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Silicon quantum processor with robust
long-distance qubit couplings
Guilherme Tosi 1, Fahd A. Mohiyaddin1,3, Vivien Schmitt1, Stefanie Tenberg1, Rajib Rahman2,

Gerhard Klimeck2 & Andrea Morello 1

Practical quantum computers require a large network of highly coherent qubits, inter-

connected in a design robust against errors. Donor spins in silicon provide state-of-the-art

coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor

processing. Here we present a scalable design for a silicon quantum processor that does not

require precise donor placement and leaves ample space for the routing of interconnects and

readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin

states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit

gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling

beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave

resonators can extend the entanglement to macroscopic distances. We predict gate fidelities

within fault-tolerance thresholds using realistic noise models. This design provides a realiz-

able blueprint for scalable spin-based quantum computers in silicon.
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The successful implementation of quantum algorithms
requires incorporation of error correction codes1 that deal
with the fragile nature of qubits. The highest tolerances in

error rates are found when using nearest-neighbor topological
codes2, long-distance entanglement links3, or a combination of
both4. There exist several physical platforms where state pre-
servation5–7, qubit control8–11, and two-qubit logic gates8, 12 are
achieved with fault-tolerant fidelities. The ultimate goal is to
integrate a large number of qubits in expandable arrays to con-
struct a scalable, universal quantum processor.

Donor spin qubits in silicon are an appealing physical platform
for that goal, due to their integrability with metal-oxide-
semiconductor (MOS) structure and nanometric unit size13. By
using isotopically enriched 28Si as the substrate material14, donor
spins offer coherence times around a second (for the electron) or
a minute (for the nucleus)7, up to hours in bulk ensembles6, and
control error rates as small as 10−4 11. However, integrating
several of these qubits in a scalable architecture remains a for-
midable challenge, mainly because of the difficulty in achieving
reliable two-qubit gates.

The seminal Kane proposal15 for a nuclear-spin quantum
computer in silicon described the use of short-range exchange
interactions J between donor-bound electrons, to mediate an
effective inter-nuclear coupling of order ~100 kHz at a ~15 nm
distance. However, the exchange interaction has an exponential
and oscillatory spatial behavior that can result in an order of
magnitude variation in strength upon displacement by a single
lattice site16, 17. Notwithstanding, plenty of progress has been
made in the experimental demonstration of the building blocks of
a Kane-type processor18–21, including the observation of inter-
donor exchange22–24. Slightly relaxed requirements on donor

placement can be found when using a hyperfine-controlled
exchange interaction between electron spin qubits25, or a slower
magnetic dipole-dipole coupling effective at ~30 nm distances26.
Other proposals space donors further apart by introducing some
intermediate coupler, e.g., donor chains27, 28, charge-coupled
devices29, ferromagnets30, probe spins31, or quantum dots32.

Here we introduce the design of a large-scale, donor-based
silicon quantum processor based upon electric dipole interac-
tions. This processor could be fabricated using existing technol-
ogy, since it does not require precise donor placement. The large
inter-qubit spacing, >150 nm, leaves sufficient space to inter-
sperse classical control and readout devices, while retaining some
of the compactness of atomic-size qubits. Stabilization schemes
largely decouple the qubits from electric noise while still keeping
them sensitive to electric drive and mutual coupling. Finally, the
whole structure retains the standard silicon MOS materials stack,
important for ultimate manufacturability.

Results
Coupling Si:P spin qubits to electric fields. The phosphorus
donor in silicon comprises an electron spin S= 1/2 with gyro-
magnetic ratio γe = 27.97 GHz T−1 and basis states #j i, "j i, and a
nuclear spin I= 1/2 with gyromagnetic ratio γn= 17.23MHz T−1

and basis states +j i; *j i. The electron interacts with the nucleus
through the hyperfine coupling A≈ 117MHz. When placed in a
large magnetic field B0 (γþB0 � A, with γ+= γe + γn), the eigen-
states of the system are the separable tensor products of the basis
states, i.e., #*j i, #+j i, "+j i, "*j i (Fig. 1c). The electron and the
nucleus can be operated as single qubits by applying oscillating
magnetic fields resonant with any of the transitions frequencies
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Fig. 1 Coupling donor spin qubits to electric fields via hyperfine modulation. a Qubit unit cell, in which the electron interface state, |i〉, is coupled to the
donor-bound state, |d〉, by a tunnel rate Vt. The solid black line represents the conduction band profile along z. b Bloch sphere of a flip-flop spin qubit coupled
to a vertical electric field Ez via the hyperfine interaction A. Electron-nuclear singlet and triplet states are denoted by S ¼ #*j i � "+j ið Þ= ffiffiffi

2
p

and
T0 ¼ #*j i þ "+j ið Þ= ffiffiffi

2
p

. c Si:P electron-nuclear spin levels, showing standard electron spin resonance (ESR) and nuclear magnetic resonance (NMR)
transitions, together with hyperfine-enabled EDSR. d Atomistic tight-binding simulations72 (dots) of the electron-nucleus hyperfine interaction, for a zd=
15.2 nm deep donor, as a function of vertical electric field. The solid line is a fit using the simplified two-level Hamiltonian Horb þHorb

A , which yields Vt= 9.3
GHz (see Supplementary Note 1). The insets show the electron ground-state wavefunction, gj i, in the region within dashed lines in a, for three different
vertical electric fields. Scale bar is 10 nm
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between eigenstates that differ by the flipping of one of the spins,
e.g., #*j i↔ "*j i for the electron qubit, etc. (Fig. 1c).

