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Recently, neuroimaging technologies have been developed as important methods 
for assessing the brain condition of patients with disorders of consciousness (DOC). 
Among these technologies, resting-state electroencephalography (EEG) recording and 
analysis has been widely applied by clinicians due to its relatively low cost and con-
venience. EEG reflects the electrical activity of the underlying neurons, and it contains 
information regarding neuronal population oscillations, the information flow pathway, and 
neural activity networks. Some features derived from EEG signal processing methods 
have been proposed to describe the electrical features of the brain with DOC. The 
computation of these features is challenging for clinicians working to comprehend the 
corresponding physiological meanings and then to put them into clinical applications. 
This paper reviews studies that analyze spontaneous EEG of DOC, with the purpose of 
diagnosis, prognosis, and evaluation of brain interventions. It is expected that this review 
will promote our understanding of the EEG characteristics in DOC.

Keywords:  electroencephalography, disorder of consciousness, vegetative state, minimally conscious state, 
unresponsive wakefulness syndrome

inTRODUCTiOn

Following severe damage to the brain, caused by trauma, stroke, or anoxia, patients may fall into 
a coma (1, 2). When they move out of a coma, they may evolve into a vegetative state (VS) or a 
minimally conscious state (MCS) according to observable behavioral features (3). Among them, VS 
(4), or unresponsive wakefulness syndrome (5), is defined by periods of preserved behavioral arousal 
(6), but unresponsiveness to external stimuli and an absence of awareness (7). MCS shows signs of 
fluctuating yet reproducible remnants of non-reflex behaviors (8). The disorders of consciousness 
(DOC) including coma, VS, and MCS pose challenges to clinicians and neuroscientists for diagnosis, 
treatment, and daily care (3, 9, 10). A correct diagnosis of MCS and VS is of decisive importance 
for therapeutic strategy making, as patients with MCS generally show greater responses to some 
treatments (11).

In clinical practice, electroencephalography (EEG) recordings are often used as a tool to help 
clinicians with diagnoses and prognoses (10, 12). Analyses of resting-state EEG and event-related 
potential (ERP) are commonly employed (9). An ERP analysis objectively examines sensory and 
cognitive functions by averaging repeated stimulus-evoked EEG activity (2, 13). Several passive and 
active paradigms have been used in patients with DOC (13–17). However, the passive paradigms, 
such as mismatch negativity and somatosensory-evoked potentials, are overly dependent on the basic 
perceptional function and cortical sensors, which are commonly less preserved in DOC patients 
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following severe brain injuries (2, 18). The active paradigms, such 
as motor imagery, require the active participation of patients. This 
poses several problems when working with DOC patients, such as 
their impaired cognitive function, fluctuations of arousal levels, 
fatigue, and subclinical seizure activity. EEG recordings taken in a 
resting state denote spontaneous neural activity, which is relevant 
to the fundamental brain state (3, 19). Therefore, appropriate  
features derived from resting-sate EEG may be helpful in monitor-
ing the brain condition of DOC and contribute to decision-making 
related to these patients’ care. In this paper, we present a review 
of studies on resting-state EEG in DOC and attempt to improve 
our knowledge of EEG features in the diagnosis, prognosis, and 
evaluation of brain interventions in cases of DOC.

THe eeG AnALYSiS FOR DiAGnOSiS

Since MCS patients are considered to benefit relatively easily 
from some specific treatments, compared to VS (11, 20), the 
ability to differentiate an MCS from a VS would offer great value 
in making decisions about treatment. In clinical practice, many 
standardized behavioral scales are used in the assessment of con-
sciousness of brain-injured patients, such as the Glasgow Coma 
Scale (GCS) (21) and the Coma Recovery Scale-Revised (CRS-R) 
(22). Among them, the GCS is widely used in the early hours 
of a patient’s admission, and the CRS-R is used throughout the 
recovery (1). However, a high ratio of misdiagnoses can be caused 
by clinicians’ subjective judgments, motor function injuries, and 
patients’ fluctuating levels of awareness (10, 16, 23). Therefore, 
one of the primary applications of EEG studies in DOC patients is 
auxiliary diagnosis. Table 1 summarizes the studies we reviewed 
in this paper.

