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Aging affects most living organisms and includes the processes that reduce health and
survival. The chronological and the biological age of individuals can differ remarkably,
and there is a lack of reliable biomarkers to monitor the consequences of aging. In
this review we give an overview of commonly mentioned and frequently used potential
aging-related biomarkers. We were interested in biomarkers of aging in general and
in biomarkers related to cellular senescence in particular. To answer the question
whether a biological feature is relevant as a potential biomarker of aging or senescence
in the scientific community we used the PICO strategy known from evidence-based
medicine. We introduced two scoring systems, aimed at reflecting biomarker relevance
and measurement effort, which can be used to support study designs in both clinical
and research settings.
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INTRODUCTION

Aging can be described as a time-dependent multifactorial functional decline which affects the
majority of living organisms (López-Otín et al., 2013). Very generally, it includes all processes that
reduce health and survival of an individual (Fuellen et al., 2019). Notably, the chronological age and
the “biological age” of an individual can differ remarkably (Kudryashova et al., 2020).

In this review, we give an overview of commonly mentioned and frequently used potential
biomarkers of aging in clinical and research settings. A biomarker is a measurable feature (also
called a marker) that predicts a biological state or condition (Siderowf et al., 2001). Biomarkers of
aging are suggested to predict future health and survival better than chronological age. Further,
they should be reproducible and they should also cause minimal trauma for the proband (Baker
and Sprott, 1988; Fuellen et al., 2019). Until now no universally acceptable single-measurement
biomarker of aging is known, and due to the complexity of the aging process, it is unlikely
that a single universal biomarker of aging can be found. Many researchers believe that sets of
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biomarkers must be considered to predict aging-related outcomes
with confidence (Earls et al., 2019; Kudryashova et al., 2020).
Multiple markers may complement each other thereby improving
the predictive power. In fact, recent comparisons have shown
that composite biomarkers (also dubbed biomarker signatures)
are potentially useful as biomarkers of aging. Belsky et al. (2018),
Hastings et al. (2019) have both shown composite measures to be
superior in predicting age-related outcomes. Belsky et al. (2018)
tested the association of 7 different methods (3 epigenetics clocks,
3 composite biomarkers, and telomere length) with outcome
measures such as physical functioning, cognitive decline, and
subjective signs of aging, including aged facial appearance. The
measures had a low agreement with each other. Nonetheless,
one of the epigenetic clocks and all composite biomarkers
were consistently, albeit modestly, related to the aging-related
outcomes. In turn, Hastings et al. (2019) compared four different
biomarkers of aging, three composite markers and telomere
length, for their association with age-related outcomes such
as physical, cognitive and perceptual functioning. Effect sizes
tended to be larger for the composite biomarkers, compared
to simple markers such as telomere length (Belsky et al., 2018;
Hastings et al., 2019). Most bio markers including telomere length
lack specificity regarding the mechanisms of aging processes
(Hastings et al., 2017) and furthermore, the identification and
validation of new biomarkers is important, which track aging-
related changes in humans already by young adulthood and may
also vary in their rate of change over time (Hastings et al., 2017).

Biomarkers of aging can be based on laboratory measurements
(e.g., telomere length, epigenetic clocks) or phenotypic data
(e.g., hand grip strength). Routine laboratory biomarkers are
commonly measured in accredited clinical laboratories based on
standardized methods, e.g., complete blood count, inflammation
markers, or surrogate markers for the functional and structural
status of organs such as creatinine (kidney function), bilirubin
and alkaline phosphatase (liver and bile metabolism), liver
transaminase (liver function and integrity), NT-proBNP (heart
function), and troponin (heart structural integrity). Other
molecular biomarkers are based on high-throughput analyses,
which are often of unknown predictive value and are primarily
used in a research context only. As molecular biomarkers we
consider, in particular, all genome-level (“omics”) biomarkers.
Non-molecular phenotypic biomarkers describe physiological
functions of the body, specifically physical capability and organ
function. Diagnostic biomarkers help to diagnose, confirm, or
exclude a disease. In addition, biomarkers can be “prognostic,”
for death or for the progression of disease or dysfunction, as
well as “predictive,” for monitoring success or failure of some
treatment. We do not explicitly distinguish biomarkers by this
scheme, though we are mostly interested in prognosis.

We investigated the citation profiles of potential biomarkers
of aging to gauge their “relevance.” This “relevance” is intended
to be a proxy for their accuracy in predicting future health and
survival. Longitudinal human studies investigating the usefulness
of biomarkers of aging are lacking. Without such studies, there
are no head-to-head comparative data that allow any direct
ranking of markers by accuracy. We doubt that such longitudinal
studies will become available soon, given the increasing number

of new biomarker candidates, for which, in the short-term,
validation is only possible in short or non-prospective studies,
and given technical problems (lack of standardization and
sampling under distinct conditions). Furthermore, each potential
biomarker was assigned an effort score (e-score). The effort
score should help to estimate the effort required by the
measurement of a biomarker.

Many researchers have gone to great lengths to identify
potential biomarkers of aging (Engelfriet et al., 2013; López-
Otín et al., 2013; Xu and Sun, 2015; Wagner et al., 2016; Khan
et al., 2017; Xia et al., 2017; Bai, 2018; Justice et al., 2018; Sahu
et al., 2018; Dodig et al., 2019; Kudryashova et al., 2020). Most
of the reviews in the field are focusing on specific subgroups
of markers (e.g., senescence markers, molecular markers, omics-
based markers, epigenetic markers, etc.). Our goal was to
summarize the most often mentioned potential biomarkers of
aging, and to suggest effort scores. The effort scores are to a
certain degree subjective and dependent on circumstances such
as experimental setting and location. The citation profiling scores
are to some extent subjective, too, since publishing is influenced
by scientific as well as other (sociopsychological, political etc.)
considerations. The purpose of this review is not to propose
a new comprehensive composite marker that measures reliably
all aspects of aging. Nevertheless, this review may facilitate the
selection of aging-related biomarkers for specific study objectives
in terms of relevance and effort.

METHODS

We considered reviews, and other articles, listed at NCBI-
PubMed, which contain listings of potential biomarkers. Based
on these listings, we established a set of “potential biomarkers” to
begin with. We were interested in biomarkers of aging in general,
and in biomarkers related to (cellular) senescence. To answer the
question as to whether a “potential biomarker” is indeed an aging
or (cellular) senescence biomarker we used the PICO strategy
known from evidence based medicine (da Costa Santos et al.,
2007). The following research question was formulated:

“Is the “potential biomarker” a biomarker mentioned in the field
of aging research?”