We envisage a device where a shallow 31P donor is embedded
in an isotopically enriched 28Si crystal at a depth zd from the
interface with a thin SiO2 layer (Fig. 1a). The orbital wavefunction
ψ of the donor-bound electron can be controlled by a vertical
electric field Ez applied by a metal gate on top. It changes from a
bulk-like donor state at low electric fields to an interface-like state
at high fields33, 34 (insets in Fig. 1d). The hyperfine interaction A
(Ez), proportional to the square amplitude of the electron
wavefunction at the donor site |ψ(0, 0, zd)|2, changes accordingly
from the bulk value A≈ 117MHz to A≈ 0 when the electron is
fully displaced to the interface (Fig. 1d). Shifting the electron
wavefunction also results in the creation of an electric dipole
μe= ed, where e is the electron charge and d is the separation
between the mean positions of the donor-bound and interface-

bound wavefunctions (d≲ zd, see Supplementary Note 1). The
induced electric dipole μe has been largely overlooked in the past,
but plays a crucial role in this proposal.

The key idea is to define a new qubit, called henceforth the flip-
flop qubit, described in the subspace spanned by the states #*j i,
"+j i. Transitions between these basis states cannot be induced by
magnetic resonance, because there is no change in the z-
component of the total angular momentum. However, the
hyperfine interaction, AS ⋅ I, is a transverse term in the flip-
flop basis, since its eigenstates are S ¼ #*j i � "+j ið Þ= ffiffiffi

2
p

and
T0 ¼ #*j i þ "+j ið Þ= ffiffiffi

2
p

(Fig. 1b). Therefore, electrically mod-
ulating A(Ez) at the frequency

ϵff ðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γþB0
� �2 þ A Ezð Þ½ �2

q
; ð1Þ

corresponding to the flip-flop qubit energy splitting, causes an
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Fig. 2 Robustness to electric noise. a Charge, ϵo, and flip-flop, ϵff , qubit transition frequencies as a function of vertical electric field Ez, for B0= 0.4 T, A= 117
MHz, d= 15 nm, Δγ= −0.2% and Vt= 11.44 GHz. The inset shows the level diagram of flip-flop states coupled to charge states. CT stands for “clock
transition” and CQSS for “charge qubit sweet spot”. b Estimated flip-flop qubit dephasing rate, assuming electric field noise Enoisez;rms ¼ 100 Vm−1. c Ez-
dependence of flip-flop precession frequency for the three indicated tunnel coupling values. d Flip-flop qubit relaxation rate, with arrows indicating the
adiabatic path used for z-gates. e Flip-flop qubit dephasing rate due to Ez noise and relaxation, at second-order CTs for each B0. f Device structure to tune
the tunnel coupling Vt of the charge qubit. Scale bar is 30 nm. g Vt as a function of right gate voltage, calculated using a finite element Poisson solver
(Synopsis TCAD) and atomistic tight biding (NEMO-3D)72. The insets illustrate the NEMO-3D wavefunctions inside dashed region in f, for three right gate
voltages Vr= −1, −0.35 and −0.27 V. The left gate voltage is Vl= −0.5 V for all the simulations, and the top gate is biased such that the position of the
electron is in between the donor and interface. Scale bar is 20 nm. The donor is assumed to be zd= 9.2 nm below the Si/SiO2 interface
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electric dipole spin resonance (EDSR) transition between the
#*j i, "+j i basis states35, 36 (Fig. 1c). This transition is faster at the
“ionization point”, where the electron is shared halfway between
donor and interface, since A(Ez) can vary strongly upon the
application of a small voltage on the top gate.

Electrical noise and relaxation. Since the qubit operation is
based upon the use of electric fields, a natural concern is the
fragility of the qubit states in the presence of electric noise. Below
we show that there are special bias points that render the flip-flop
qubit operation highly robust against noise.

A quantum-mechanical description of the system is obtained
by treating also the electron position as a two-level system
(effectively a charge qubit; see Supplementary Note 1 for a
justification of this two-level approximation), where the vertical
position of the electron is represented by a Pauli σz operator, with
eigenvectors |d 〉, for the electron at the donor, and |i 〉 at the
interface (Fig. 1a, d). The simplified orbital Hamiltonian reads (in
units of Hz):

Horb ¼
Vtσx � e Ez � E0

z

� �
d=h

� �
σz

2
; ð2Þ

where Vt is the tunnel coupling between the donor and the
interface potential wells, E0

z is the vertical electric field at the
ionization point, and h is the Planck constant. The electron
ground |g 〉 and excited |e 〉 orbital eigenstates depend on Ez
(Fig. 1d) and have an energy difference given by:

ϵo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtð Þ2 þ e Ez � E0

z

� �
d=h

� �2q
ð3Þ

At the ionization point, the energy difference between
eigenstates ej i ¼ dj i þ ij ið Þ= ffiffiffi

2
p

and gj i ¼ dj i � ij ið Þ= ffiffiffi
2

p
is

minimum and equal to Vt (Fig. 2a), and therefore first-order
insensitive to electric noise, ∂ϵo/∂Ez= 0. This bias point is referred
to as the “charge qubit sweet spot”37 (CQSS—Fig. 2a).

