucleotide i in
the de novo dynamic programming algorithm to improve predictive
performance.

Our methodology looks to computationally mimic data from
structure probing experiments, and ultimately construct pseudo-free
energies that can be utilized by existing algorithms. This is similar to
earlier work by Willmott et al. (2020) implementing state inference,
whereby deep learning is used to estimate SHAPE-like scores.

We use this approach to construct a simple demonstrative model
which shares many similarities with current learning-based efforts.
We then show that our demonstrative model performs significantly

better than existing dynamic programming -based techniques for
intra-family predictions. Finally, we show that our model performs
poorly for inter-family predictions, demonstrating that intra-family
performance does not necessarily generalize to inter-family cases.

Beyond our demonstrative model, we benchmarked or otherwise
analysed several existing machine learning models for secondary
structure prediction. See Section 2.4 for more details.

2.1.2 Network architecture

We implemented a convolutional neural network (CNN) for
extracting per-nucleobase pairing probabilities from RNA sequences
with the aim of constructing pseudo-free energies to improve sec-
ondary structure prediction performance. The extracted pairing
probabilities are then converted to pseudo-free energies and fed to
RNAstructure (Reuter and Mathews, 2010) version 6.3, which
makes use of a conventional dynamic programming algorithm to
find the MFE structures. A CNN was chosen for its ability to cap-
ture spatial information.

The architecture of the neural network is made up of two blocks,
a convolution block and a fully connected block. The convolution
block is comprised of two 1D convolution layers, with 256 filters
each. The length of the kernels is 3, with strides of 1, and no dilation
is applied. Each convolution layer is followed by a rectified linear
unit (ReLU) activation layer. Spatial dropout (Tompson et al., 2015)
is applied between the convolution layers with a dropout rate of
0.25. The fully connected block is comprised of two fully connected
layers, with 512 neurons each. Dropout is applied between the
layers with a dropout rate of 0.25. The first activation is once again
ReLU, and the final layer is followed by sigmoid activation,

rðxÞ ¼ 1

1þ e�x
: (2)

The network is trained with the Adam optimizer
(c ¼ 0:001; b1 ¼ 0:9; b2 ¼ 0:999; � ¼ 10�8) (Kingma and Ba, 2017)
using binary cross-entropy loss and in mini-batches of 256. Early
stopping is applied with a patience of 5.

2.1.3 Encoding

For our demonstrative model, the input nucleotide sequences are one-
hot encoded as 2D matrices, where the nucleobases are represented by
column vectors of size 4 and a sequence is the concatenation of these
vectors. For example, a simple sequence UCG . . .AC is encoded as,

U C G . . . A C

x ¼

0 0 0 . . . 1 0
0 1 0 . . . 0 1
0 0 1 . . . 0 0
1 0 0 . . . 0 0

2
664

3
775: (3)

The target structures’ shadows are encoded as row vectors, clas-
sifying whether a particular base is paired or unpaired (without ref-
erence to the base-pairing partner). RNA secondary structures can
be represented by dot-bracket notation, where unpaired nucleotides
are represented by ‘.’ characters, and paired nucleotides are
represented by matches parentheses. Opening brackets indicate the
50-nucleotide in a pair, and the matching closing brackets indicate
the 30-nucleotide in the pair.

These dot-bracket formatted structures can be easily converted
to a structure’s shadow for our demonstrative model. For example,
the simple sequence–structure pair from Figure 1 is encoded as,

: : : ð ð ð : : : : Þ Þ Þ :
y ¼ ½0 0 0 1 1 1 0 0 0 0 1 1 1 0 �: (4)

Both the sequences and structures are zero-padded at the 30 ends,
to have shape ð4� 512Þ and ð1� 512Þ, respectively.