In this context, the term “potential biomarker” is a placeholder
for the reviewed biomarker. Given this question, a PICO-
Scheme was built (Figure 1) and a Pubmed query was done.
By the way of query processing by the Pubmed search engine,
the pertinent MeSH-terms (Medical Subject Headings, NLM
controlled vocabulary thesaurus used for indexing articles for
PubMed) are automatically included. Due to the high number
of alias names of the term “potential biomarker,” the specific
MeSH-terms used by the PubMed search engine are not listed
here explicitly.

The number of publications returned by the search, the count-
score, is referred to as the “c-score.” As a last step the results of
the PubMed search were filtered for “review;” this results in the
“review count score” (rc-score). The rc-score displays how often
a potential biomarker was referred to in reviews, based on the

Frontiers in Genetics | www.frontiersin.org 2 May 2021 | Volume 12 | Article 686320

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-686320 May 15, 2021 Time: 14:59 # 3

Hartmann et al. Ranking of Aging Biomarkers

FIGURE 1 | Simplified graphic of the PICO-based queries employed at NCBI-PubMed. The search strategy was conducted as “((aging) AND (potential biomarker))
AND (biomarker)” for establishing the “c-score” and “((aging) AND (potential biomarker)) AND (biomarker),” filtered for reviews, for establishing the “rc-score.”

above-described NCBI-PubMed queries. For senescence markers,
the first query term (#1, “aging”) was replaced by “senescence.”
Potential biomarkers often mentioned in reviews are assigned a
high rc-score. Potential biomarkers of aging with a high PubMed
citation count are not necessarily frequently mentioned in
reviews, which results in a low rc-score. The rationale behind this
strategy is that reviews may fulfill at least a partial filter function
for relevance. The usefulness of the rc-score is expected to be the
higher, the more source articles are included. By the use of this
strategy we may miss, or disvalue potential biomarkers of aging
published in recent studies. Additionally, widely used and long
known disease markers may be overrepresented. Further, reviews
have biases such as overvaluation of some high-profile studies
and undervaluation of studies published in journals with low
impact. Moreover, we did not normalize for date of publication.
Then again, the results of recent studies are mostly not yet further
confirmed. In a final step, the potential biomarkers were sorted
according to their properties in the following categories: “routine
laboratory,” “research laboratory” (not epigenetic), “research
laboratory” (epigenetic), “physical capability and organ function”
and “senescence-related” biomarkers.

We then added an effort score for each potential biomarker.
We consider the following three values:

• A low e-score (-) describes a potential biomarker which is
easy to sample, to handle and to process (usually automated
fast and reliable measurements are available from known
sources). For example, blood counts from venous blood
qualify, since such blood can be sampled easily, the
plasma/serum can be stored at room temperature (up to
3 h for many analytes) or in a standard freezer (≥3 month
for most analytes) and be processed by equipment that is
regularly available in a standard diagnostic/clinical unit or
research laboratory. The costs are low to moderate (≤10 €).

• A moderate e-score (--) is assigned if one step (sampling,
handling, or processing) is associated with substantial

extra effort for routine laboratories. This includes sampling
under special conditions, a requirement for prompt sample
handling, or the need for elaborate validation.

• A high e-score (---) implies elaborate sampling (e.g., biopsy,
lumbar puncture, etc.), handling (e.g., storage in liquid
nitrogen) and/or processing (e.g., non-routine nucleotide
or protein sequencing). The financial costs are usually high.

In detail, the e-score is based on six main attributes that
is, 1: easy sampling; 2: easy sample handling (storability at
room temperature (up to 3 h) and/or frozen (≥3 month));
3: automation availability; 5: routine laboratory availability; 5:
costs ≤ 10 € per test; 6: degree to which the method is oblivious
to confounding and interfering factors. For each attribute that is
true, we incremented the score by 1, for each potential biomarker
examined (see Supplementary Data 1). The following scoring
system was then used:

• 6 – 5 (T): low e-score (-)
• 4 – 3 (T): moderate e-score (s.o.)
• 2 – 0 (T): high e-score (s.o.)

Just like the rc-score, the e-score is in part subjective.

A RANKING OF BIOMARKERS OF AGING

Routine Laboratory Biomarkers
We define a “routine laboratory” biomarker as a biomarker
which is commonly analyzed in accredited laboratories based
on standardized methods. It may also help to diagnose,
confirm, or exclude a disease. In addition, biomarkers can
be prognostic, to determine disease progression, as well
as predictive, for monitoring success or failure of some
treatment. In this category, cytokines such as interleukins
(IL) and tumor necrosis factor alpha (TNFα) and other
proteins such as C-reactive protein (CRP) belong to the
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TABLE 1 | Frequently mentioned potential “routine laboratory” biomarkers.

Potential biomarkers Material Age linked processes# e-score rc-score* c-score

Lymphocytes/WBC [CDC] [PA] blood/EDTA Inflammation autoimmune disorders - 202 2240

Insulin blood/serum Diabetic state -- 148 1143

Glucose/glucose fastened [PA] blood/glucose monovette Diabetic state - 111 1175

C-reactive protein (CRP/hsCRP) [IA] [PA] blood/plasma Inflammation, cancer, cardiovascular disease - 71 1146

Cholesterol blood/plasma Cardiovascular disease - 67 896

Albumin [PA] blood/plasma Kidney and liver dysfunction - 65 1062

IL6 [IA] blood/plasma Inflammation - 58 979

Tumor necrosis factor alpha (TNFα) [IA] blood/serum Inflammation, cancer -- 51 751

Hemoglobin [CDC] blood/EDTA Anemia, other hematopoietic disorders - 39 471

Insulin-like growth factor 1 (IGF-1) blood/serum Metabolic disease -- 29 263

LDL-cholesterol blood/plasma Cardiovascular disease - 24 280

Triglycerides blood/plasma Cardiovascular disease - 23 498

HDL-cholesterol blood/plasma Cardiovascular disease - 23 349

Creatinine [PA] blood/plasma Kidney dysfunction - 19 479

Monocytes blood/EDTA Inflammation - 16 378

Glycated hemoglobin (Hba1c) blood/EDTA Diabetic state - 13 220

Cystatin C blood/plasma Kidney dysfunction - 12 142

N-terminal prohormone of brain natriuretic
peptide (NT-proBNP)

blood/EDTA Heart failure - 10 119

Alkaline phosphatase [PA] blood/plasma Liver damage, bone disorder - 9 252

Hematocrit/RBC [CDC] blood/EDTA Anemia - 8 159

D-dimer blood/citrate monovette Hypercoagulable state - 8 91

IL8 [IA] blood/plasma Inflammation -- 7 164

Plasminogen activator inhibitor-1 (PAI1) blood/EDTA Prothrombotic state in cancer and other acute
phases