Conversely, the bare flip-flop qubit energy is expected to
depend strongly on Ez, through the combined effect of the
hyperfine interaction A (Eq. 1) and the orbital dependence of the
electron gyromagnetic ratio, γe. Indeed, the gyromagnetic ratio of
an electron confined at a Si/SiO2 interface can differ from that of
a donor-bound electron by a relative amount Δγ up to 0.7%38.
Therefore, the Zeeman terms in the Hamiltonian must include a
dependence of the electron Zeeman splitting on its orbital
position, i.e., the charge qubit σz operator:

Horb
B0

¼ γeB0 1þ 1þ σz
2

� �
Δγ

	 

Sz � γnB0Iz: ð4Þ

We can also write the hyperfine coupling as an operator that
depends on the charge qubit state:

Horb
A ¼ A

1� σz
2

� �
S � I ð5Þ

Indeed, this simple two-level approximation, shown as a black
line in Fig. 1d, reproduces the full tight-biding simulations (yellow
dots).

The overall flip-flop qubit transition frequency as a function of
Ez becomes:

ϵff A; γeð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γe Ezð Þ þ γn½ �2B0

2 þ A Ezð Þ½ �2
q

; ð6Þ

shown in Fig. 2a (dashed line), where we assumed Δγ= −0.2%38.
ϵff (A, γe) shows a steep slope around the ionization point, mostly
caused by the Ez-dependence of γe (the dependence on A is less

significant because γþB0 � A). Therefore, while Ez � E0
z is the

fastest operation point for the flip-flop qubit driven by a resonant
modulation of A, one might expect it to be the most prone to
qubit dephasing from charge and gate noise, through the
influence of Ez on γe.

However, computing instead the full flip-flop qubit Hamilto-
nian,

Hff ¼ Horb
B0

þHorb
A þHorb; ð7Þ

reveals that the qubit transition frequency has an extra bend
around the ionization point (Fig. 2a, thick yellow line). This comes
from Eq. (5), which provides a transverse coupling gso between
the flip-flop and charge qubits (inset in Fig. 2a):

gso ¼ A
4
Vt

ϵo
ð8Þ

As a result, the electron orbit dispersively shifts the flip-flop qubit
by, to second order:

Dorb Ezð Þ ¼ gso Ezð Þ½ �2
δso Ezð Þ ; ð9Þ

where δso= ϵo − ϵff , reducing the flip-flop qubit frequency to:

ϵff A; γe;Dorbð Þ ¼ ϵff A; γeð Þ � Dorb Ezð Þ; ð10Þ

Dorb(Ez) is largest around Ez � E0
z , since δso is lowest (i.e., the

charge qubit frequency comes closest to the flip-flop qubit,
Fig. 2a) and gso is highest. Equation (10) (thin black line in
Fig. 2a) agrees with full numerical simulations of the Hamiltonian
in Eq. (7).

Such a dispersive shift stabilizes the flip-flop precession
frequency against noise. To quantify that, we assume a quasi-
static electric field noise with 100 Vm−1 r.m.s. amplitude along
the donor-dot direction (z-axis in Fig. 1a). This noise is
equivalent to a 1.5 μeV charge detuning noise for d= 15 nm,
consistent with experimentally observed values in similar silicon
devices39–41—see Supplementary Note 3. The estimated—see
Methods section—dephasing rates can be as low as 1=T�

2 � 3 kHz
(Fig. 2b), comparable to the ones due to magnetic noise
(1=T�

2 � 1 kHz in 28Si nanostructures7). This can be understood
from Fig. 2c, which shows the qubit precession frequency
dependence on Ez, for three different values of Vt. For small
detunings δso, i.e., Vt close to ϵff , the dispersive shift around the
ionization point is strong, yielding two first-order “clock
transitions” (CT), where ∂ϵff /∂Ez= 0 where the dephasing rate
is reduced. By increasing Vt, the two first-order points merge into
a single one in which both the first and second derivatives vanish,
yielding the slowest qubit dephasing.

Another source of errors could come from relaxation via
coupling to phonons. This is not an issue for bulk donors, where
electron spin relaxation time is T1;s � 1 s18. However, due to the
particular valley composition of the flip-flop qubit near the
ionization point, its relaxation rate 1/T1,ff due to charge-phonon
coupling is enhanced42. We estimate it by noting that, if
δso � gso, 1/T1,ff is equal to the amount of charge excited state
in the flip-flop eigenstates43 times the charge relaxation rate42:

1=T1;ff ¼ gso=δsoð Þ2=T1;o; ð11Þ

1=T1;o ¼ ΘϵoVt
2; ð12Þ

where T1,o is the charge qubit lifetime and Θ≈ 2.37 × 10−24 s2 is
determined by the silicon crystal properties42. Therefore, as can
be seen from Fig. 2d, the higher the detuning δso, the slower the
relaxation. In particular, at the second-order CT, the qubit
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dephasing can be limited by relaxation, 1=T�
2 ¼ 1=2T1 � 104 Hz.