Fig. 1. Example of a simple sequence–structure pair in dot-bracket format
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2.1.4 Pseudo-free energy calculation

Since our neural network is designed to identify paired bases, ŷðiÞ �
1 indicates a nucleotide is predicted as likely to be base paired, while
ŷðiÞ � 0 indicates a nucleotide is predicted as likely to be unpaired,
where ŷðiÞ is the predicted shadow of the structure at base i. This
differs from SHAPE, where values close to zero increase pairing like-
lihood, and values far from zero decrease it. Because of this, we
apply the transformation,

âðiÞ ¼ 1� ŷðiÞ; (5)

to our predicted values to produce SHAPE-like scores. No further
normalization is performed. These scores can then be used via the
pseudo-free energy equation by Deigan et al. (2009) (Equation 1) to
improve the performance of the dynamic programming-based MFE
folding algorithms. Note that this transformation is the equivalent
of redefining the pseudo-free energy equation as,

DG0ðiÞ ¼ m log½2� ŷðiÞ� þ b: (6)

Also note that since our method makes use of RNAstructure’s
traditional dynamic programming algorithm, which cannot predict
non-nested pairings, our method is unable to predict pseudoknots or
multiplets. Such algorithms are widely used, and predicting pseudo-
knots is NP-Hard under most energy models (Lyngsø, 2004).
However, the neural network itself is capable of identifying pseudo-
knotted nucleotides as paired.

We performed grid search on the slope m, and intercept b of
Equation 6 to refit the model for the values extracted by our neural net-
work. The search was performed on the validation set, and an 11�11
grid of slope and intercept values were investigated via a reduced ver-
sion of the parameter space used by Deigan et al. (2009). Because the
training and validation sets contain RNA sequences from the same fam-
ilies, overfitting these pseudo-free energy parameters may also be a con-
cern. Creating non-intersecting training and validation sets was found
to be problematic due to the limited number of families available in the
dataset. Therefore, to address the inter-family generalizability of the
computationally found pseudo-free energies, we explored the behaviour
of the thermodynamic nearest neighbour model with small, uniform
pseudo-free energy changes applied. These small free energy nudges are
completely general, so they eliminate any underlying bias, and allow us
to investigate whether uniform changes to the model affect the perform-
ance of MFE folding differently across families. For each sequence in
our data set, we performed folds using RNAstructure (Reuter and
Mathews, 2010) with pseudo-free energy change terms DG0 using
parameters: aðiÞ ¼ 0; m ¼ 0, and b ¼ f�1:00;�0:98; . . . ; 0:98; 1:00g,
totalling to 101 folds per sequence. That is, we apply the pseudo-free
energy change term from Equation 1 with m ¼ 0, so our pseudo-free
energy nudges are given by,

DDG0 ¼ b; (7)

across the entire sequence. RNAstructure’s default tenths precision
was increased to hundredths for improved resolution.

2.2 Datasets
Our experiments call for a large number of reliably known
sequence-structure pairs, diverse in families. The data set used for
this purpose is ArchiveII (Sloma and Mathews, 2016). This dataset
contains 3974 RNAs, across tRNAs (Jühling et al., 2009), signal rec-
ognition particle (SRP) RNAs (Rosenblad et al., 2003), telomerase
RNAs (Griffiths-Jones et al., 2005), 5S rRNAs (Szymanski et al.,
2000), 16S rRNAs, 23S rRNAs (Andronescu et al., 2008; Cannone
et al., 2002), tmRNAs (Zwieb et al., 2003), Group I (Andronescu
et al., 2008; Cannone et al., 2002) and II Introns (Michel et al.,
1989) and RNase P RNAs (Brown, 1998).

Most folding algorithms have polynomial time complexities
OðnkÞ with k � 3 (Ward et al., 2019), and the algorithm employed
by RNAstructure is Oðn3Þ (Mathews et al., 2004). Similarly, many
of the learning-based models also suffer from significantly slower
training and predictions for longer sequences. Because of this, we fil-
ter out 109 sequences longer than 512 nt to limit the runtime of our

experiments, reducing our data set to 3865 RNAs. See Table 1 for a
count of RNAs in each family after filtering.

2.3 Train-test split
To assess intra-family performance, we perform k-fold cross-
validation with k¼5 on our entire dataset. We note that despite its
wide use in the literature, it is our opinion that this type of train-test
split cannot be used to assess the generalization of machine learning
models for RNA secondary structure prediction. We stress that this
metric is used only to demonstrate the ease of achieving high accur-
acy for the intra-family case.