-- 6 72

Bilirubin blood/plasma Liver dysfunction - 5 46

Urea blood/plasma Renal dysfunction - 3 137

IL15 blood/plasma Inflammation -- 3 55

Mean corpuscular volume/MCV [CDC] [PA] blood/EDTA Anemia, other hematopoietic disorders - 2 42

Mean corpuscular hemoglobin
concentration/MCHC [CDC]

blood/EDTA Anemia, other hematopoietic disorders - 2 32

CD4/CD8 ratio blood/EDTA Immune deficiency, autoimmunity -- 1 103

C-peptide (preferable to insulin) blood/serum Diabetic state - 1 32

IL1-β [IA] blood/plasma inflammation -- 1 5

[IA] = inflammaging
[PA] = Phenotypic Age
[CDC] = complete blood count

* rows are sorted by rc-score.
# frequently mentioned general or disease-linked processes.

most often mentioned biomarkers of aging (see Table 1).
Interleukins and chemokines are secreted by leukocytes and
other cell types and play a major role for the function of
the immune system (Brocker et al., 2010; Ben Menachem-
Zidon et al., 2011). IL-6, IL-8, IL-15, and IL-1β are often
associated with aging-related inflammation, chemotaxis, and
production of natural killer cells. Other inflammation-linked
biomarkers of aging are high sensitive CRP (hs-CRP) and TNFα

(Engelfriet et al., 2013; Wagner et al., 2016; Khan et al., 2017;
Niedernhofer et al., 2017; Sebastiani et al., 2017; Bai, 2018;
Justice et al., 2018; Levine et al., 2018; Tanaka et al., 2018; Dodig
et al., 2019; Kudryashova et al., 2020). Elevated levels of
these inflammation-related biomarkers in the blood of older
individuals are risk factors for age related conditions and
are often subsumed with the term “inflammaging” (marked
in Table 1 with [IA]) (Ferrucci and Fabbri, 2018). hs-
CRP is an additional less specific marker for age-dependent

atherothrombosis, featuring increasing levels in advanced stages
of disease. These biomarkers are influenced by inflammation-
related diseases such as coronary artery disease and (type 1)
diabetes mellitus and immunological diseases. The specificity of
established laboratory inflammation markers is low, considering
latent as well as temporarily infections as a reason for their
elevation. Another frequently mentioned group of biomarkers
are related to lipids, which are cardiovascular risk factors in
particular, such as total cholesterol, HDL-cholesterol, LDL-
cholesterol and triglycerides (Engelfriet et al., 2013; Putin
et al., 2016; Wagner et al., 2016; Niedernhofer et al., 2017;
Sebastiani et al., 2017; Levine et al., 2018; Tanaka et al.,
2018; Dodig et al., 2019; Mamoshina et al., 2019; Kudryashova
et al., 2020). Blood lipid measurement levels vary with
age. Lipid levels may influence aging and are themselves
influenced by aging (Walter, 2009; Johnson and Stolzing, 2019).
Studies have shown that effective treatment of dysregulated
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lipid levels reduces mortality and morbidity. Other routine
laboratory biomarkers correlate to the function and integrity of
organs, which undergo age-dependent alterations. Creatinine,
cystatin C, urea, and albumin are markers of renal and
liver function which declines with old age (Lindeman et al.,
1985; Weinstein and Anderson, 2010). Still other biomarkers
discussed here are related to glucose, and are risk predictors
for metabolic age-dependent conditions: glycated hemoglobin
(Hba1c) and glucose (fastened or tolerance) are indicators
for diabetic risk (Dubowitz et al., 2014). Insulin, despite
high fluctuation, is an often-mentioned potential biomarker
of aging. In the clinical setting, the C-peptide (the cleaved
part of proinsulin) is most frequently measured instead of
insulin due to simpler handling, less fluctuation and its
equimolar amount compared to insulin. Additionally, C-peptide
levels are not influenced by any insulin injections (Chandni
et al., 2013). Some more routine laboratory biomarkers of
aging are listed in Table 1. Taken alone, most biomarkers
do not predict aging-related outcomes with high accuracy.
Several studies have shown that some specific combinations of
blood-based biomarkers result in more reliable predictions for
“biological age” or mortality (Levine, 2013; Liu et al., 2018a).
An example is the “Phenotypic Age,” which is based on a
linear combination of chronological age and nine multi-system
clinical chemistry biomarkers (marked in Table 1 with [PA])
(Liu et al., 2018a,b). With the aid of these nine blood-based
biomarkers, an estimation of an individual’s “biological age”
is aimed for. Further blood-based biomarkers that are part
of the complete blood count are used as input for software
predicting “biological age,” e.g., “aging.AI,” in different versions
(Zhavoronkov et al., 2019).

Non-epigenetic Research Laboratory
Biomarkers
A research laboratory biomarker is a laboratory biomarker
lacking the routine validation and/or standardization of a clinical
laboratory biomarker. These markers often use nucleic acids
(DNA and RNA). A frequently discussed biomarker of aging
is the telomere length (López-Otín et al., 2013; Wagner et al.,
2016; Khan et al., 2017; Niedernhofer et al., 2017; Xia et al.,
2017; Bai, 2018; Dodig et al., 2019; Vaiserman and Krasnienkov,
2020). Telomeres are repeats of a hexametric DNA sequence
capping the end of chromosomes preventing DNA damage
(Aubert and Lansdorp, 2008). Telomeres shorten with each cell
division or due to cell stress. This attrition ultimately leads
to cellular senescence and can thus function as a biomarker
for replicative aging in mitotic cells. Specifically, leukocyte
telomere length is used as a potential biomarker for healthy
aging (Bekaert et al., 2005; Lulkiewicz et al., 2020), whereby
shortened telomeres may represent cellular exhaustion and/or
increased cell stress for leukocytes or other cells in the body
as a surrogate; however the usefulness of telomere length as a
biomarker of aging is discussed critically. Kahl & Allen et al.
summed up and described different methods measuring telomere
length, covering imaging based methods (TCA, TRF, Q-FISH,
Flow-FISH) and PCR-based methods (qPCR) (Kahl et al., 2020).