This limitation can be overcome by reducing B0 (Fig. 2e).
Tuning a flip-flop qubit into a clock transition requires the

ability to tune the tunnel coupling Vt. The latter is difficult to
control at the fabrication stage, given its exponential dependence
on donor depth, together with oscillations at the atomic scale44

arising from a similar valley interference effect as the one
afflicting the exchange interaction16. Indeed, ion-implanting a
donor at zd≈ 15 nm below the interface happens with a vertical
uncertainty of order ±10nm45, resulting in more than two orders
of magnitude uncertainty in Vt

44. Therefore, it is crucial to
implement a method to tune Vt in situ. A possible solution is to
displace the location of the interface wavefunction laterally, which
in turn modifies the overlap between the donor and interface
wavefunctions and therefore Vt. This can be done by adding two
gates on either side of the top gate, which pulls the donor electron
to the interface (Fig. 2f), in such a way that a relative voltage
between the gates can modify the interface lateral potential
landscape. This gate stack is identical to the well-established
scheme for the confinement of single electrons in Si quantum
dots10. This technique allows Vt to be tuned by at least wo orders
of magnitude (Fig. 2g), therefore circumventing the uncertainty in
donor depth and Vt arising from ion-implantation.

Adiabatic phase control. The presence of slow dephasing regions
is important to control the qubit phase with high fidelity. In our
quantum processor, idle qubits are decoupled from electric fields
by fully displacing the electron either to the interface or to the
donor. Performing quantum operations on the qubit requires
displacing the electrons close to the ionization point, which in
turn changes its precession frequency (Fig. 2a). As a result, the
accumulated phase must be corrected after quantum operations.
This is optimally done by moving the electron to the second-
order clock transition, therefore minimizing dephasing errors. At
this point, the flip-flop qubit phase precesses �ΔγγeB0=2� Dorb
faster than its idle point, and therefore any phase correction in a
2π period can be applied within tens of ns. The dephasing rate at

the CT, on the order of a few kHz, would cause very small errors
(<10−4). However, while moving the electron from the interface
toward the donor, the flip-flop qubit goes through regions of fast
dephasing (Fig. 2b), and therefore this operation has to be per-
formed as quickly as possible. It also has to be slow enough as to
avoid erros due to non-adiabaticity, which include, e.g., leakage to
unwanted high-energy states. These errors depend on the adia-
batic factor K, which quantifies the fractional rate of change of the
system’s eigenstates (the higher the value of K, the more adiabatic
and slower is the process—see Methods section).

In Fig. 3a, we plot the time dynamics of an initial state gj i 	
#*j i þ "+j ið Þ= ffiffiffi

2
p

while sweeping Ez adiabatically (K= 50) to
move the electron from the interface to the second-order CT and
back, in order to realize a π z-gate. The initial adiabatic set-up
part consists of a fast sweep (0.8 ns), allowed by the large charge
qubit splitting when Ez � E0

z , followed by a slower sweep (3.5 ns),
limited by the proximity of excited charge states to the flip-flop
qubit when Ez � E0

z . The electron then remains at the CT for 60
ns, before adiabatically moving back to the interface. During the
total 69 ns, the flip-flop qubit phase is shifted by π, with adiabatic
errors, averaged over a set of initial flip-flop states—see Methods
section—around 10−4. These errors can be controlled with the
factor K, which determines the set-up time (see Fig. 3b).

Quasi-static Ez noise can increase errors, due to dephasing
(Fig. 3c). At realistic noise levels (100 Vm−1), the gate error rate
is found to be <10−4. Similar error levels arise due to relaxation,
which remains below 3 × 104 Hz (Fig. 2d).

Note that the presence of clock transitions does not affect the
ability to use Eac to resonantly drive the qubit, since the transverse
term A(Ez) still responds fully to the electric field (this is similar
to the case of magnetic clock transitions, e.g,. in Si:Bi46).

Electric drive of the flip-flop qubit. We now explain how high-
fidelity one-qubit x(y)-gates can be achieved via electric drive of
the flip-flop qubit. The fastest one-qubit gates are obtained when
the electron is around the ionization point, where ∂A/∂Ez is
maximum (Fig. 1d). A vertical oscillating electric field of ampli-
tude Eac is applied (Fig. 4a) in resonance with the flip-flop qubit,
i.e., νE= ϵff . A large detuning δso � gso (Fig. 4b) ensures the least
amount of the charge excited state ej i in the qubit eigenstates,
minimizing qubit relaxation via charge-phonon coupling. The
flip-flop qubit is still driven, via a second-order process, at a rate
(half-Rabi frequency):

g ffE ¼ gsogE
2

1
δso

þ 1
δE

� �
; ð13Þ

where δE= νE − ϵo and gE is the driven electric coupling rate
between the two charge eigenstates:

gE ¼ eEacd
4h

Vt

ϵo
; ð14Þ

where Eac is the amplitude of a sinusoidal drive. Equation (13)
provides another explanation of why the fastest one-qubit gates
are obtained when the electron is at the ionization point: δso and
δE are minimum (ϵo is minimum), and gso and gE are maximum
(Eqs. (8) and (14)).