For benchmarking inter-family performance, we perform family-
fold cross-validation, such that one family is left out for testing per
cross-validation fold. The motivation behind this is to measure the
models’ performance on novel RNAs that do not belong to a known
family. This eliminates most of the homology to the training set,
providing a fair measure of performance against other de novo
tools.

In both cases, for early stopping and grid search, we use a val-
idation set which is a 10% randomly selected subset of the train-
ing set.

2.4 Existing models
We benchmarked or otherwise analysed several machine learning
models for secondary structure prediction with a focus on investigat-
ing inter-family versus intra-family performance. The models con-
sidered were: DMfold (Wang et al., 2019), RPRes (Wang et al.,
2021), CROSS (Delli Ponti et al., 2017), E2Efold (Chen et al.,
2019), SPOT-RNA (Singh et al., 2019), MXfold2 (Sato et al., 2021)
and UFold (Fu et al., 2021) (Table 2).

Where possible, we re-trained networks using family-fold cross-
validation and benchmarked them for more generalized perform-
ance. In cases where we were unable to re-train the network, we
provide evidence that the training/testing split does not appropriate-
ly consider RNA homology. All mentioned papers address intra-
family performance, usually with simple k-fold cross-validation, and
in many cases wrongly conflate it with inter-family performance.
The inter-family case is seldom mentioned, except by Sato et al.
(2021) and Fu et al. (2021).

2.5 Benchmarking
To assess performance, we followed prior practice of calculating
sensitivity and PPV (Mathews, 2019). We calculated the F1 score as
the harmonic mean of positive predictive value (PPV) and sensitivity.
Pairs were allowed to be displaced by one nucleotide position on ei-
ther side so that for base pair (i)–(j) both (i61) � (j) and
(i) � (j61) are considered valid (Mathews, 2019). Additionally,
we performed two-tailed paired t-tests for statistical testing
(Mathews, 2019), considering P � 0.05 significant.

Table 1. Breakdown of RNA families in ArchiveII after filtering

Family Mean length N

5S rRNA 119 1283

SRP RNA 180 918

tRNA 77 557

tmRNA 366 462

RNase P RNA 332 454

Group I Intron 375 74

16S rRNAa 317 67

Telomerase RNA 438 35

23S rRNAa 326 15

Mean 281

Total 3865

a16S rRNA and 23S rRNA are split into independent folding domains

(Mathews et al., 1999).
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Further, to assess the raw performance of our demonstrative
model, we calculated the area under the curve of the receiver operat-
ing characteristic (AUC) for each RNA family. The receiver operat-
ing characteristic curve is constructed by plotting the sensitivity for
predicting base pairing versus the false positive rate (1 � specificity)
at different threshold values. This metric allows us to measure how
well our model can capture the secondary structure’s shadow.
Specifically, the AUC can be interpreted as the probability that our
model can correctly distinguish between a paired and an unpaired
nucleotide, so we can gain a better understanding of how well our
classifier performs prior to any pseudo-free energy calculations. It is
worthwhile to note that while our method cannot predict pseudo-
knotted structures, the neural network is capable of identifying
pseudoknotted nucleotides as paired. This is reflected in the AUC
metric, but since the final structure cannot contain pseudoknots
(Section 2.1.4), it is not reflected in the F1 score.

3 Results

3.1 Demonstrative model
3.1.1 Grid search

Our experiments show that the behaviour of the thermodynamic
nearest neighbour model is different across families for constant
pseudo-free energy nudges (Equation 7) between �1.0 and 1.0 kcal/
mol (Fig. 2). Effectively, a uniform nudge with a negative value

increases the stabilities of canonical pairs and nudges of positive value
decrease the stabilities of canonical pairs. Much of these differences
could be explained by noise; however, the dramatic deviation as
DDG0 ! �1 suggests that even under completely generalized inputs,
such as these DDG0 nudges, the predictive performance of families is
not uniformly affected. As an example, for some families like telomer-
ase RNAs, the degradation in the negative region is much more ex-
treme than in others like RNase P RNA. The differences are less clear
when looking at DDG0 ! þ1, but are still present, especially when
contrasting certain pairs like 23S RNA and tmRNA.