Another very good overview is provided in the review of
Lai et al. (2018), comparing known methods and additionally
describing methods to measure the shortest telomeres (STELA,
TeSLA). Telomere length measurements are characterized by
poor standardization and limited comparability. Moreover,
telomere length in leucocytes is only partially a surrogate
marker for telomere length in other organs. Telomere length
is classified as highly relevant according to the rc-score, which
exemplifies the limitations of such a score. The telomere length
is certainly very interesting from a physiological point of view,
but whether it can serve as a relevant (or even accurate)
biomarker is questionable. Telomere shortening can only be
counteracted in a few cells (germ cells, stem cells, some immune
cells) by telomerase, an enzyme that is able to lengthen
the telomeres (Shay, 2016). Telomerase is induced in most
tumor cells, which renders its induction risky. Nevertheless,
telomerase activity plays an important role in longevity. A study
showed that centenarians have a particularly active telomerase
in T-cells compared to healthy 67 – 80 year old donors
(Tedone et al., 2019), which raises the question if telomerase
activity could be a biomarker for aging. Another DNA-linked
potential biomarker of aging is the degree of DNA damage
(Wagner et al., 2016; Khan et al., 2017; Niedernhofer et al.,
2017; Dodig et al., 2019). DNA damage accumulates with age,
fostering the development of age-related pathologies such as
malignancies, cellular senescence and inflammation (Da Silva
and Schumacher, 2019). In particular, mitochondrial DNA
damage is a factor leading to mitochondrial dysfunction,
which is also often related to aging processes (López-Otín
et al., 2013; Khan et al., 2017; Niedernhofer et al., 2017;
Sahu et al., 2018; Dodig et al., 2019). Mitochondrial DNA
has less repair capacity and a higher mutation rate compared
to nuclear DNA (Haas, 2019). Mitochondrial, metabolic and
respiratory dysfunction can, in addition to exogenous stress,
lead to the production of excess reactive oxygen species
(ROS) (López-Otín et al., 2013; Wagner et al., 2016; Santos
et al., 2018; Dodig et al., 2019; Kudryashova et al., 2020).
Potential negative effects of excess ROS are dysregulated protein
homeostasis, accumulation of oxidative modified proteins and
advanced glycation/lipid peroxidation end products and loss of
function of cellular protein maintenance systems. It has been
shown that autophagy is another modulator of aging processes.
A tissue-specific overexpression of autophagy genes can be
sufficient to extend lifespan by preventing the accumulation
of dysfunctional cellular components (Simonsen et al., 2008;
Hansen et al., 2018; Kumsta et al., 2019). Such hallmarks of
aging as discussed here were observed in various organs and
tissues (Stadtman and Berlett, 1997; Baraibar and Friguet, 2013;
Davies et al., 2017). In response to mitochondrial dysfunction,
growth differentiation factor 15 (GDF15) may be generated,
protecting tissues against inflammation by suppressing T-cell
activation and mediating release of cytokines (Moon et al.,
2020). On this basis, GDF15 was suggested as a potential aging
biomarker (Justice et al., 2018; Tanaka et al., 2018; Basisty
et al., 2020; Sebastiani et al., 2021). TGF-β and GDF11 (from
the same protein superfamily) are also regarded as proteins
playing a role in aging-associated cellular senescence, frailty,
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TABLE 2 | Frequently mentioned potential “research lab” biomarkers based on non-epigenetic measurements.

Potential biomarkers Material Methods Age linked processes# e-score rc-score* c-score

Telomere length (TL): Morbidity, mortality, cell stress 191 932

Average TL DNA Q-PCR, TRF, TCA -- **

TL structure DNA Q-FISH, Flow-FISH --- **

Shortest TL DNA STELA, TeSLA --- **

DNA damage DNA Various methods Morbidity, mortality -- 174 713

Reactive oxygen species (ROS) Tissue
mitochondria

Various methods Morbidity, cell stress, DNA/protein
damage

--- 168 712

Mitochondrial dysfunction living cells,
mitochondrial DNA

Various methods Morbidity, mortality,
neurodegenerative diseases

--- 86 289

EVs (extracellular vesicles) blood/plasma,
liquor, cell culture
supernatant

Immuno-histochemistry
Western Blot, FACS

Cellular senescence, cancer --- 65 194

Autophagy cells, cell extract Electron microscopy
immunoblotting flow
cytometry

Morbidity, cancer, Parkinson’s and
Alzheimer’s disease

--- 46 207

Transforming growth factor beta
(TGF-β)

blood/serum ELISA Inflammation, fibrosis, cellular
senescence, cancer

-- 45 315

Telomerase activity cell extract, DNA PCR-ELIDA, TRAP Morbidity, mortality, tumor
progression

--- 41 169

Gut microbiome fecal specimen Next generation
sequencing

Morbidity, mortality -- 29 101

α-Klotho blood/plasma
tissue

Immuno-histochemistry
ELISA

Morbidity, mortality, renal function -- 20 107

Adiponectin blood/plasma
blood/EDTA

ELISA Morbidity, mortality, frailty, metabolic
syndrome, liver cirrhosis, diabetes
type 2

- 14 217

Sirtuin 1 (SIRT1) blood/serum ELISA
immuno-histochemistry
PCR

Morbidity, mortality, inflammation,
cancer

-- 12 112

Growth differentiation factor 15 (GDF15) blood/plasma Proteomics immunoassays Morbidity, organ damage (liver,
heart, kidney)

-- 12 63

Sirtuin 6 (SIRT6) blood/serum ELISA
immuno-histochemistry
PCR

Morbidity, mortality, diabetic risk,
arthritis

-- 4 50

Growth differentiation factor 11 (GDF11) blood/plasma Proteomics immunoassays Morbidity -- 3 22

CXCL1 blood/plasma Immunoassays, ELISA Immune response, inflammation,
cancer, Alzheimer’s disease

-- 0 15

Skin microbiome skin swab Next generation
sequencing

Morbidity, mortality -- 0 4

* rows are sorted by rc-score.
** included in the c-score of TL.
# frequently mentioned general or disease-linked processes.

stem cell aging and fibrosis as well as surgical risk in older
adults (Schafer et al., 2016; Khan et al., 2017; Niedernhofer
et al., 2017; Bai, 2018; Dodig et al., 2019; Tominaga and
Suzuki, 2019). Circulating biomarkers based on extracellular
vesicles (EVs), including exosomes, microvesicles and apoptotic
bodies, are moving into focus for the prediction of age-related
diseases (Yáñez-Mó et al., 2015; Kalluri and LeBleu, 2020;
Noren Hooten, 2020). Moreover, changes in the community
composition of the skin microbiome have been related to age
(Kim et al., 2019), and more precise information is obtained
when considering the gut microbiome (Maynard and Weinkove,
2018; Guest, 2019; Askarova et al., 2020). In general, there is
now ample evidence that microbiome dysbiosis is associated to
aging and longevity (Kim and Benayoun, 2020). Other frequently

mentioned potential research laboratory biomarkers of aging are
listed in Table 2.

