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The applicability of transcriptomics for functional genome analysis rests on the assumption that

global information on gene function can be inferred from transcriptional regulation patterns. This

study investigated whether Saccharomyces cerevisiae genes that show a consistently higher

transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the

absence of oxygen. Tagged deletion mutants were constructed in 27 S. cerevisiae genes that

showed a strong and consistent transcriptional upregulation under anaerobic conditions,

irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate).

Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (eug1D,

izh2D, plb2D, ylr413wD and yor012wD) conferred a significant disadvantage relative to a

tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very

limited predictive value for the contribution of individual genes to fitness under specific

environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers

an efficient approach to select relevant leads for functional analysis studies.

INTRODUCTION

While the number of completely sequenced microbial
genomes continues to grow explosively, assignment of
biochemical and physiological functions to the correspond-
ing genes is progressing at a much slower rate. A case in
point is the extensively studied yeast Saccharomyces
cerevisiae. Ten years after the completion of its genome
sequence (Goffeau et al., 1996), 21 % of its genes have
neither an experimentally confirmed function nor a function
that can be predicted with a high degree of confidence,
based on similarity with genes from other organisms
(Saccharomyces Genome Database, August 28, 2006;
http://www.yeastgenome.org/cache/genomeSnapshot.html)
(Hirschman et al., 2006).

Accurate determination of gene function often requires
sophisticated and costly experimental techniques. It is

therefore worthwhile to select priority targets for func-
tional analysis, via high-throughput methods such as
synthetic-lethality screening (Tong et al., 2001, 2004),
mapping of physical interaction (Gavin et al., 2002; Krogan
et al., 2006) and expression analysis. With respect to the
last, DNA microarrays have been extensively used to map
genome-wide transcriptional responses to a multitude of
environmental parameters (Boer et al., 2003; Causton et al.,
2001; Daran-Lapujade et al., 2004; Gasch et al., 2000). This
approach yields sets of genes that show common and speci-
fic transcriptional responses to individual environmental
parameters. The resulting sets of transcriptionally respon-
sive genes often show enrichment for genes with known
functions that can be directly correlated with the
environmental conditions under study. Additionally,
they invariably yield sets of transcripts that encode proteins
of unknown function or with a known biochemical
function that cannot be readily linked to the conditions
studied.

It is generally assumed that, in the case of upregulated
transcripts, the biochemical functions of the encoded
proteins contribute to the physiological adaptation of the

Abbreviation: qrtPCR, quantitative real-time PCR.

Primers used in this study and expression data of YGR059W and
ACT1 over different chemostat culture conditions are available as
supplementary data with the online version of this paper.
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organism to the environmental parameter under study.
However, there are few published studies that have system-
atically investigated the extent to which this concept of
‘transcriptomics-inferred function’ is correct and applicable
for guiding functional-analysis research. Two large-scale
comparisons suggest that the correlation between transcript
profile and fitness of deletion strains may be far from perfect
(Birrell et al., 2002; Giaever et al., 2002, 2004; Winzeler et al.,
1999).

S. cerevisiae is the only yeast that can grow rapidly under
aerobic as well as anaerobic conditions (Visser et al., 1990).
This unique ability plays a major role in various industrial
applications of S. cerevisiae, including beer and wine
fermentation, and large-scale production of fuel ethanol.
Still, the genetic basis for rapid anaerobic yeast growth
remains unknown. In a recent chemostat-based study (Tai
et al., 2005), we used transcriptome analysis to investigate
the response of S. cerevisiae to anaerobic conditions. Sixty-
five genes (~1 % of the genome) were found to be
significantly upregulated under anaerobic conditions,
irrespective of the nature of the growth-limiting nutrient
(glucose, ammonium, phosphate or sulfate). In separate
experiments with the yeast deletion library (Snoek &
Steensma, 2006), 24 genes were shown to be essential for
anaerobic (but not for aerobic) growth. Surprisingly,
when these two sets of genes, obtained from different
experimental approaches, were compared, no overlap was
found.

In the present study, we investigate whether genes that are
transcriptionally upregulated in anaerobic cultures of S.
cerevisiae contribute to its fitness under anaerobic condi-
tions. In order to be able to identify subtle effects on
fitness, competitive cultivation of a reference strain and
a set of null mutants was performed in anaerobic
chemostats.