Spectrum powers have demonstrated the ability to discrimi-
nate between MCS and VS. VS patients have shown increased 
delta power but decreased alpha power, compared to those with 
MCS (35, 44). In comparison with healthy subjects, VS patients 
have shown higher delta and theta frequency powers, and both 
MCS and VS patients have shown decreased alpha power (39). 
Moreover, the ratios between higher frequencies (alpha + beta) 
and lower frequencies (delta + theta) have shown a positive cor-
relation with patients’ CRS-R scores (24, 39) and a correlation with 
regional glucose metabolism in MCS (n = 4) (24). Considering 
the spatial distribution, cortical EEG sources showed that the 
MCS and VS have significant variations of delta in the frontal 
region, theta in the frontal and parietal regions, alpha and beta in 
the central region, and gamma in the parietal region (43).

Spectral entropy analysis has found that the MCS has higher 
entropy value than the VS (18, 31), and the entropy values were 
correlated with CRS-R (31). The spectral entropy of the MCS 
changes over time, and periodicities closely resemble being 
awake in healthy subjects (44). Therefore, the spectral entropy 
value and its periodic characteristic have been suggested as 
potential indices for differentiating the MCS from VS. Some 
other spectrum-derived indices have been introduced in DOC 
research, such as BIS. BIS was demonstrated to discriminate 
between an unconscious state and a conscious one (with a value 
of 50) in one study (25). It could effectively distinguish the VS 
from the MCS (26).

Entropy theory has also been applied in the time domain 
of EEG. Approximate entropy (28–30), Lempel–Ziv complex-
ity (30), permutation entropy (18), and Kolmogorov–Chaitin 
complexity (18) indices have been proposed to investigate the 
association of EEG complexity with the consciousness levels of 
DOC patients. Generally, the VS had lower EEG complexity than 
the MCS, and the control had the highest (30). Among the indi-
ces, Kolmogorov–Chaitin complexity and permutation entropy 
have been indicated as capable of discriminating the MCS from 
the VS (18, 45).

Functional connectivity is a crucial method for examining 
consciousness (40, 67). Among the connectivity methods, coher-
ence was the earliest connectivity measurement used in DOC 
research (62). The results of one study showed that the frontal 
regions and their connections with the left temporal and parieto-
occipital areas could differentiate the MCS and severe neuro-
cognitive disorders, and this difference was consistent with the 
results of a Granger causality (27). Similarly, a study of coherence 
performed by Leon-Carrion et al. showed significant differences 
in full bandwidth (delta, theta, alpha, and beta) in MCS patients 
with severe neurocognitive disorders (34). However, the coher-
ence methodology has inherent defects that prevent it from being 
considered as an ideal method for describing global networks  
(68, 69). Lehembre et al. compared three connectivity methods 
(coherence, the imaginary part of coherence, and the phase lag 
index) and found that significantly lower connectivity of the 
VS than the MCS could be detected by the imaginary part of 
coherence and the phase lag index, but failed with coherence 
(35). Another study addressed 44 indices and proved that partial 
coherence, directed transfer function, and generalized partial 
directed coherence were methods with above-chance accuracy 
for the distinction of an MCS from a VS (with accuracy levels of 
0.88, 0.80, and 0.78, respectively) (40).

Furthermore, some other connectivity approaches have been  
employed, such as weighted symbolic mutual information (wSMI),  
cross-approximate entropy (32), debiased weighted phase lag 
index (dwPLI) (46), symbolic transfer entropy, and multivariate 
Granger causality (41). Among them, wSMI has demonstrated 
a dissociation with consciousness levels in DOC patients (36), 
and it was significantly lower in VS in theta and alpha bands 
(18). Similarly, connectivity and network parameters measured 
by dwPLI in delta and alpha bands also provided valuable 
approaches to discriminate different consciousness levels in DOC 
patients (46).

New approaches using non-strict resting-state EEG might pro-
vide new perspectives for finding physiological features that may 
contribute to diagnoses. Standard EEG patterns in DOC patients 
showed a difference between the MCS and VS in sleeping states 
(33). The occurrence of EEG patterns, including sleep spindles, 
slow wave activity, and the variability of brain rhythms (theta, 
alpha, and beta), were demonstrated to have significant cor-
relations with the patients’ behavioral diagnoses (37). Bonfiglio 
et  al. proposed that the detection of blink-rated oscillations 
contributed to the differential diagnoses between the MCS and 
VS (38, 42). Blink-related delta oscillations linked with awareness 
of the surrounding environment, which was a criterion for assess-
ing consciousness. The detection of blink-related activity differs 
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TAbLe 1 | Summary of studies using resting-state EEG for diagnosis, prognosis, and evaluation of intervention and basic researches.