Epigenetic Research Laboratory
Biomarkers
The epigenome is a dynamic system playing a major role in aging.
Methylation of the DNA (DNAm) and histone modifications
ensure appropriate high fidelity gene expression; both change
with chronological age and with chronic diseases over time.
Even if it is currently not known to what extend these changes
cause aging, they can be useful, e.g., for chronological age
prediction (Ashapkin et al., 2019). Generally, aging is associated
with global hypomethylation and local hypermethylation. For the

Frontiers in Genetics | www.frontiersin.org 6 May 2021 | Volume 12 | Article 686320

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-686320 May 15, 2021 Time: 14:59 # 7

Hartmann et al. Ranking of Aging Biomarkers

analysis of DNA methylation, various so-called epigenetic clocks
were developed. Famous examples for first generation epigenetic
clocks are the Horvath clock, Weidner Clock, and Hannum
clock (see Levine, 2019). Basically, these clocks are considering
specific sets of CpG sites with respect to their DNA methylation
status, as a molecular correlate to predict chronological age
(Horvath and Raj, 2018; Bell et al., 2019). Hannum’s clock is
based on blood samples and uses 71 CpG sites measured from
the Illumina 450k array. Age-related shifts in blood cells are
per se informative for changes in chronological age (Hannum
et al., 2013; Bell et al., 2019), but they are also considered by
some epigenetic clocks. The Horvath clock is specifically designed
to be used across multiple tissues, whereby it captures 353
CpG sites on a Illumina 27k array (Horvath, 2013; Bell et al.,
2019). Second-generation epigenetic clocks learn to associate
clinical data with methylation status, e.g., the DNAm PhenoAge
(Levine et al., 2018) or DNAm GrimAge (Lu et al., 2019).
More specifically, second-generation epigenetic clocks such as
GrimAge and PhenoAge were developed to learn biological
endpoints (which in turn are suggested to relate to “biological
age”) directly. Recently, it was shown that cytosines, whose
methylation levels change with age across mammalian species,
are involved in mammalian developmental processes, suggesting
that aging is indeed evolutionarily conserved and coupled to
developmental processes (Lu et al., 2021). Histone modifications
such as H4K16 acetylation, H4K20 methylation, H3K4
methylation, H3K9 methylation and H3K27 methylation were
also proposed as epigenetic chronological age predictors (López-
Otín et al., 2013; Moskalev, 2019), and these modifications can be
influenced by ROS (Wu and Ni, 2015). However, data regarding
specific outcomes are scarce. Histone modifications and DNA
methylation are closely related to chromatin remodeling and
changes in chromatin architecture (Oberdoerffer and Sinclair,
2007; López-Otín et al., 2013). The above mentioned EVs
also carry extracellular RNA (exRNA) which changes with
age (Dluzen et al., 2017; Noren Hooten, 2020). Other types
of RNA such as microRNAs (miRNA), that function in RNA
silencing and posttranscriptional regulation of gene expression,
and which are often isolated from peripheral blood mononuclear
cells (PBMCs), are also reflecting aging and are used to
predict age-related diseases (Evans et al., 2010; Noren Hooten
et al., 2010; Reid et al., 2011; Kumar et al., 2017). Examples
for age-related miRNAs are: miR-34a, miR-9, miR-132, miR-
212, miR-21, miR-96, miR-145 (Halper et al., 2015; Budzinska
et al., 2016; Owczarz et al., 2017; Hadar et al., 2018).
Frequently mentioned epigenetic based biomarkers are covered
in Table 3.

Other Aging Biomarkers: Physical
Capability, and Organ Function
Physical and cognitive function are important markers for
aging processes (Fuellen et al., 2019), as are anthropometric
measurements. For example, brain function and integrity
are influenced by aging and aging-associated diseases. Aging
encompasses changes at the structural, functional, and molecular
levels of most cells, tissues and organ systems. Gradual loss

of the maintenance functions of tissues is a characteristic of
aging (López-Otín et al., 2013). Non-blood aging markers are
not the primary focus of this review. However, due to the ease
of implementation, certain analyses can supplement studies in
which general metabolic and physiological age aspects need to
be measured. These tests may include grip strength or easy to
perform locomotor function tests as walking speed, timed up
and go test or the standing balance test. As aging is associated
with body composition, biomarkers such as BMI or fat and
muscle indices should be recorded. Bone mass declines with
age in both men and women and may be analyzed (Khosla
et al., 1996; Khosla et al., 2006; Riggs et al., 2008; Keaveny
et al., 2010). Frequently used other anthropometric markers
are muscle mass, waist circumference (Wagner et al., 2016),
and (systolic) blood pressure (Pinto, 2007; Crimmins et al.,
2008). These measurements are mostly carried out without much
effort. Most of these markers are also closely related, and they
predict frailty in particular. Frailty is age-dependent and often
associated with chronic disorders, resulting in an increasing
need for diagnostic, nursing, and therapeutic interventions. Grip
strength is a predictor of frailty, all-cause mortality and morbidity
(Syddall et al., 2003). Strength itself may provide protection
against mortality (Rantanen et al., 2000). With age, a decline
in physical and cognitive function is frequently observed, as
can be seen in the lifespan data of athletes in comparison to
controls (Donato et al., 2003; Baker and Tang, 2010; Harridge
and Lazarus, 2017). This is observed for muscle mass but
also for physiological changes in organ systems leading to
age-related diseases (Boss and Seegmiller, 1981). Additionally,
various non-invasive methods were proposed to monitor the
cardiovascular system and the vascular wall structure and
elasticity, including electrocardiogram (ECG), intima media
thickness ultrasonography and ultrasound techniques to evaluate
endothelium-dependent vasodilation (EDV). Many if not all
aspects of cognitive function change with age, which can be
measured in complex tests or in rather simple questionnaires.
Frequently mentioned non-blood and biomarkers are covered in
Table 4.

Senescence-Related-Biomarkers
Cellular senescence is a cell state characterized by the cessation
of cell division, reached through a combination of telomere
shortening, oxidative stress and oncogenic stress. It can also
be induced by each of these factors alone, and by DNA
damage signaling pathways, with ATM and ATR as primary
sensors of DNA double and single-strand damage. As a species-
specific aging mechanism, telomere attrition limits the number
of divisions. The successive shortening of the chromosomal
telomeres with each cell cycle (caused by the so-called
end replication problem and often referred to as replicative
senescence) is observed in large long-lived species and cooperates
with other aging mechanisms to activate the senescence program.
These signaling pathways are funneled down to activate the
p53 protein, the Rb protein, or both. Once the senescence
program is activated, a series of changes in morphology, function,
and gene expression takes place, associated with autocrine
and paracrine effects of secreted cytokines, macromolecular
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TABLE 3 | Frequently mentioned potential “research lab” biomarkers based on epigenetic measurements.