The electrical drive can cause some excitation of the charge
qubit. It is therefore convenient to turn Eac on/off adiabatically to
make sure the charge is de-excited at the end of the gate.
Figure 4c shows the Eac time evolution needed for a π/2 x-gate,
where we have assumed an adiabatic factor K= 30, sufficient for
leakage errors <10−3. Eac increases steadily until a π/4 rotation is
completed, after which Eac is gradually switched off to achieve an
adiabatic π/2 x-gate. An average 4% excitation of the charge qubit
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where þff

x

�� � ¼ "+j i þ exp �i2πϵt¼0
ff

� � #*j i� �
=

ffiffiffi
2

p
and

�ff
x

�� � ¼ "+j i þ exp �i2πϵt¼0
ff � iπ

� � #*j i� �
=

ffiffiffi
2

p
. Fast oscillations between

the charge and flip-flop states are due to small deviations from perfect
adiabaticity. b π z-gate leakage error for different adiabatic set-up times,
which are set by the factor K. c π z-gate error due to quasi-static Ez noise, at
the second-order CT at B0= 0.4 T, for different noise amplitudes and
adiabatic set-up times
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causes a ~4 × 104 Hz relaxation rate of the encoded quantum state
(Eq. 12), or error levels close to 10−3.

We then investigate how the total π/2 x-gate errors depend on
the biasing of the electron wavefunction. At the ionization point,
Ez ¼ E0

z , error levels close to 10−3 are found over a wide range of
Vt (Fig. 4e). The K= 30 choice ensures adiabatic errors <10−3

with an oscillatory character typical of adiabatic processes47. At
small Vt (and therefore small detuning δso), the qubit eigenstates
contain a substantial amount of charge, causing more errors due
to charge-phonon relaxation. Increasing the detuning δE with
larger Vt allows for a faster adiabatic sweep and higher powers
(Fig. 4d), yielding shorter gate times and therefore less errors due
to quasi-static noise. Still, the incident power is at least three
orders of magnitude lower than the one needed to drive donor
electron spin qubits, at the same Rabi frequency, with oscillating
magnetic fields7, 19.

As Fig. 4f shows, low error rates are still available away from
the ionization point, even though best values are found at
Ez ¼ E0

z . This is because our gate times are so fast that dephasing,
and therefore CTs, do not play a crucial role. Instead, quasi-static
Ez noise cause errors mainly by modulating the driving strength
g ffE , causing “gate time jitter”. Indeed, the gate time is sensitive to
the orbital transition frequency ϵo (Eq. 13), and therefore gate

errors are minimized close to the charge qubit sweet spot (CQSS),
where ∂ϵo/∂Ez = 0 (Fig. 2a).

Finally, as Fig. 4g shows, lower quasi-static Ez noise can cause
less errors, provided that the adiabatic factor K is increased, to
reduce leakage errors, up to an optimum value where gate times
are still fast as to keep noise errors low. Relaxation errors could
also be reduced by reducing B0 (recall Fig. 2e).

A number of other noise sources, including high frequency
charge noise, Johnson-Nyquist, and evanescent-wave Johnson
noise48 (EWJN) also affect qubits that are sensitive to electric
fields. However, as we discuss in Supplementary Note 3, the
corresponding error rates are much lower than the ones already
previously mentioned—see all estimated error levels in Table 1.

Two-qubit coupling via electric dipole interaction. We now
present the method to couple donor spins that lies at the heart of
our scalable quantum processor. It exploits the electric dipole that
naturally arises when a donor-electron wavefunction is biased to
the ionization point (Fig. 5a), due to the fact that a negative
charge has been partly displaced away from the positive 31P
nucleus. The electric field produced by this induced dipole in
turn, modifies the energy of a nearby donor which is also biased
at the ionization point, resulting in a long-range coupling
between the two.

The interaction energy between two distant dipoles, μ1 and μ2,
oriented perpendicularly to their separation, r, is49

Vdip ¼ μ1μ2= 4πεrε0r3ð Þ, where ε0 is the vacuum permittivity
and ϵr the material’s dielectric constant (εr= 11.7 in silicon). The
electric dipole of each donor-interface state is μi= edi(1 + σz,i)/2,
implying that the dipole-dipole interaction Hamiltonian is:

Hdip ¼ Vdd σz;1σz;2 þ σz;1 þ σz;2
� � ð15Þ

Vdd ¼ 1
16πε0εrh

e2d1d2
r3

ð16Þ

This electric dipole-dipole interaction is therefore equivalent to
a small shift in the equilibrium orbital position of both electrons
plus a coupling term between the charge qubits (blue dashed
rectangle in Fig. 5b) equal to:

gdd ¼ Vdd
Vt;1Vt;2

ϵo;1ϵo;2
ð17Þ

Note that this interaction can be stronger due to the presence
of a metallic interface on top of the qubits, which enhances
vertical dipoles—see Supplementary Note 2. Most importantly,
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Fig. 4 High-fidelity electrically driven adiabatic x(y)-gates. a Spatial
representation and b level diagram, for electrical drive of a flip-flop qubit,
showing partially ionized electron wavefunction and spin arrows. c Time-
dependent adiabatic drive amplitude and qubit dynamics of a π/2 x-gate,
for K= 30, B0= 0.4 T, Ez ¼ E0z ; and Vt= 11.5 GHz. Bottom plot shows flip-
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 �
, electron position, 〈σz〉, and charge qubit state,

ej i eh j � gj i gh jh i. For the same parameters, d shows the averaged drive
power and gate time, and e the error rates for different Vt. To estimate the
drive power, we assumed a 50Ω line in which a 1 μV AC voltage produces a
10 Vm−1 AC vertical electric field. f Estimated flip-flop qubit π/2 x-gate
error due to quasi-static noise with amplitude Enoisez;rms ¼ 100 Vm−1. g
Dependence of gate error rate on the electric noise r.m.s. amplitude and
adiabatic factor K (which sets the gate time)