As expected, no DDG0 significantly improves performance across
all families simultaneously. However, at least one region where the
nudges improve performance can be found for all families with the
exception of 16S rRNA. The region DDG0 2 ½0:04; 0:10� improves
the F1 score of 5S rRNA, RNase P RNA, tRNA, telomerase RNA
and tmRNA—although not necessarily significantly. Regions with
significant improvements are ½0:06; 0:14� for 5S rRNA, ½0:20; 0:26�
for tRNA, and ½0:02; 0:22� for tmRNA. The performance of the
remaining families: Group I, 16S RNA, 23S RNA and SRP RNA is
degraded within ½0:04; 0:10� with significantly worse performance
for 16S RNA and SRP RNA.

The grid search for the slope (m) and intercept (b) free parame-
ters of Equation 6 revealed that while the optimal values differ from
those found with real SHAPE experiments (Deigan et al., 2009;
Hajdin et al., 2013), the region of well-performing parameters is
also present for generated SHAPE-like values (Supplementary Figs
S1 and S2). Our small pseudo-free energy nudges showed that even
inherently general changes to the existing thermodynamic nearest
neighbour model do not affect the families uniformly, so overfitting
the slope and intercept values to our training set is likely. To minim-
ize the possible impact of overfitting these parameters towards fami-
lies present in the training set, we elected to use m¼1.8 kcal/mol
and b ¼ �0:6 kcal/mol, as found by Hajdin et al. (2013) for experi-
mentally generated SHAPE data. We expect that these parameters
themselves are general and any overfitting to families is a result of
the underlying generated SHAPE-like values.

3.1.2 Intra-family versus inter-family performance

Our demonstrative deep learning model (Section 2.1) shows
improvements in F1 score across most families (except Group I
Intron and 23S rRNA), when benchmarked using k-fold cross-
validation, over RNAstructure’s baseline scores (Table 3). This con-
firms that our simple model is able to trivially improve intra-family
predictions over traditional dynamic programming MFE algorithms.
Note that this is true even with our conservatively chosen pseudo-
free energy-free parameters, and the relatively high AUC values
across all families suggest that more aggressive optimization would

Table 2. Recent papers that used machine learning for RNA secondary structure prediction

Name Authors Year Method Intra-family Inter-family Re-trained

CROSS Delli Ponti et al. 2017 ANNa � � �

DMfold Wang et al. 2019 LSTMb � � �

SPOT-RNA Singh et al. 2019 CNNc þ BLSTMd � � �

E2Efold Chen et al. 2019 CNNc þ Transformere � � �

RNA-state-inf Willmott et al. 2020 BLSTMd � � �

RPRes Wang et al. 2021 BLSTMd þ ResNetf � � �

MXfold2 Sato et al. 2021 BLSTMd þ ResNetc � � �

UFold Fu et al. 2021 CNNc � � �

Note: Inter-family and intra-family columns indicate the splitting methodology used in the paper, while the re-trained column indicates whether we have suc-

cessfully re-trained the model on our dataset. Attempts were made to re-train nearly every model, however, many do not publish training methodology or could

not be re-trained for another reason. See Sections 3.2 and 4.2 and the Supplementary Information for a detailed discussion on this.
aArtificial neural network (Rumelhart et al., 1986).
bLong short-term memory neural network (Hochreiter and Schmidhuber, 1997).
cConvolutional neural network (LeCun et al., 1999).
dBidirectional long short-term memory neural network (Schuster and Paliwal, 1997).
eAttention transformer (Vaswani et al., 2017).
f

Residual neural network (He et al., 2016).

Fig. 2. Comparison of the effect of DDG0 nudges between families. The mean of all

sequences in each family is calculated across the DDG0 values. F1 scores have been

normalized (min–max scaled) to account for the differences in underlying secondary

structure prediction performance between families
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likely yield even better results. Most of this can be attributed to the
similarity of structures within particular families.

While we see significant improvements (Supplementary
Information) using k-fold cross-validation, this is not true for
family-fold cross-validation. The F1 score is degraded across all fam-
ilies when compared to the baseline RNAstructure predictions, and
AUC values are also significantly worse (see Supplementary
Information) for all families when compared to k-fold cross-
validation. It seems reasonable to expect that this is simply
explained by training for too many epochs since there is strong
family overlap between the training and validation sets (so early
stopping does not prevent overfitting). However, examining the per-
epoch performance of any split (Fig. 3) suggests that this is not the
case, and the model never shows signs of generalizing for inter-
family cases.