METHODS

Strains. S. cerevisiae CEN.PK113-7D (MATa MAL2-8c SUC2) (van
Dijken et al., 2000) was used as the prototrophic reference strain. All
knockout strains (Supplementary Table S1) were constructed in this
genetic background. Strains were constructed by using standard
yeast media and genetic techniques (Burke et al., 2000). The kana-
mycin resistance cassette was amplified by PCR with specific primers
(Supplementary Table S1) and the pUG6 vector as a template
(Guldener et al., 1996). As part of the deletion process, each gene
disruption was replaced with a KanMX module and uniquely tagged
with two 20-mer sequences (Supplementary Table S1) (http://www-
sequence.stanford.edu/group/yeast_deletion_project/deletions3.html).
The gene YGR059W was tagged with either a unique downtag
sequence or an uptag sequence. The deletion of YOR012W carried
along inactivation of the paper and overlapping ORF YOR013W.
The double mutant strain yor012WD/yor013WD will be referred to
as yor012WD in the rest of the paper. Strains were routinely
grown at 30 uC on complex yeast bacto-peptone dextrose (YPD)
medium.

Chemostat cultivation. Chemostat cultivation was performed at
30 uC in 1 l working volume laboratory fermenters (Applikon) with

a stirrer speed of 800 r.p.m., pH 5.0, and a dilution rate (D) of
0.10 h21, as described by van den Berg et al. (1996). The pH was
kept constant, using an ADI 1030 biocontroller (Applikon), via the
automatic addition of 2 M KOH. The fermenters were flushed with
pure nitrogen gas for anaerobic growth and air for aerobic growth,
at a flow rate of 0.5 l min21 using a Brooks 5876 mass-flow control-
ler (Brooks Instruments). The dissolved-oxygen concentration was
continuously monitored with an Ingold model 34 100 3002 probe
(Mettler Toledo), and was 0 % for anaerobic growth and >70 % for
aerobic growth. To sustain anaerobiosis, the vessels of medium were
sparged with pure nitrogen gas, and Norprene tubing was used to
minimize oxygen diffusion into the fermenters. Anaerobic carbon-
limited steady-state chemostat cultures of the reference strain S. cere-
visiae ygr059wD : : uptag (see Results) were grown on a synthetic
medium, as described previously (Verduyn et al., 1992). Aerobic
carbon-limited chemostat cultures contained the same medium but
with 7.5 g glucose l21 and without the anaerobic growth factors
Tween-80 and ergosterol. When steady state was achieved, the 30 ml
competition mix was aseptically injected into the culture using a syr-
inge. Samples were taken via the effluent line every 24 h for a period
of 216 h. The samples were chilled on ice, spun down and frozen at
220 uC for high-molecular-weight DNA extraction.

Anaerobic batch fermentation. Anaerobic batch cultivations
were performed in 2 l chemostats (Applikon) with a working
volume of 1 l. Precultures were grown in mineral medium with 2 %
glucose until stationary phase in shake flasks at 200 r.p.m. and
30 uC. Fermenters were inoculated with preculture at OD660 0.1.
Cultures were grown in a predefined synthetic medium for anaero-
bic growth (Tai et al., 2005) with 2 % glucose. pH, temperature and
stirrer speed for chemostat anaerobic cultures were maintained as
described in the previous paragraph.

Shake-flask cultivation. Shake-flask cultivations were performed
in 500 ml flasks containing 100 ml medium, which were incubated
at 30 uC on an orbital shaker at 200 r.p.m. The composition of the
synthetic medium was as follows: 20 g glucose l21, 5 g (NH4)2SO4

l21, 6 g KH2PO4 l21, 0.5 g MgSO4 l21, trace elements and vitamin
solutions (Verduyn et al., 1990). The medium was adjusted to
pH 5.0 and sterilized by autoclaving. Glucose was autoclaved sepa-
rately. Vitamins were filter-sterilized and added to the medium.
Growth of the various strains was monitored by measuring OD660.
After growing all strains to mid-exponential phase, an equivalent
amount of each mutant strain, corresponding to OD660 0.02, was
aseptically pooled to prepare a mixed inoculum (30 ml total
volume) for the competition experiments.