Objectives Literatures Methods Subjects Accuracy/sensitivity/specificity (%) Main results

Diagnosis Coleman et al. (24) Spectrum power ratio MCS 4, VS 6 –/–/– VS showed significantly higher EEG power ratio than MCS

Schnakers et al. (25) BIS VS 32, Coma 11 –/75/75 BIS could differentiate unconscious from conscious

Schnakers et al. (26) EMCS 13, MCS 30,  
VS 13, Coma 16

–/–/–

Pollonini et al. (27) Coherence, Granger causality MCS 7, SND 9 100/–/– Number of connections within and between brain regions 
could differentiate MCS from SND

Sara and Pistoia (28) ApEn VS 10, control 10 –/–/– ApEn was lower in VS than in controls

Sarà et al. (29) VS 38, control 40 –/100/97.5

Wu et al. (30) Lempel–Ziv complexity, ApEn, cross-
approximate entropy

MCS 16, VS 21, control 30 –/–/– VS had lowest non-linear indices than MCS and control had 
highest indices

Gosseries et al. (31) State entropy, response entropy MCS 26, VS 24, Coma 6 –/89/90 EEG entropy of MCS was higher than VS

Wu et al. (32) Cross-approximate entropy MCS 20, VS 30, control 30 –/–/– Interconnection of local and distant cortical networks in MCS 
was superior to that of VS

Landsness et al. (33) Slow wave activity MCS 6, VS 5 –/–/– MCS showed an alternating sleep pattern;
VS preserved behavioral sleep but no sleep EEG patterns;

Leon-Carrion et al. (34) Coherence, Granger causality MCS 7, SND 9 –/–/– MCS showed frontal cortex disconnection from other cortical 
regions

Significant difference in full bandwidth coherence between 
SND and MCS

Lehembre et al. (35) Spectrum power, coherence, imaginary 
part of coherence, phase lag index

MCS 18, VS 10,  
Acute/subacute 15

–/–/– VS showed increased delta, decreased alpha power, and 
lower connectivity than MCS

King et al. (36) wSMI MCS 68, VS 75, CS 24, 
control 14

–/–/– wSMI increases as a function separate VS from MCS

Malinowska et al. (37) Matching pursuit decomposition, Slow 
wave activity, K-complexes

LIS 1, MCS 20, VS 11 87/–/– Sleep EEG patterns correlated with patients’ diagnosis

Bonfiglio et al. (38) Blink-related delta oscillations MCS 5, VS 4, control 12 –/–/– Patients showed abnormal blink-related delta oscillations

Lechinger et al. (39) Spectrum power MCS 9, VS 8, control 14 –/–/– Ratios between frequencies (above 8 Hz) and (below 8 Hz) 
correlated with CRS-R

Höller et al. (40) A total of 44 indices MCS 22, VS 27, control 23 Partial coherence: MCS vs. VS (88), control 
vs. MCS (96), control vs. VS (98)

Connectivity was crucial for determining the level of 
consciousness

Transfer function: MCS vs. VS (80), control 
vs. MCS (87), control vs. VS (84)

Partial coherence: MCS vs. VS (78), control 
vs. MCS (93), control vs. VS (96)

Sitt et al. (18) Spectrum power, spectral entropy, 
Kolmogorov–Chaitin complexity, phase 
locking index, wSMI, permutation entropy

MCS 68, VS 75, CS 24, 
control 14

Best cross-validated single measure: MCS vs. VS (AUC = 71 ± 4)

Whole set of measures: MCS vs. VS (AUC = 78 ± 4)

The most discriminative measure was wSMI, which separated VS from MCS

Marinazzo et al. (41) Multivariate Granger causality, transfer 
entropy

MCS 10, EMCS 5, VS11, 
control 10

–/–/– In VS, the central, temporal, and occipital electrodes showed 
asymmetry between incoming and outgoing information

Bonfiglio et al. (42) Blink-related synchronization/
desynchronization

MCS 4, VS 5, control 12 –/–/– Blink-related synchronization/desynchronization could 
differentiate MCS from VS
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Objectives Literatures Methods Subjects Accuracy/sensitivity/specificity (%) Main results