Table 1 Error rates of x(y)-gates from different noise
sources as discussed in Supplementary Note 3

Noise source Spectral bandwidths

Quasi static
(<106 Hz)

Rabi (~107 Hz) Qubit (~1010 Hz)

1/f vertical (Ez) 10−3 <10−4 10−4

1/f horizontal
(Ex,y)

10−4 <10−5 -

Charge-phonon
relaxation

- - 10−3

Johnson-
Nyquist

≪10−5 <10−5 <10−4

EWJN - <10−6 <10−4

Hyphens indicate non-existent or negligible errors.
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since each flip-flop qubit is coupled to their electron position
(Eq. 5), the electric dipole-dipole interaction provides a natural
way to couple two distant flip-flop qubits.

Indeed, the effective coupling rate between two flip-flop qubits
at the ionization point, Fig. 5d, exceeds 10MHz around two

narrow regions. These bands can be understood from the energy-
level diagram shown in Fig. 5c. The two charge qubits in Fig. 5b
form hybridized molecular states, which are coupled to each flip-
flop qubit. The two-qubit coupling rate is maximum when in
resonance with a molecular state. However, this regime induces
too many relaxation errors due to resonant charge excitation.
Therefore, it is best to detune the flip-flop qubits from the
molecular states, while still keeping a substantial inter-qubit
coupling rate, via a second-order process, equal to:

g ff2q ¼ gso;1gso;2αβ
1

Ddd � δso;1
þ 1
Ddd þ δso;2

� �
; ð18Þ

where Ddd is the charge eigenenergies shift and α, β the
eigenstates coefficients—see Fig. 5c caption.

Two-qubit gates start with both electrons at the interface,
where qubits are decoupled since the electric dipoles and the
hyperfine interactions are first-order insensitive to vertical electric
fields. Indeed, from Eq. (18), g ff2q is negligible since gso vanishes
and δso diverges. The electrons are then simultaneously and
adiabatically displaced to the ionization point for a time necessary
for an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate, before returning to the interface. In Fig. 6a,

we show the dynamics of a two-qubit gate performed with an
adiabatic factor K= 30, following the trajectory shown in Fig. 5e.
Similarly to one-qubit z-gates, the electron is first displaced in a
fast time scale (~0.3 ns) set by the charge qubit parameters (ϵ0
and Vt), followed by a slower sweep (~19 ns) set by the spin-
charge coupling parameters (δso and gso), until it reaches the
ionization point. The electron remains still for a short time before
the whole process is then reversed. In the end, a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate is

performed. While some amount of charge is excited during the
process, it goes back to its ground state, ggj i, with an adiabatic
error around 10−3.

We quantify the two-qubit gate fidelity in presence of the most
deleterious noise types for our qubits, namely quasi-static Ez noise
and charge-phonon relaxation. For this, we observe that the
optimal gate fidelities are achieved when Ez τ ffiffiffiffiffiffiffiffiffiffi

iSWAP
p =2

� �
� E0

z .

Similarly to one-qubit x-gates, this happens because
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates are sensitive to gate time jitter, and therefore errors are
minimized at the CQSS, where g ff2q is robust against Ez noise to
first order—recall Fig. 5e and Eq. (18). An optimization algorithm
finds the best adiabatic factor K that minimizes errors due to Ez
noise for each value of Vt,1=Vt,2 =Vt. The result is shown in
Fig. 6b. Smaller detunings δso (small Vt) result in shorter gate
times, which in turn reduces errors from quasi-static noise.
However, this also implies a larger admixture of charge in the
qubit eigenstates, which slightly increases relaxation errors. The
lowest error rates, ~3 × 10−3 are found at small detunings, Vt − ϵff
− gdd≈ 100MHz (Vt≈ 11.59 GHz). At even smaller detunings,
the two-qubit coupling rate becomes too fast, requiring faster
adiabatic sweeps to avoid over-rotation (lower K, Fig. 6b) and
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generating more leakage errors. The gate errors remain within
10−3 − 10−2 for a wide range of Vt. Finally, we estimate in Fig. 6c
how noise errors depend on the noise amplitude and adiabatic
factor K, which sets the gate time.