High-molecular-weight DNA extraction. DNA samples were pur-
ified using an adaptation of the method of Burke et al. (2000). A
volume of 40 ml cell culture broth was spun down and resuspended
in 1 ml DNA extraction buffer (2 % Triton X-100, 1 % SDS,
100 mM NaCl, 10 mM Tris, pH 8.0, 1 mM EDTA, pH 8.0).
Resuspended cells (400 ml) were added to an equal volume of
phenol/chloroform/isoamyl alcohol (25 : 24 : 1), pH 8.0, and 0.3 g
sterile glass beads. The Bio 101 Fastprep (Qbiogene) was used to
break the cell walls with a speed setting of 4.5 for 15 s. After centri-
fugation, the supernatant was transferred to 500 ml phenol/chloro-
form/isoamyl alcohol (25 : 24 : 1), pH 8.0, and vortexed. Supernatant
was transferred to 1 ml absolute ethanol (220 uC) for precipitation
of DNA and centrifuged for 15 min (13 000 r.p.m.) at room tem-
perature. The DNA pellet was resuspended in 400 ml Tris/EDTA
(TE) buffer (10 mM Tris/HCl, pH 7.4, 1 mM EDTA, pH 8.0) and
15 ml RNase cocktail (Ambion 2286), and kept at 37 uC until fully
dissolved. After centrifugation, the chromosomal DNA was reprecipi-
tated with 5 ml 7.5 M ammonium acetate and 1 ml absolute ethanol
(220 uC), and immediately centrifuged at 13 000 r.p.m. for 15 min
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at room temperature. The air-dried DNA pellet was resuspended in
50 ml TE buffer. Quality of DNA was checked with a 1 % Tris/acet-
ate/EDTA (TAE) agarose gel. DNA quantity was analysed at OD260.

Quantitative real-time PCR (qrtPCR). qrtPCR was run on a
DNA engine Opticon I system (Bio-Rad) with the following settings:
94 uC for 2 min, 94 uC for 10 s, 55 uC for 10 s, 72 uC for 10 s, and
plate reading. The denaturation, annealing, elongation and reading
steps were repeated for 49 cycles. A melting curve from 55 to 94 uC
was performed at the end of the reaction. The reaction mixture of
20 ml consisted of 10 ml SybrGreen TAG readymix (Sigma S1816),
0.2 mM forward primer, 0.2 mM reverse primer and 50 ng DNA.
The C(t) value was calculated with Opticon Monitor software ver-
sion 1.08 (Bio-Rad) by setting the threshold for significant detection
levels to 106 SD over the cycle range from 1 to 15. Triplicate read-
ings were carried out for each time point.

Data and statistical analysis. The C(t) values were converted to
DNA concentration (XDNA) via the exponential relationship of XDNA

and C(t): XDNA=ae2C(t), where a is a constant for each strain the
value of which depends on the efficiency of qrtPCR. For each strain,
all XDNA values measured during the 216 h competition experiment
were normalized to the XDNA value at t=0 to eliminate bias from
PCR efficiency. Fitness was calculated by taking the slope of the
best-fit linear trend line. The relative reduction of the fitness of
mutant strains was calculated from the biomass balance (1):

(1) X t~Xoe(k{D)t

where t represents time (h), Xt, biomass concentration at time t, Xo,
initial biomass concentration, m, growth rate (h21) and D, dilution
rate (h21). Statistical analysis was done using the modified Z score
(Iglewicz & Hoaglin, 1993) to identify mutants that showed a signifi-
cant reduction in fitness (outliers). The modified Z-score was then
subjected to a two-tailed t distribution test with two degrees of free-
dom in accordance with Grubbs’ test (Barnett & Lewis, 1994), to
calculate the P values for each mutant strain. Only mutants with
P<0.01 were deemed significantly reduced in fitness.