Naro et al. (43) Spectrum power, LORETA MCS 7, VS 6, control 10 –/–/– Alpha was the most significant LORETA data correlating with 
the consciousness level

Piarulli et al. (44) Spectrum power, spectral entropy MCS 6, VS 6 –/–/– MCS showed higher theta and alpha, lower delta, higher 
spectral entropy, and higher time variability than VS

Thul et al. (45) Permutation entropy, symbolic transfer 
entropy

MCS 7, VS 8, control 24 Permutation entropy: Control vs. MCS (Max AUC = 0.74), control vs. VS (Max AUC = 0.91), MCS vs. VS 
(Max AUC = 0.74)

Symbolic transfer entropy: Control vs. MCS (Max AUC = 0.80), control vs. VS (Max AUC = 0.80), MCS vs. 
VS (Max AUC = 0.71)

Chennu et al. (46) dwPLI, brain network MCS 66, VS 23, control 26 VS vs. MCS: Alpha participation coefficient (AUC = 0.83, accuracy = 79%), alpha median connectivity 
(AUC = 0.82), alpha modular span (AUC = 0.78)

MCS− vs. MCS+: delta power averaged over all channels (AUC = 0.79)

Prognosis Babiloni et al. (47) Cortical sources estimated by LORETA VS 50, control 30 Power of alpha source predicted the follow-up recovery

Wu et al. (30) Lempel–Ziv complexity, ApEn, cross-
approximate entropy

MCS 16, VS 21, control 30 Non-linear indices of patients who recovered increased than those in non-recovery

Fingelkurts et al. (48) EEG oscillatory microstates MCS 11, VS 14 Diversity and variability of EEG for non-survivors were significantly lower than for survivors

Sarà et al. (29) ApEn VS 38, control 40 Patients with lowest ApEn either died or remained in VS, patients with highest ApEn became MCS or 
partial or full recovery

Cologan et al. (49) Sleep spindles MCS 10, VS 10 Patients who clinically improved within 6 months have more sleep spindles

Arnaldi et al. (50) Sleep patterns MCS 6, VS 20 Sleep patterns were valuable predictors of a positive clinical outcome in sub-acute patients

Schorr et al. (51) Spectrum power, coherence MCS 15, VS 58, control 24 Short- and long-range coherence had a diagnostic value in the prognosis of recovery from VS

Wislowska et al. (52) Spectral power, sleep patterns, 
permutation entropy

MCS 17, VS 18, control 26 Sleep patterns did not systematically vary between day and night in patients

Day–night changes in EEG power spectra and signal complexity were revealed in MCS, but not VS

Sleep patterns were linearly related to outcome

Chennu et al. (46) dwPLI, brain network MCS 66, VS 23, control 26 Delta band connectivity and network had a clear relationship with outcomes

Treatment 
evaluation

Williams et al. (53) Spectrum power, coherence, zolpidem Patients response in 
zolpidem 3

Spectral peak of 6–10 Hz with high spatial coherence was a predictor of zolpidem responsiveness

Manganotti et al. (54) Spectrum power, 20 Hz rTMS MCS 3, VS 3 rTMS over M1 induced long-lasting behavioral and neurophysiological modifications in one MCS patient

Carboncini et al. (55) Spectrum power, phase synchronization, 
midazolam

MCS 1 Change in the power spectrum was observed after midazolam

Midazolam induced significant connectivity changes

Cavinato et al. (56) Coherence, simple sensory stimuli MCS 11, VS 15 Increase in short-range parietal and long-range fronto-parietal coherences in gamma frequencies was seen 
in the controls and MCS

VS showed no modifications in EEG patterns after stimulation

Pisani et al. (57) Slow wave activity, 5 Hz rTMS MCS 4, VS 6 Following the real rTMS, a preserved sleep–wake cycle, a standard temporal progression of sleep stages 
appeared in all MCS but none of VS

Naro et al. (58) Spectrum power, coherence, tACS MCS 12, VS 14, control 15 TACS entrained theta and gamma oscillations and strengthened the connectivity patterns within 
frontoparietal networks in all the control, partial MCS, and some VS

Naro et al. (59) Spectrum power, coherence, otDCS MCS 10, VS 10, control 10 Fronto-parietal networks modulation, theta and gamma power modulation, and coherence increase were 
paralleled by a transient CRS-R improvement, only in MCS individuals

Naro et al. (60) Lagged-phase synchronization, network 
parameters, rTMS

MCS 9, VS 11, control 10 Two VS patients showed a residual rTMS-induced modulation of the functional correlations between the 
default mode network and the external awareness networks, as observed in MCS
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from the classical resting-state measurement. However, although 
it included an event input, the resting-state blinking used in the 
studies was also a type of spontaneous activity which differed 
from external stimulus used in ERP.