Our proposed two-qubit gates are not only well protected
against noise, but also robust against donor misplacement.
Variations in r, d1, and d2 mainly cause variations in the charge
qubits coupling gdd, therefore simply changing the energy
separation between molecular charge states (Fig. 5c). However,
the coupling g ff2q between the flip-flop qubits can be kept
essentially constant by simply readjusting Vt, using, e.g., the
method described in Fig. 2f, g. Figure 5d shows that one can keep
a constant value of, e.g., g ff2q ¼ 1MHz for any inter-donor spacing
between 180 and 500 nm, by adjusting Vt between 11.3 and 11.8
GHz. In other words, since the flip-flop qubit coupling is
mediated by a tunable interaction with their respective charge
qubits, the inter-qubit interaction does not need to decay with r3,
as one would otherwise get when the dipole interaction couples
the qubits directly26, 31. Therefore, two-qubit operations can be
turned on between pairs of qubits separated by many sites in a
two-dimensional array. This tunable long-range connectivity can
be exploited to great advantage in large-scale quantum proces-
sors50. The large tolerance in gdd also accommodates very well the
donor depth uncertainties inherent to ion implantation45, given
the linear dependence of g ff2q on di (Eqs. (16) and (17)).

We conclude that our scheme provides a dramatic reduction in
the fabrication complexity, especially compared to schemes that
require placing a gate between a pair of tightly spaced donors,
such as the Kane’s proposal15, which requires r≈ 15 nm
separation between two 31P nuclear spins. Note that, by relocating
the problem of valley oscillations from the exchange interaction15

to the tunnel coupling, we have effectively provided a way in

which the delicate parameter can now be tuned using a much
simpler gate geometry.

Scaling up using circuit quantum electrodynamics. In order to
reach the long-term goal of a large-scale quantum processor,
wiring up the control and read-out lines for each individual qubit
is not trivial, given the high density in typical spin qubit archi-
tectures51. Recent solutions include cross-wiring using multilayer
lithography26 or floating gate electrodes inspired by dynamic
random access memory systems52. In both cases, using flip-flop
qubits with long-distance interactions would result in widely
spaced donors and loose fabrication tolerances. In addition, since
flip-flop qubits are coupled via electric fields, they could be spaced
further apart by using electrical mediators. These include floating
metal gates53 or even microwave resonators. Indeed, the use of
electric dipole transitions allows a natural integration of donor-
based spin qubits into a circuit-quantum electrodynamics archi-
tecture43, 54–56 (see Fig. 7c for a possible device layout).

A full quantum mechanical treatment yields a charge-photon
coupling rate given by Eq. (14), with νE now representing the
resonator fundamental mode frequency and Eac the resonator
vacuum field, Evac. Again, it is best to have the charge-excited
state detuned from the flip-flop transition and resonator photon
(see Fig. 7b), therefore minimizing charge excitation while
retaining a second-order flip-flop photon coupling given by
Eq. (13). Assuming δso≈ δE≈ 10gso≈ 10gE, a d= 15 nm deep 31P
flip-flop qubit would be coupled to photons at a g ffE � 3MHz
rate. This is three orders of magnitude faster than the electron-
spin coupling rate to a resonator via its magnetic vacuum field57,
58, and comparable to the coupling strength obtained by using
strong magnetic field gradients59, 60, but without the need to
integrate magnetic materials within a superconducting circuit.
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This assumes a vacuum field amplitude Evac≈ 30 Vm−1, which
can be obtained by using tapered coplanar waveguide or high-
inductance resonators61.

The possibility of coupling the qubits to microwave photons
provides a path for dispersive qubit readout, as well as for
photonic interconnects. Near-quantum limited amplifiers have
recently become available to obtain excellent read-out speed and
fidelities62. The resonator can also be used as a quantum bus to
couple two spin qubits separated by as far as 1 cm (Fig. 7c), a
distance given by the mode wavelength. Figure 7b shows the
detailed energy-level diagram. To avoid losses from photon decay,
the qubits should be detuned from the resonator by an amount
much greater than the qubit-photon coupling rates. Assuming
δffE ¼ 10gffE , where δ

ff
E ¼ νE � ϵff , the effective two-qubit coupling

g ff2q � g ffE
� �2

=δffE � 0:3MHz yields a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate that takes only

0.4 μs.

Discussion
Figure 7a summarizes the key figures of merit of a quantum
processor based on flip-flop qubits coupled by electric dipole
interactions. Fast one-qubit x(y)-gates are attainable with low
electric drive power and error rates ~10−3. Two-qubit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates are fast and with error rates approaching 10−3. At the end of
all operations, the phase of each qubit can be corrected, via
adiabatic z-gates, in fast time scales and low error rates ~10−4.
These values are based on current experimentally known values
of charge noise in silicon devices39, and are possibly amenable to
improvement through better control of the fabrication para-
meters. More advanced control pulse schemes could allow for
faster gates with less leakage63–65, and active noise cancellation
techniques, e.g., pulses for gate time jitter66 or decoherence67

suppression, could further improve gate fidelities.
Idle qubits are best decoupled from all other qubits by having

the electron at the interface and the quantum state stored in the
nuclear spin, which has a record coherence times T2≳ 30 s7, and
can be even longer in bulk samples6. Quantum information can
be swapped between the nuclear and the flip-flop qubit by simply
applying an ESR π-pulse that excites the #+j i state to "+j i
(Fig. 1c).