RESULTS

Selection of target genes and construction of
deletion strains

A previous transcriptome analysis of S. cerevisiae chemostat
cultures yielded 65 genes that, irrespective of the growth-
limiting macronutrient, showed a higher transcript level in
anaerobic chemostat cultures than in aerobic cultures (Tai
et al., 2005). For the sake of brevity, we will refer to these
genes as ‘anaerobically upregulated’. From these 65 genes, a
set of 24 was selected for further analysis (Fig. 1), based on
the following criteria. (1) High change in transcript level
(more than threefold). This led to the elimination of three
genes whose transcript level varied between two- and
threefold. (2) Unclear or unknown function. For example,
eight of the 65 genes are related to sterol and unsaturated
fatty acid metabolism. As these processes require molecular
oxygen, their anaerobic upregulation is understood, and we
therefore eliminated these genes from the present study. (3)
Not part of a family of genes with high sequence similarity.
For example, 21 of the 65 anaerobically upregulated genes
belong to the seripauperin family (DAN, PAU and TIR
genes). Since multiple members of this family were present
in the set, redundancy might well have obscured the
interpretation of the competitive cultivation experiments
carried out with single deletion strains. We therefore
decided to eliminate members of large gene families from
this study. (4) No previously established clear relation with
anaerobic growth.

Five additional genes were selected for inclusion in further
experiments. YGR059w was selected as a physiologically

Fig. 1. Genes included in the competitive
cultivation experiments. Transcript intensities
are depicted as a range from low (black) to
high (red). Biochemical functions of the
encoded proteins are derived from the Yeast
Proteome Database (www.proteome.com). P

values represent the significance of the
reduced fitness of the respective mutant
strain during aerobic and anaerobic growth.
Abbreviations: C, carbon; N, nitrogen; P,
phosphorus; S, sulfur; Lim, limited; ANA,
anaerobic; A, aerobic; DHS-1-P, dihydro-
sphingosine-1-phosphate.
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neutral marker gene based on transcript data. YGR059w
encodes a sporulation-specific septin that functions in
cytokinesis, meiosis I and sporulation, and was not
expressed in the haploid CEN.PK113-7D strain under
20 different chemostat conditions (see Supplementary
Table S2). URA3, which is essential for uracil biosynthesis,
was included as a negative control: in the absence of uracil,
ura3D strains should not grow. Additionally DAN1, UPC2
and ANB1 were included as extensively studied, anaer-
obically upregulated genes. DAN1 encodes a cell wall
mannoprotein induced during anaerobic growth, initially
excluded as a member of the seripauperin (PAU) family
(Viswanathan et al., 1994). UPC2 (uptake control 2)
encodes a sterol regulatory element binding protein
involved in the regulation of sterol biosynthetic gene
expression and the uptake and intracellular esterification
of sterols (Wilcox et al., 2002). Finally, ANB1 encodes the
translation initiation factor eIF5A that displays specific and
strong anaerobic transcriptional upregulation (Wei et al.,
1995). In total, 29 genes were further studied by means of
competitive cultivation.

Competitive chemostat experimental design

An outline of the experimental design is presented in Fig. 2.
All 29 genes were deleted from the start to stop codon in S.
cerevisiae CEN.PK113-7D and replaced with the kanMX
deletion cassette flanked by two gene-specific 20 nt tag
sequences (Winzeler et al., 1999; see Methods). The kanMX
cassette has previously been shown not to confer a selective
(dis)advantage during prolonged chemostat cultivation of
S. cerevisiae (Baganz et al., 1997). To further rule out
interference by this marker gene we also expressed it in the
reference strain.

In contrast to previous large-scale functional-profiling
studies (Giaever et al., 2002, 2004; Winzeler et al., 1999)
in which auxotrophic mutant collections were screened,
all mutants used in this study were generated in the
prototrophic CEN.PK113-7D strain (van Dijken et al.,
2000). The use of prototrophic strains (with the exception of
the ura3 negative control strain) eliminates the risk that
results are influenced by the nutritional requirements of
auxotrophic strains (Pronk, 2002).

Subsequently, steady-state chemostat cultures were grown
with the neutral control mutant ygr059wD containing only
the uptag (Fig. 2). A second ygr059wD strain carrying a
specific downtag sequence was also constructed and
added to the mutant pool. This latter strain was used to
normalize the population dynamics of the other mutants.
The mixture of deletion strains (see Methods) was then
injected into the steady-state chemostat culture. We prefer
this approach to the inclusion of the mutant pool at the
start-up of the chemostat, as reported elsewhere by Baganz
et al. (1997), when cultivation conditions are dynamic and
the selective pressure may differ from that under steady-
state conditions.