The 36% difference (F1 ¼ 0:72 to F1 ¼ 0:50, Table 3) in per-
formance between intra-family versus inter-family cases is strong
evidence that k-fold cross-validation is insufficient for benchmark-
ing deep learning methods for RNA secondary structure prediction.

3.2 Existing models
In order to evaluate how well existing models generalize, we
attempted to re-train all of their networks using family-fold cross-
validation to benchmark inter-family performance (Table 4).
Unfortunately, many of these tools do not publish their source code,
particularly for training. Further, we were unable to re-train a num-
ber of models with public source code due to bugs in the code, which
in some cases prevented us from being able to run their tools at all.
Please see Table 2, Section 4.2 and the Supplementary Information
for a detailed discussion on this.

4 Discussion

4.1 Demonstrative model
First, our results indicate that pseudo-free energy change terms af-
fect RNA families differently. We propose that it is possible to over-
fit the estimation of these parameters to specific structures or
families. For example, after adapting Deigan et al. (2009)’s equation
(Equation 1) for alternate SHAPE-like values, refitting the parame-
ters m and b requires careful consideration. This is especially true
for any learning-based models attempting to improve RNA second-
ary structure prediction, since they require significant data to train
already and may suffer from underlying overfitting issues. Our
pseudo-free energy nudges have no inherent bias towards any

family, so it is possible that any model that is not completely general
may suffer even more dramatically.

We were able to make use of RNAstructure’s default parameters,
found by jack-knife resampling (Hajdin et al., 2013) across several
families, which has successfully eliminated issues with generalizabil-
ity for real SHAPE experiments. These parameters were within the
optimal region for our extracted SHAPE-like probing information,
so the performance degradation is minimal. However, it is worth
noting that intra-family performance can be further improved by
optimizing m and b for the new distributions of a for base paired
and unpaired nucleotides. Unfortunately, this can exacerbate issues
with overfitting to the intra-family case even further.

In the case of the learned base- pairing probabilities, or more
generally, in the case of all hyperparameter optimization tasks, cre-
ating unbiased training and validation sets is a challenge. After early
stopping for our demonstrative model, we were able to look at the
performance of the test set per epoch, and observe that we were not
over-training. However, in a model that is able to generalize, our
validation set would be insufficient for any sort of hyperparameter
optimization. While the use of a training, validation and testing set
is commonplace in machine learning tasks, for RNA homology, the
overlap of the families within these sets is the most important con-
sideration. Even considering sequence identity or similarity measures
is not enough, as structure is so highly conserved amongst families.
Ideally, in order to do hyperparameter optimization for learning-
based models fairly, there can be no intersection between the fami-
lies in the training, validation and testing sets. This can be difficult
when the number of accurately known RNA structures in the data-
set is fairly small and covers only a few families.

Second, our demonstrative model was able to achieve high AUC
in the intra-family case; however, completely failed to generalize
when it came to the inter-family case. This alone is evidence that it
is insufficient to show good performance on intra-family predictions
since it is, at the very least, possible to construct a model that does
not work for practical applications and achieves high intra-family
performance. Metrics like k-fold cross-validation as used for the de-
monstrative model, do not address RNA homology to any extent,
since they do not address the intersection between families.

We suggest that benchmarking of learning-based methods for
RNA secondary structure prediction be done by family-fold cross-
validation in order to minimize the possibility of overfitting and ac-
curately measure generalization. Previous work by Rivas et al.
(2012), focusing on generative models instead of deep learning mod-
els, also supports our conclusions. For the purpose of fair bench-
marking, a split is provided by this paper that attempts to minimize
homology between training and testing sets as much as possible;
however, it should be noted that the relatively small number of
sequences in ArchiveII (Sloma and Mathews, 2016) means that we
expect generalization to this dataset to be difficult. It should be