Potential biomarkers Material Methods Prediction e-score rc-score c-score*

DNA methylation and aging clocks: n.a. 2158

Horvath’s clock DNA (broad spectrum of tissues) DNA methylation analysis Chronological age -- n.a. 214

Hannum’s clock DNA (blood) Chronological age -- n.a. 190

DNAm GrimAge DNA (blood) Biological age -- n.a. 31

DNAm PhenoAge DNA (blood) Biological age -- n.a. 26

Weidner clock DNA (blood) Chronological age -- n.a. 8

EpiTOC DNA (blood) Biological age --- n.a. 2

miRNA (microRNA) RNA (blood/plasma PBMCs) Next generation sequencing
microarrays

Morbidity, mortality --- 198 635

Non-coding RNA expression profiles RNA RNA sequencing Chronological age --- 167 602

exRNA (extracellular RNA) blood/plasma Next generation sequencing Morbidity, mortality --- 25 119

Histone modifications: 36 73

H4K20 methylation DNA methylation analysis mass
spectrometry, HPLC, ChIP
Immunohisto-chemistry

Cell stress --- n.a. n.a.

H4K16 acetylation --- n.a. n.a.

H3K4 methylation protein extract --- n.a. n.a.

H3K9 methylation from tissue DNA --- n.a. n.a.

H3K27 methylation --- n.a. n.a.

Chromatin remodeling DNA Chromatin remodeling assays Chronological age --- 13 26

* rows are sorted by c-score.
n.a.: not assigned due to high variation of terminology in literature.

TABLE 4 | Frequently mentioned potential non-blood physical capability and organ function biomarker.

Potential biomarkers Method Age linked processes# Domain e-score rc-score* c-score

Physical capability

Grip strength Physical exam Mortality, morbidity Strength -- 11 229

Walking speed Physical exam Mortality, morbidity Locomotor function -- 3 106

Standing balance Physical exam Mortality, morbidity Balance -- 1 26

Timed up and go test Physical exam Mortality, morbidity Locomotor function -- 0 11

Organ function

Atherosclerotic lesions IMT, ultrasound Mortality, CAD Cardiovascular system -- 158 680

Muscle mass MRI Mortality, cardiovascular risk Body composition -- 81 495

Systolic blood pressure Auscultatory method Mortality, cardiovascular risk Cardiovascular system -- 65 844

Cognitive function Various Mortality, morbidity Brain function --- 56 581

Body mass index Calculated Mortality CAD Body composition -- 24 1280

Bone density Bone density test Mortality, morbidity Body composition -- 17 84

Lung function Spirometry Mortality, morbidity Respiratory system -- 16 84

Waist circumference Tape measure Mortality, cardiovascular risk Body composition -- 3 202

General well being

Health assessments Questionnaire Mortality, morbidity General -- n.a. n.a.

* rows are sorted by c-score.
# frequently mentioned general or disease-linked.
n.a.: not assigned due to high variation of terminology in literature.

damage, and altered metabolism (Gorgoulis et al., 2019).
The limitation of investigating “senescence-related” biomarkers
lies in the cumbersome extraction of appropriate patient
samples. Furthermore until now, there is no clinically validated
senescence-related biomarker available. Indirect biomarkers of
cellular senescence can be measured in blood samples, such
as markers of proliferation status or components of the SASP
(Castleab et al., 1999). However, these measurements are

non-specific and only a proxy of the senescence status of the
cells providing the sample. Moreover, they cannot reflect the
senescence status of the entire organism (Schafer et al., 2020;
Yousefzadeh et al., 2020). Additionally, often it is not clear from
which tissue(s) the markers originate, since markers found in
blood could originate from almost anywhere. The proliferation
status of senescent cells can also be gauged by the expression of
various cell-cycle-related markers (p16, p21, p53) (Jung et al.,
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2010; Baker et al., 2011; Burd et al., 2013; Qian and Chen,
2013). On one hand, cellular senescence is a cause or bystander
of many age-related diseases contributing to inflammation
and/or tumorigenesis (Milanovic et al., 2018; Song et al.,
2020). On the other hand, cellular senescence and its generally
irreversible loss of proliferative potential is considered necessary
for tissue remodeling during development, tissue homeostasis,
wound healing as well as for tumor prevention (Ovadya
and Krizhanovsky, 2018). Identification and characterization of
cellular senescence markers receives more and more attention.
However, the difficulty in characterizing cellular senescence
by biomarkers and the lack of blood markers or other easily
accessible specimen still limit the usefulness of the concept (Khan
et al., 2017; Hernandez-Segura et al., 2018).

The senescence-associated secretory phenotype (SASP) is
characterized by an enrichment of various inflammatory
markers (Ghosh and Capell, 2016; Hernandez-Segura et al.,
2018; Basisty et al., 2020) and can be detected in serum
or EDTA plasma of probands using ELISA (Tanaka et al.,
2018), which is readily available. Some important SASP markers
are: interleukins (IL-6, IL-7, IL-8, and IL-15); chemokines
(CCL3, CCL4) as well as growth factors (GDF-15 and
activin A) (Schafer et al., 2020). Nevertheless, the secretion
of these markers is highly heterogeneous and regulated at
many levels, making it difficult to consider them as well-
standardized biomarkers of cellular senescence (Hernandez-
Segura et al., 2017). Assignment of inflammatory markers to
the SASP or to another aging-related physical or physiological
status (e.g., inflammaging) as well as to other diseases with
permanent inflammation status (e.g., infections, tumors) is
often difficult (Serrano et al., 1997; Barbé-Tuana et al., 2020).
For the investigation of some cellular senescence markers, it
is advantageous to have cells in culture, e.g., fibroblasts or
PBMCs (Migliaccio and Palis, 2011; Riedhammer et al., 2016;
Wang and Dreesen, 2018). For fibroblast isolation, a punch skin