Qubit read-out can be obtained by spin-dependent tunneling
into a cold charge reservoir, detected by a single-electron tran-
sistor18. Read-out times can be ~1 μs with cryogenic amplifiers68,
which is comparable to the time necessary to perform, e.g., ~20
individual gates lasting ~50 ns each, in a surface code error cor-
rection protocol2.

A large-scale, fault-tolerant architecture can be built in a
variety of ways. One- or two-dimensional arrays can be built to
implement error correction schemes such as the Steane69 or the
surface2 code, since all mutual qubit couplings are tunable and
gateable. A larger processor can include a hybrid of both coupling
methods, incorporating cells of dipolarly coupled qubits, inter-
connected by microwave photonic links (Fig. 7d), in which case
more advanced error-correction codes can be implem
ented1, 3, 4, 50. Microwave resonators could be also used to
interface donors with superconducting qubits8, 70, for the long-
term goal of a hybrid quantum processor that benefits from the
many advantages of each individual architecture55.

In conclusion, we have presented a way to encode quantum
information in the electron-nuclear spin states of 31P donors in
silicon, and to realize fast, high-fidelity, electrically driven uni-
versal quantum gates. Our proposal provides a credible pathway to
the construction of a large-scale quantum processor, where
atomic-size spin qubits are integrated with silicon nanoelectronic
devices, in a platform that does not require atomic-scale precision
in the qubit placement. The qubits are naturally amenable to being

placed on two-dimensional grids and, with realistic assumptions
on noise and imperfections, are predicted to achieve error rates
compatible with fault-tolerant quantum error correction.

Methods
Adiabaticity. Given a time-dependent Hamiltonian in a two-dimensional Hilbert
space,

H2 ¼ ΔðtÞσz þ ΩðtÞσx ; ð19Þ

in units of rad s−1, the adiabatic condition is expressed as71

K ¼ ωeff

_α

��� ��� � 1; ð20Þ

where ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ Ω2

p
is the instantaneous transition angular frequency between

eigenstates, and _α is the rate of change of the orientation of ωeff (α= arctan(Ω/Δ)).
It follows from Eq. (20) that

K ¼ Δ2 þ Ω2ð Þ3=2
_ΔΩ� _ΩΔ

�� �� � 1; ð21Þ

Although the processes described in this paper involve multiple levels, we
applied Eq. (21) in different forms as an approximation of adiabaticity. This was
confirmed to be always valid by checking that the leakage errors were kept below a
target level.

In particular, for one-qubit z-gates and two-qubit
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates, we used

Δc ¼ πe Ez � E0
z

� �
d=h and Ωc= πVt to find Kc for the charge qubit, and Δso= πδso

and Ωso= 2πgso to find Kso for the spin-charge coupling. For a chosen adiabatic
factor K, we find Ez(t) by satisfying the condition min(Kso, Kc) = K.

For one-qubit drive, we used ΔE= πδE and ΩE= 2πgE to find KE. A particular
choice of K= KE sets the adiabatic sweep rate of Eac(t).

Estimation of dephasing and gate errors. In order to estimate the effects of
quasi-static Ez noise on dephasing, we first calculate the flip-flop qubit transition
frequency ϵff (difference between eigenfrequencies corresponding to eigenstates
closest to g #*j i and g "+j i, which we denote as g #*j ie and g "+j ie). Next, for a
uniformly distributed noise in the range En

z ¼ ffiffiffi
3

p �Enoise
z;rms;E

noise
z;rms

h i
, we estimate the

qubit dephasing rate to be

Dephasing rate ¼
X
n

ϵff � ϵnff
�� ��=Nn; ð22Þ

where Nn is the number of sampled En
z and ϵnff is calculated for each value of En

z .
The averaged error rate (without noise) of a desired adiabatic unitary process

Uideal is calculated by averaging the fidelity of the actual process U over a set of
initial states jj i,

Adiabatic error ¼ 1�
X
jj i

jh jU†Uideal jj i
�� ��2=Nj; ð23Þ

where Nj is the number of initial states. For one-qubit gates (e.g., a π z-gate or a π/2
x(y)-gate), we choose jj i ¼
g #*j ie; g "+j ie; g #*j ie þ g "+j ie

� �
=

ffiffiffi
2

p
; g #*j ie þ i g "+j ie
� �

=
ffiffiffi
2

p� �
and Nj= 4,

whereas for two-qubit gates (e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
) jj i ¼ j1j i 	 j2j i (the 1,2 indexes refer

to the aforementioned four initial states for each qubit) and Nj= 16.
To estimate the averaged gate error rate under quasi-static Ez noise, the actual

process U and eigenstates jj i are calculated for each value of En
z before averaging,

Noise error ¼ 1�
X
n; jj in

jh jnU†
nUn;ideal jj in

�� ��2= NjNn
� �

ð24Þ

Finally, to estimate errors due to charge-phonon relaxation, we multiply the
averaged charge excitation by its relaxation rate and assume a exponential decay in
fidelity:

Relax: error ¼ 1� e
�
Rτgate
0

P
jðtÞj i

jðtÞ ej i eh jjðtÞh i=Nj

� �
dt=T1;o

2
;

ð25Þ

where jðtÞj i are the time-evolution of the initial set states jj i. For two-qubit gates,
we sum up the error rate of each qubit.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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