Table 3. Performance of the demonstrative model separated by

RNA family

Baseline k-fold Family-fold

Family N F1 AUC F1 AUC F1

5S rRNA 1283 0.63 0.95 0.94 0.72 0.46

SRP RNA 918 0.64 0.88 0.81 0.73 0.50

tRNA 557 0.80 0.97 0.97 0.79 0.65

tmRNA 462 0.43 0.82 0.64 0.68 0.41

RNase P RNA 454 0.55 0.81 0.66 0.71 0.48

Group I Intron 74 0.53 0.73 0.53 0.72 0.49

16S rRNA 67 0.58 0.77 0.60 0.72 0.48

Telomerase RNA 35 0.50 0.76 0.61 0.68 0.45

23S rRNA 15 0.73 0.79 0.68 0.73 0.54

Total 3865

Mean 0.60 0.83 0.72 0.72 0.50

Note: F1 score refers to the performance of secondary structure prediction,

and AUC refers to the performance of predicting the structures’ shadow via

deep learning. The baseline is RNAstructure for free energy minimization

without the deep learning input. Both k-fold and family-fold models are

included.

Fig. 3. Performance of family-fold testing on our demonstrative model. The training

set is comprised of all families except 5S rRNA, the validation is a 10% split of the

training set, while the testing set is 5S rRNAs. Note the consistently poor perform-

ance of the testing set throughout. (a) tRNA tdbR00000247. (b) tRNA

tdbR00000372. (c) tRNA tdbR00000435
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noted that the split on families reduces the concerns on homology,
but does not completely eliminate all concerns about generalization.
tmRNA, for example, is tRNA-like and mRNA-like (Williams and
Bartel, 1996). Therefore, the tRNA-like features could overtrain a
model which cross-validation with tRNA would not reveal.

4.2 Existing models
For any machine learning model, an unbiased split of training and
testing data is essential for benchmarking performance. In the case
of biological data, this means considering the homology between
these sets carefully in order to eliminate their overlap. Many current
studies in RNA secondary structure prediction, especially those
using learning-based models, do not appropriately address RNA
homology. While it may be sufficient in many bioinformatics appli-
cations to consider sequence identity or sequence similarity, in the
case of RNA, the structure is strongly conserved amongst families—
often much more than sequence (Fig. 4). Because of this, it is pos-
sible (and highly probable) to create splits where despite considering
sequence similarity, near-identical structures are present in both the
training and testing data sets. Below is a breakdown of the training/
testing split methodologies used by existing methods.

4.2.1 RNA-state-inference

While the authors of RNA-state-inference (Willmott et al., 2020) do
publish the entire source code on Github, we did not re-train their
network due to their method’s focus on single families.

The main results presented in the article are tested on a small set
of 16 16S rRNAs used in SHAPE-directed experiments (Sükösd
et al., 2013), and trained on a large dataset of 17 032 16S rRNA
sequences. Sequence similarity is addressed by removing training
sequences with an over 10% match to any testing sequence, as well
as training sequences that ‘can be aligned such that they have

common nucleotides accounting for more than 80% of nucleotides
of the shorter sequence’ (Willmott et al., 2020). This addresses se-

quence homology but does not address structure homology.
Finally, the paper does address poor inter-family generalization

by also testing on 5S and 23S rRNAs. These test sets show weaker
results (with an average accuracy of 0.514 for 5S rRNA and 0.611

for 23S rRNA) when compared to testing on 16S rRNA (with an
average accuracy of 0.839) (Willmott et al., 2020), supporting our
conclusions.

4.2.2 CROSS and RPRes

Both Computational Recognition of Secondary Structure (CROSS)
(Delli Ponti et al., 2017), and RPRes (Wang et al., 2021) are meth-
ods that attempt to recreate SHAPE experiments in silico, sharing

many similarities with our demonstrative model. Unfortunately, no
source code is provided for CROSS, and as such, we were unable to

re-train their model on our dataset. While the authors of RPRes do
publish the source code on Github, we were unable to re-train their
network. See the Supplementary Information for more details.