THe eeG AnALYSiS FOR PROGnOSiS

The prognosis for survival and recovery of DOC is still difficult 
under present clinical conditions (70, 71). Generally, the outcomes 
at 3 and 6 months following the first assessment were selected 
to observe the predictive performance of the measures. After 
3  months of observation, the spectrum power of EEG record-
ings showed potentially positive performance in predicting the 
outcomes of a persistent VS (a patient stays in a VS over 1 month 
after brain injury) (47). Measured by the level of the cognitive 
functioning scale (LCF), 12 of 50 patients recovered (from LCF I–
II to LCF V–VIII). All the patients stayed in a chronic DOC state 
at the first evaluation. Compared to healthy subjects, the power 
of alpha in the occipital region showed progressive decay from 
healthy subjects to recovered patients and then to non-recovered 
patients. Therefore, the alpha oscillation was implied as a predic-
tor of the possibility of consciousness recovery (47).

Studies using 6 months of observation have shown an associa-
tion of non-linear analysis indices with the follow-up recovery. 
Lempel–Ziv complexity, ApEn, and cross-approximate entropy 
have been suggested as being capable of predicting outcomes of 
DOC patients (10 of 37 recovered, with Glasgow Outcome Scale 
scores decreasing to 3). The first evaluation was conducted on 
patients who stayed in a chronic DOC state after the onset of 
brain injury for less than 6 months; the patients with increasing 
indices under painful stimuli had a higher probability of recovery 
(30). Coincidentally, another study also found that the highest 
ApEn might correspond to partial or full consciousness improve-
ment at 6 months after the first assessment (29). The prognostic 
value of resting-state EEG in predicting survival or non-survival 
6 months after brain injury was also proven by EEG oscillatory 
microstate analyses (48). The first EEG recording of the patients 
was obtained between 14  days and 3  months after acute brain 
events. The diversity and variability of EEG oscillations and the 
probability of the appearance of delta, theta (slow and fast), and 
alpha oscillations were shown to be potential prognostic features 
in predicting the outcomes of DOC at the group level. In a recent 
study, 39 of 61 patients had positive outcomes (assessed by 
Glasgow Outcome Scale-Extended) at 1 year following the first 
assessment (46). EEG analysis of the patients found that the con-
nectivity and brain network parameters in delta band had a clear 
relationship with their outcomes. Meanwhile, EEG sleep patterns 
were also demonstrated valuable predictors of patients’ clinical 
outcomes (49, 50, 52). Especially, the density of sleep spindles 
provided significantly predictive and valuable information about 
the clinical outcomes of DOC patients.

THe eeG AnALYSiS FOR THe 
evALUATiOn OF bRAin inTeRvenTiOn

Due to a variety of etiological, brain injury, and cortical condi-
tions, DOC patients have shown various responses to treatment 
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therapies (20, 72). A precise evaluation of the cerebral responses 
in the treatment would be helpful for understanding the mecha-
nism of the intervention and facilitate the creation of individual 
therapeutic strategies. In practice, behavioral changes induced by 
treatment might be long-lasting accumulated effects that could 
not be observed immediately. Recently, indices based on EEG 
analyses were applied to monitor the instantaneous cerebral 
responses in pharmacological and non-pharmacological brain 
interventions (16).

Spectrum power, connectivity of coherence, and phase syn-
chronization have been used to assess the cerebral changes of  
patients in pharmacological treatment (53, 55). For MCS patients 
who respond to midazolam, spectrum power changes and con-
nectivity changes were found after taking the medication (55). 
While under zolpidem treatment, all patients showed a distinct 
low-frequency oscillatory peak at approximately 6–10  Hz over 
the fronto-central regions (53). Resting-state EEG in non- 
pharmacological interventions have been investigated in DOC 
treatment, such as spinal cord stimulation (61), repetitive 
transcranial magnetic stimulation (rTMS) (54, 57, 60), sensory 
stimuli (56), transcranial alternating current stimulation (58), 
and oscillatory transcranial direct current stimulation (59). The 
fronto-parietal networks of the MCS in the theta and gamma 
bands have been demonstrated as being responsive to transcranial 