The culture was then sampled daily over a period of 9 days
(216 h). This time frame was chosen to reduce the impact of
evolutionary adaptation, which would render a comparison
of the fitness of individual tagged mutants impossible
(Jansen et al., 2005; Novick & Szilard, 1950) (Fig. 2). After
DNA isolation, samples were analysed by qrtPCR, using the
molecular tags to monitor the abundance of each mutant.
After normalization to the initial sample, the abundance of
the deletion strains was normalized to that of the
ygr059wD : : downtag reference strain included in the
mutant pool.

Fig. 2. Experimental design. (1) Selection of strains based on
their transcript profiles. All the genes tested showed a consis-
tently higher expression in the absence of oxygen than in its
presence, with four different nutrient limitations. (2) Knockout
mutants of anaerobiosis-induced genes were constructed. Each
mutant carried two specific tags. (3) Competitive fermentation:
the knockout mutants were grown and pooled in equal propor-
tion prior to injection into a steady-state chemostat culture of
the reference strain ygr059wD : : uptag. The culture was
sampled every 24 h for a period of 9 days. (4) qrtPCR was
performed on daily samples, using a tag-corresponding specific
primer and a common primer for all strains. (5) Determination
of fitness compared to the pooled reference strain
ygr059wD : : downtag.
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Competitive anaerobic chemostat cultivation

During the competitive anaerobic chemostat experiments,
strains that did not grow (m, 0 h21) were expected to
disappear from the culture via washout kinetics at the
dilution rate of 0.10 h21. This is depicted by the washout
line in Fig. 3(A). Indeed, the auxotrophic ura3D strain
(negative control) closely followed this line (Fig. 3A). After
96 h, the abundance of the ura3D strain did not decrease
any further (Fig. 3A). This abundance was taken to
reflect the threshold for detection in the experimental set-
up. The C(t) values measured for the reference strain
ygr059wD : : downtag did not vary by more than 3.6 % in the
duplicate experiments over the period of 216 h.

The anaerobic competitive cultivation experiment was
performed in two independent chemostat runs. The fitness
of the mutants in the anaerobically upregulated genes
observed in these two runs was generally in good agreement
(Figs. 1 and 3). The fitness data from each strain were
evaluated by means of a statistical test, revealing five outliers
(P<0.01) from the set of 27 mutants (Fig. 1). Consequently,

it was not possible to make reliable statements about
decreases in fitness below 20 %. While prolonging the
chemostat experiment might have led to increased sensi-
tivity, we decided against this because of the high risk of
interference by evolutionary processes (Jansen et al., 2005;
Novick & Szilard, 1950).

None of the three anaerobic marker knockout strains
anb1D, dan1D and upc2D displayed a significant fitness loss
compared to that of the control strain (ygr059wD
: : downtag). While such a result could be anticipated in
the case of DAN1, which is part of a large gene family, it was
more unexpected in the case of ANB1 and UPC2, which
participate in the central processes of transcription and
translation. It may be relevant to note that a larger variation
in fitness between the two experimental runs was observed
for the upc2D strain than for the anb1D and dan1D strains.

Regarding the remaining 24 mutants in anaerobically
upregulated genes, only five (eug1D, izh2D, plb2D,
ylr413wD and yor012wD; Fig. 3A) showed a significant
(20–60 %) reduction of fitness in independent replicate

Fig. 3. Results of anaerobic competitive chemostat cultures. (A) Strains with fitness reduction: log ratio [DC(t)mutant/DC(t)ref]