Neither paper sufficiently addresses concerns regarding poor
inter-family generalization. Both models are evaluated by training

on one dataset at a time (PARS yeast, PARS human, HIV SHAPE,
icSHAPE and high-quality nuclear magnetic resonance
spectroscopy/X-ray crystallography structures) and testing on all

others one by one. With this methodology, there is no guarantee, or
indeed expectation, that the secondary structures in the datasets do

not overlap. According to Delli Ponti et al. (2017) ‘[n]egligible over-
lap exists between training and testing sets’ (Delli Ponti et al., 2017)
with Jaccard indices < 0.002 between each pair of datasets, where

JaccardðS1; S2Þ ¼ ðS1 \ S2Þ = ðS1 [ S2) for sequences S1 and S2.
This addresses sequence similarity but does not comprehensively ad-

dress inter-family cases.

4.2.3 DMfold

While the authors of DMfold (Wang et al., 2019) do publish the en-
tire source code on Github, we were unable to re-train their net-

work. See the Supplementary Information for more details.
The train/test split methodology used by DMfold produces sets

which heavily overlap families. After using their packaged tools for
generating the splits, we found that all testing families were covered
in the training set, without any consideration to RNA homology

whatsoever. In this case, the training set contained 2111 RNAs,
with 957 5S rRNAs, 437 tRNAs, 377 RNase P RNAs and 340

tmRNAs, while the testing set contained 234 RNAs, with 102 5S
rRNA, 49 tRNAs, 45 RNase P RNAs and 38 tmRNAs. This set con-
tains many identical, or nearly identical structures between the train-

ing and testing sets, with a mean minimum tree edit distance of
14.16, compared to the 134.99 of our family-fold cross-validation

splits. See the Supplementary Information for more details.

(a) (b) (c)

Fig. 4. Secondary structure of three tRNAs. Despite relatively low sequence identity (<60%), their secondary structures appear nearly identical. Many machine learning model

benchmarks fail to separate these RNAs between the training and testing sets, causing significant overlap

Table 4. Performance of family-fold cross-validation on MXfold2

and UFold

F1

Family RNAstructure MXfold2 UFold

5S rRNA 0.63 0.54 0.53

SRP RNA 0.64 0.50 0.26

tRNA 0.80 0.64 0.26

tmRNA 0.43 0.46 0.40

RNase P RNA 0.55 0.51 0.41

Group I intron 0.53 0.45 0.45

16 S rRNA 0.58 0.55 0.41

Telomerase RNA 0.50 0.34 0.80

23S rRNA 0.73 0.64 0.45

Mean 0.60 0.51 0.44
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4.2.4 E2Efold

While the authors of E2Efold (Chen et al., 2019) do publish the en-
tire source code on Github, we did not re-train their network due to
high memory requirements. However, other recent publications
have already pointed out E2Efold’s poor inter-family performance,
reporting F1 scores as low as F1 ¼ 0:036 (Sato et al., 2021; Fu et al.,
2021) on the bpRNA-new dataset.

The original E2Efold benchmarks use stratified sampling, gener-
ating train/test splits which heavily overlap families. The training
set, based on RNAStralign (Tan et al., 2017), contained 24 895
RNAs, with 9325 16 s rRNAs, 7687 5S rRNAs, 5412 tRNAs, 1243
Group I Introns, 379 SRP RNAs, 431 tmRNAs, 360 RNase P RNAs
and 28 telomerase RNAs. The first testing set, based on
RNAStralign once again, contained 2825 RNAs, with 1150 16 s
rRNAs, 879 5S rRNAs, 504 tRNAs, 136 Group I Introns, 53 SRP
RNAs, 61 tmRNAs, 37 RNase P RNAs and 5 telomerase RNAs.
The second training set, based on ArchiveII (Sloma and Mathews,
2016), explicitly only contained families that overlap with the
RNAStralign dataset.

4.2.5 MXfold2 and UFold

Our re-training of MXfold2 (Sato et al., 2021) and UFold (Fu et al.,
2021) with family-fold cross-validation indicates that the models do
not generalize well to inter-family performance. However, as previ-
ously pointed out, it could be argued that our tests are particularly
hard due to the small number of families in our dataset.

Sato et al. (2021) did address inter-family performance using
their own bpRNA-new dataset for which they reported positive
results. To address inter-family performance, the model is trained on
bpRNA-1m, a dataset derived from Rfam 12.2 (Danaee et al.,
2018). The model is then tested on bpRNA-new, which is derived
from a newer version of Rfam (14.2) (Griffiths-Jones et al., 2005).
Newly discovered and novel RNA families are extracted from Rfam
14.2 making up the bpRNA-new testing set.