current stimulation, with little reactivity found in the VS (58, 59). 
This modulation of a consciousness-related network may suggest 
more benefits to the MCS than the VS from transcranial current 
stimulation, and the differential cortical responses between the 
MCS and VS might provide a stimulus-response approach for 
diagnoses. Similarly, the different EEG responses between the 
MCS and VS have also been demonstrated in rTMS, proven by 
spectrum power (54), complex network parameters (60), and slow 
wave activity in sleeping (57). In addition, we have attempted to 
use resting-state EEG as an assistive method for parameter selec-
tion in spinal cord stimulations of patients with DOC (61).

SUMMARY AnD COnCLUSiOn

The characteristics that have been applied in DOC-related studies 
could be generally classified into five categories: the spectrum, 
entropy, connectivity, the network, and the sleeping pattern. We 
summarize the primary features that are frequently used in DOC 
studies (Figure 1). We found that spectrum power, coherence, and 
entropy were the most frequently used features in differentiating 
consciousness levels, predicting follow-up outcome or measuring 
patients’ cortical response to brain intervention. Comparisons of 
various methods with multiple indices were performed in two 
studies (18, 40). Indices derived from spectrum, non-linear 
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analysis, information theory, and functional connectivity were 
investigated. A discrimination performance of the measures 
supports power spectrum and functional connectivity as having 
the best performance in separating the VS from the MCS and 
healthy subjects (18). In addition, permutation entropy in the 
theta frequency also has relatively higher classification accuracy 
in distinguishing the MCS and VS.

Spectral power measures the strength of neuronal oscillations, 
which depend on the spontaneously activity of underlying oscilla-
tors (neurons) (73). Spectral power at some specific frequency can 
reveal relationships between the activity of groups of neurons and 
consciousness levels (24, 39). Reviewing the studies, increases of 
low power (delta and theta), and decreases of high power (alpha) 
were common spectrum characteristics of patients with DOC. 
In comparing the MCS and VS, the latter has increased delta 
and decreased alpha power than the former. Therefore, a power 
ratio index may be first considered to help us qualitatively assess 
the consciousness state of patients. In predicting the follow-up 
outcomes, alpha power should always receive attention. In addi-
tion, theta and alpha bands are also critical frequency bands in 
assessing cortical responses to brain interventions.

Since the neuronal oscillations and synchronization are two 
essential features of the conscious brain (74), synchronization 
should be a critical feature in understanding the consciousness 
of patients with DOC. Synchronization analysis could reveal 
direct structural connections or indirect information flows, and 
it could concurrently provide temporal causality and spatial links 
(2, 75). Non-directed (coherence, the phase locking index, partial 
directed coherence, the imaginary part of coherence, the dwPLI, 
cross-approximate entropy, and wSMI) and directed (transfer 
entropy, symbolic transfer entropy, mutual information, and 
Granger causality) connectivity measurements were used to reveal 
the “disconnection” characteristics of patients with DOC (32, 64).  
Among the measurements, coherence is the most commonly 
used method. In addition, disconnection between the frontal and 
other regions, especially the fronto-parietal, was shown to be a 

significant biomarker, whether assessing the consciousness level 
or evaluating the brain response to intervention. However, when 
taking the synchronization feature into actual clinical operation, 
the reference location, artifact robustness, volume conduction, 
interesting regions, and cautious physiological explanations 
should be taken into account.

Similar to EEG complexity in a sleep or anesthesia state 
(76–78), the complexity measures in DOC were based on the 
hypothesis that neural activities would be suppressed in a brain of 
a low consciousness level, and thus fewer components would be 
included in the EEG signals. EEG complexity, whether measured 
in the time domain (such as approximate entropy, Lempel–Ziv 
complexity, Kolmogorov–Chaitin complexity, and permutation 
entropy) or the frequency domain (BIS and spectral entropy), 
provided relatively effective and readily comprehensible indices 
(range of 0–1 or 0–100, with higher value corresponding to 
higher consciousness level) to describe brain electrical activities 
under different consciousness states. Therefore, complexity char-
acteristics may have potential value in quantitatively describing 
the consciousness level of patients with DOC and finally are 
implanted into monitors for daily caring.
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