biopsy (Zuber, 2002; Vangipuram et al., 2013) may be taken,
which may represent a notable trauma for the probands
(Vangipuram et al., 2013). Another disadvantage of fibroblast
cell culture is the long period of culturing of around 50 days,
before investigations can be completed (Vangipuram et al., 2013),
the difficult standardization, and other confounders such a
population doublings in cell culture conditions. Consequently,
this procedure is only used for research purposes. Much more
easily done is the isolation and cultivation of PBMCs from
blood samples including lymphocytes (T-cells, B-cells, NK-
cells) (Migliaccio and Palis, 2011; Riedhammer et al., 2016).
Senescent cells, especially fibroblasts in culture, become larger
in size, flattened in shape (Figure 2) and can display a
disorganized nuclear envelope mediated by reduction of lamin
B1 expression (Nishio et al., 2001; Freund et al., 2012). These
features of cellular morphology are features of senescent cells
in general. Moreover, progerin (a mutated form of lamin A)
associated with the premature aging syndrome Hutchinson-
Gilford (DeBusk, 1972) can be detected in fibroblasts, also at
low levels due to non-premature aging (Scaffidi and Misteli,
2006). A recent study has shown that elevated blood levels of
progerin can be detected in people with obesity, suggesting
a cause for premature aging of the cardiovascular system.
Therefore, progerin might be measured in blood samples
and be adapted for diagnostic measurements (Messner et al.,
2019). Another marker of cellular senescence, which can be
investigated in cultured cells (e.g., based on punch skin biopsy),
are senescent-associated histone foci (SAHF). These darker
regions within the nucleus of senescent cells can be detected
as compacted DNA foci. While DNA staining of healthy
and young human cells is relatively uniform, senescent cells
show up to 50 punctuated DAPI-stained DNA foci (Narita
et al., 2003; Aird and Zhang, 2013). Additionally, SAHF are
enriched in markers of heterochromatin (H3K9Me3 and HP1γ)
(Figure 2; Sharpless and Sherr, 2015). Furthermore, senescent

FIGURE 2 | Representative microscopy pictures of cellular senescence biomarkers. Note the clear difference in overt morphology due to age of the respective
individual at biopsy (cells are larger in size and more flattened; cells were immunostained for vimentin.) SAHF are formed in old fibroblasts and are enriched in
heterochromatin markers. (Cells were immunostained for H3K9Me3.) SA-ßGal activity increases with age at pH 6.0. (Cells were treated with X-Gal to make SA-βGal
visible in senescent cells.); scale bar: 10 µM for morphology and SAHF column, 50 µM for SA-βGAL column.
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TABLE 5 | Frequently mentioned biomarkers (routine or research laboratory) associated with cellular senescence.

Potential biomarker Material and Methods e-score rc-score* c-score

SASP 442 2646

Cytokines (e.g., IL-6, IL-7, IL-15) ELISA from Serum or EDTA plasma
samples proteomics

--◦

--◦

--◦

--

n.a. n.a.

Chemokines (e.g., IL-8, CCL3,
CCL4)

n.a. n.a.

Growth factors (e.g., GDF-15,
activin A)

n.a. n.a.

Cell cycle arrest p53 qPCR from blood samples/staining of
cultured cells/flow cytometry
NGS/microarray

--
--
--

66 561

p16 27 422

p21 21 435

SA-βGal Microscopy/flow cytometry --- 9 359

SAHF Histone fragments (H3K9Me2,
HP1γ)

DAPI/heterochromatin staining ---◦ 3 19

Lamin B1 Immunohistochemistr Western Blot --- 0 12

Cell morphology (e.g.,
progerin)

Cell shape Microscopy of cultured cells --- n.a. n.a.

* rows are sorted by rc-score.
◦ on average (detailed in Supplementary Table 1, 5).
n.a.: not assigned due to high variation of terminology in literature.

TABLE 6 | criteria to select biomarkers of aging in clinical trials.

Cohort Size: Large cohorts require biomarkers that are easy to extract and process at low cost (e.g., serum markers). Studies with smaller cohorts and more
specific aging-associated questions may require (and can afford) difficult-to-use and/or more expensive markers (e.g., fibroblast cultures,
measurement of telomere length or the methylation level of CpG islands).

Cohort type: Depending of the aims of the trial, usually reflected by inclusion criteria, it is often not appropriate to consider biomarkers which are usually used as
markers for specific tissue damage or organ failure (e.g., creatinine, cystatin C, Pro-BNP) or markers that reflect a general activation of
immunological processes such as CRP and IL6 or markers that reflect a higher risk for typical age-related diseases such as lipids, HbA1c or other
cardiovascular risk factors. Additionally, organ specific markers should be controlled because these can be strong confounders in a study.
A possible strategy to increase the informative value for all aging aspects could be the combination of organ-specific and more general markers.

Compartment
of disease:

If the disease (or dysfunction) that is specifically considered in a trial features strong effects not in general but in distinct compartments (organs,
tissues, combinations of these, or parts thereof), e.g., the brain, the overall question is which compartment to sample for biomarker analysis, e.g.,
peripheral blood vs. cerebrospinal fluid. Markers in the blood can often but not necessarily be attributed to more general aging processes.

Assessment
of potential
pitfalls:

Even if easy-to-handle biomarkers have a high sensitivity for aging-related processes, they often lack clinical specificity. This is true for many
inflammatory markers (e.g., CRP, interleukins), which are more valuable markers of aging in populations without an overrepresentation of infections.
For most questions acute infection must be ruled out by standard criteria (fever, feeling unwell, B-symptoms, etc.). Specific tissue/organ checks
(e.g., physical examination, echocardiography etc.) can be added to rule out acute diseases. Strictly speaking, the biomarkers excluded on this
basis may also reflect some acceleration of aging-related processes. However, they are less relevant than biomarkers reflecting more general
aspects of aging, and, more importantly, they would lead to misinterpretations in individual patients. Furthermore, in addition to standard preanalytics
precautions such as control of patient’s position, application of the tourniquet, fasting vs. non-fasting and diurnal fluctuations, special aspects must
be taken into account. For example, measurements that may be influenced by habits such as exercise should not be done on Mondays; exercise
on weekends may influence cytokine levels, etc. In general, the same days should be used for all participants and all longitudinal time points.

Future
directions:

There is a strong need to investigate biomarkers of aging more systematically. This should include promising markers such as the methylation of
CpG islands and the standardization for specific sampling procedures (e.g., of peripheral blood cells for specific measurements) and the clarification
as to whether and in what context acute disease markers, which at the same time can also reflect chronic processes of aging, are useful
biomarkers of aging. Furthermore, biomarkers might be put together into composite markers, also known as “aging panels.” Finally, the assessment
of very sophisticated but highly informative measures with high potential validity to monitor aging such as MRI (“Brain age“) or PET-Scans (e.g.,
TAU-PET, detecting the continuous increase of TAU deposition in temporo-parietal-occipital lobes) should be considered (Sowell et al., 2003; Cole
et al., 2015; Schöll et al., 2016).

cells usually have an increased lysosomal content, which can
be detected cytochemically by measuring senescence-associated
β-galactosidase (SA-βGal) activity at a pH of 6.0 (Debacq-
Chainiaux et al., 2009; Hernandez-Segura et al., 2018; Figure 2).
Frequently mentioned senescence related biomarkers are covered
in Table 5.