Since this testing set does not share any families with the training
set, we expect that good performance on this split provides reason-
able evidence for generalization. It should be noted however, that
these results are still less robust than our proposed family-fold cross-
validation, since secondary structures amongst families are often
similar in Rfam, particularly within ‘clans’, which are ‘group[s] of
families that either share a common ancestor but are too divergent
to be reasonably aligned or a group of families that could be aligned,
but have distinct functions’ (https://docs.rfam.org/en/latest/glossary.
html#clan). For example, the SRP clan is divided into nine separate
families. There are clear homologs within this clan, such as, for ex-
ample, Fungi_SRP and Metazoa_SRP. Because of this, to firmly
address inter-family generalization, Rfam families should also be
split by clan. Additionally, reporting of the performance should al-
ways be broken down by family to provide context about
generalization.

UFold (Fu et al., 2021) applies the same testing methodology as
MXfold2, and reports similarly positive results, although according
to self-reported metrics (Fu et al., 2021) on the bpRNA-new dataset,
both tools are outperformed by Eternafold (Wayment-Steele et al.,
2021), a multitask-learning-based method that uses a crowdsourced
RNA design dataset (Lee et al., 2014) to train a model, and
Contrafold (Do et al., 2006), a statistical learning method that uses
conditional log-linear models.

4.2.6 SPOT-RNA

SPOT-RNA (Singh et al., 2019) does not provide the source code for
training, or the ability to re-train the model. As such, we were un-
able to evaluate it on our dataset.

Singh et al. (2019) initially pre-trained the model on bpRNA-1m
(Danaee et al., 2018), and then applied transfer learning to train,
validate and test on a small set of 217 high-resolution structures.
Both the pre-training and training sets are separated from the testing
set by filtering based on 80% sequence identity, and BLAST-N
(Altschul et al., 1997) is used to address homology with an e-value
cut-off of 10. While better than relying solely on a sequence-identity

cutoff, BLAST-N itself is a sequence similarity-based metric and
does not address the secondary structure of the RNAs, meaning that
this split cannot be considered inter-family. Indeed, the self-reported
improvement of 20% (F1 ¼ 0:49 to F1 ¼ 0:58) over the dynamic
programming-based RNAfold (Lorenz et al., 2011), becomes a 3%
(F1 ¼ 0:62 to F1 ¼ 0:60) (Sato et al., 2021) deterioration when
benchmarked on MXfold2’s bpRNA-new dataset (Sato et al., 2021)
of novel families.

5 Conclusion

Our results show that a basic CNN can be used to construct pseudo-
free energies to improve secondary structure prediction for intra-
family cases. We proposed the more rigorous testing methodology
of family-fold cross-validation, which along with our model was
used to demonstrate that intra-family performance does not guaran-
tee generalization to inter-family cases. We argued that k-fold cross-
validation is an unsuitable method for benchmarking deep learning
RNA secondary structure prediction models. Finally, we used these
findings as evidence that many recent publications wrongly conflate
intra-family with inter-family results, and that this results in inflated
self-reported accuracy.

Future work in this area will have start by addressing the more
general problem of predicting pairedness on artificial data, which
removes any biases present due to data availability. Current research
is handicapped by the limited number of RNA families and the high-
resolution structures available. A recent pre-print by Flamm et al.
(2021) showed that approximating thermodynamics-based folding
algorithms is not trivial with deep learning, even when arbitrary
amounts of data are available.

Additionally, the curation of larger datasets of reliably known
sequence-structure pairs will be important for future tools. While
there are larger datasets than ArchiveII (Sloma and Mathews, 2016),
such as those by Leontis and Zirbel (2012) and Becquey et al.
(2021), these still require significant work before they are suitable
for deep learning to improve RNA secondary structure prediction.
In particular, the splitting of these datasets for intra-family perform-
ance measurement requires careful consideration.

Finally, we found that DDG0 nudges could improve the structure
prediction performance, although no value generalized across fami-
lies. This suggests that there are limitations in the thermodynamic
nearest neighbour model that manifest differently across families.
Elucidating the structure-specific limitations might lead to improve-
ments in the parametrization.
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