In summary, there is currently no biomarker for cellular
senescence that can easily be used for diagnostics or
prediction. Therefore, in the future, more attention should
be paid to the research and establishment of diagnostically
applicable biomarkers of cellular senescence. Potentially,
measuring senescence markers after cell isolation by flow
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cytometry can be further developed for use in diagnostics
(Adewoye et al., 2020).

Transcriptomic Biomarkers
Transcriptomic (gene expression) changes also accompany
the aging process, and transcriptomic clocks were trained to
predict chronological age. Some clocks were trained on samples
belonging to a specific tissue, e.g., the clocks by Peters et al. and
Huan et al. are based on whole blood or PBMC, the clocks by
Fleischer et al. and LaRocca et al. are based on skin fibroblasts,
while the one by Mamoshina et al. (2019) is based on muscle
tissue, and the clocks by Ren and Kuan (2020); Shokhirev and
Johnson (2020) are based on multiple tissues (Peters et al.,
2015; Fleischer et al., 2018; Huan et al., 2018; Mamoshina et al.,
2018; LaRocca et al., 2020; Ren and Kuan, 2020; Shokhirev and
Johnson, 2020). Most of these clocks are taking mRNA as input,
while some employ microRNAs (Huan’s clock) or repetitive
elements (LaRocca’s clock). Shokhirev and Johnson’s pan-tissue
transcriptomic clock is based on a large-scale meta-analysis
of transcriptomic data from the Sequence Read Archive. 3060
multi-tissue samples were used as input, and a random forest
model was able to learn chronological age with high accuracy
(Shokhirev and Johnson, 2020). On a practical level, the e-score
of transcriptomic clocks strongly depends on the tissue used for
the analysis. Perhaps the best specimen in this context is whole
blood or its components. Peripheral blood mononuclear cells
(PBMC) are easily accessible as well, and PBMC transcriptomes
were measured in the context of nutrigenomic interventions and
proved to be sensitive to these (Afman et al., 2014; Herrera-
Marcos et al., 2017; Bottero and Potashkin, 2020).

Preanalytics and Methodology Reporting
Appropriate preanalytics and exact description of sampling and
methodology are critical for reliable results and reproducibility,
particularly the use of validated tests and procedures. Details
are beyond the scope of this review and are summarized
elsewhere (Rai and Vitzthum, 2006). These include blood draw,
blood collection, blood processing and storage. We recommend,
whenever possible, a morning (before 10 am, and fasting) blood
draw to control diurnal fluctuation; Mondays should be avoided
due to weekend-specific confounders. For blood collection a
21-gauge needle and slow aspiration is preferred to avoid the
activation of coagulation. Needle material and tube material
may impact assays, e.g., in the measurement of trace elements.
A standardized description of venipuncture and sampling is
strongly recommended. There are advantages and disadvantages
for serum and plasma respectively (Rai and Vitzthum, 2006). If
possible, both serum, heparin plasma, double centrifuged citrate
plasma and, if necessary, EDTA blood (e.g., for DNA preparation,
telomere length measurements, etc.) should be collected and
prepared in fractions, and, if necessary/possible, frozen. Blood
counts and other highly standardized routine methods should
be performed immediately. In general, tests with high inter-
assay variability should be processed batch-wise based on initially
frozen samples, provided the samples can be frozen for the
respective test. Data on the stability of the frozen samples and on
potential confounding by the freeze thawing procedures should

be recorded. The position of the probands during blood drawing
(standing, lying, sitting) influences almost all analyte values (due
to water shifts between vessel and interstitial space). Sampling
from probands at a stable position (horizontal or sitting for
some minutes) is recommended. Serum/plasma should not be
in contact with blood cells for more than 2 h (Kiechle, 2010).
Long-term storage should be at –80◦C or in liquid nitrogen
(Rai et al., 2005).

CONCLUSION

Aging is a complex process and not fully understood. In this
review we propose the “rc-score” and the “e-score“ as tools for
gauging the suitability of biomarkers of aging, with a focus on
clinical settings. Together the two scores reflect the presumed
relevance of a potential biomarker of aging, and the effort needed
for its measurement. The “e-score” must be seen in relation to
the equipment and possibilities of the laboratory performing the
measurements. Routine blood biomarkers and easy-to-measure
phenotypic markers such as blood pressure often correlate
well with age-dependent organ/metabolic dysfunction, including
cardiovascular, renal, or diabetic risk. The most cited non-
epigenetic biomarkers are telomere length, amount of DNA-
damage and mitochondrial dysfunction, reflecting aging-related
changes on the genome and cellular level. Telomere length
is classified as the most relevant according to rc-score, which
exemplary shows the limitations of such a score. Telomere
attrition is very interesting from a physiological point of view, but
whether it can serve as an accurate biomarker is still questionable
due to methodological problems. Novel telomere analyses such
as TESLA have yet to be validated. Molecular markers such
as cytokines/chemokines and sirtuins show a relatively low rc-
score but are of clinical and scientific interest. The strong
presence of BMI in reviews might also be attributed to the
fact that potentially better markers such as the formal criteria
of metabolic syndrome were not considered in many studies
because the effort is higher for these. Methylation of CpG
sites is among the most interesting candidate biomarkers of
aging, but it awaits further validation in longitudinal studies.
Functional decline affects all types of tissues and has a negative
effect on grip strength and mobility, which can both be used as
biomarkers of aging. Cellular senescence is a fundamental part
of the aging process. However, it is difficult to analyze to date in
a clinical setting due to difficulties in sampling and specificity.
A combination of routine laboratory, epigenetic, non-epigenetic
and physical capability and organ function biomarkers, and
possibly senescence markers, may be the key to a valid composite
biomarker of aging. Yet, a standardized (composite) biomarker of
aging that specifically measures all important aspects of the aging
process has not yet been found.

Clinical Get Home Message
The general question of which biomarkers should be used in
clinical trials to study aging and (cellular) senescence remains
difficult and clearly requires further systematic longitudinal
studies. Nevertheless, there are numerous potential markers,
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which differ concerning their difficulty to sample, to handle
and to process, including significant differences in costs. Several
parameters can be used to select biomarkers of aging for clinical
trials, and we point out some specific issues in Table 6.
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