as a function of time. Graph areas (roman numerals) indicate the following reductions of fitness: (I) <20 %, (II) 20–30 %, (III)
30–40 %, (IV) 40–50 %, (V) >50 %. The dashed line denotes washout (zero specific growth rate). The graph only shows
mutants with >20 % reduction of fitness. &, ura3D; %, ylr413wD; $, izh2D; #, yor012wD; m, eug1D; D, plb2D. Error bars
indicate mean±SD of two independent chemostat cultures with triplicate measurements for each time point. (B) Strains
without fitness reduction: log ratio [DC(t)mutant/DC(t)ref] as a function of time. Error bars indicate mean±SD of two independent
chemostat cultures with triplicate measurements for each time point. (C) Bar graph indicating fitness. Reduced fitness of each
deletion strain was calculated from the slope of the best-fit linear line. Error bars indicate mean±SD of two independent
chemostat cultures.
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experiments (Fig. 3A, C). Of the five genes whose deletion
resulted in a reduction of fitness under anaerobic condi-
tions, EUG1 is the most extensively documented. EUG1
encodes a non-essential protein disulfide isomerase
(Tachibana & Stevens, 1992). The S. cerevisiae genome
contains four additional protein disulfide isomerases (PDI1,
MPD1, MPD2 and EPS1), of which only PDI1 is essential
(Norgaard et al., 2001). In addition to their catalytic role in
protein folding, protein disulfide isomerases act as chap-
erones (Kimura et al., 2005). IZH2/PHO36 has been
proposed to be involved in metabolic pathways that regulate
lipid and phosphate metabolism (Karpichev et al., 2002).
Additionally, IZH2 is part of the ZAP1 regulon, and has been
proposed to play a role in zinc homeostasis along with IZH1,
IZH3 and IZH4 (Lyons et al., 2004). PLB2 encodes a
lysophospholipase B involved in phospholipid metabolism
(Fyrst et al., 1999; Merkel et al., 1999). Two additional
lysophospholipase B genes are also found in the S. cerevisiae
genome: Plb1 (62 % similarity) (Lee et al., 1994) and Plb3
(57 % similarity) (Merkel et al., 1999). The two remaining
genes are very poorly characterized. Several experiments
indicate that Ylr413wp is localized at the cell surface (Diehn
et al., 2000; Huh et al., 2003) but, just like that of YOR012w,
its function is totally unknown.

The maximum specific growth rate (mmax) of the five
mutants identified in the competitive experiment was
measured in pure culture, using anaerobic fermenters
(Table 1). All five exhibited a mmax higher than the dilution
rate of 0.10 h21 used in the competitive chemostat
cultivation. The specific growth rates of the eug1D, izh2D
and yor012CD mutants were significantly lower than that of
the reference strain (t test analysis, P<0.05). However, in
none of the mutants did this decrease of mmax exceed 18 %
(Table 1). Consequently, their reduced competitiveness in
the chemostat experiments could not be entirely attributed
to a reduced mmax.

Aerobic reference experiments

To investigate whether the observed reduction of fitness of
the five mutant strains was specific for anaerobic conditions,
aerobic competitive chemostat experiments were run. Over
a period of 5 days, none of the 27 mutants displayed a
significant fitness reduction when compared to the reference
ygr059wD : : downtag strain (Table 1, Fig. 1). As an addi-
tional control, the specific growth rates of the five mutant
strains that showed a reduced fitness in the anaerobic
cultures were measured in (semi-)aerobic shake-flask
cultures, and were found not to differ significantly from
those of the isogenic reference strains CEN.PK113-7D and
ygr059wD : : downtag (Table 1). This implies that the
reduction in fitness encountered in five of the mutant
strains during anaerobic competitive growth was specific for
anaerobiosis.

DISCUSSION

Previous systematic comparisons of transcript levels and
fitness of yeast mutants in batch cultures (Birrell et al., 2002;
Giaever et al., 2002, 2004; Winzeler et al., 1999) have used
the entire S. cerevisiae deletion library. The present study is
believed to be the first to use transcriptome data to select
target genes in chemostat-based competitive cultivation. We
have reported a fitness profiling of knockout strains in genes
that showed a consistently higher transcript level under
anaerobic conditions than that under aerobic conditions.
Our experimental approach differed in several aspects from
earlier S. cerevisiae (Baganz et al., 1997, 1998; Colson et al.,
2004) and Escherichia coli (Chao & McBroom, 1985; Dean
et al., 1988; Dean, 1989; Trobner & Piechocki, 1985)
chemostat-based competition experiments: injection of a
mutant pool into a steady-state culture, use of qrtPCR for
quantification, and selection of strains based on transcrip-
tome studies. This novel setup was (i) sensitive (qrtPCR has

Table 1. Anaerobic and aerobic maximal specific growth rate determination

The anaerobic-specific growth rates were determined in fully anaerobic controlled batch fermentations. The aerobic-specific growth rates

were measured in shake flasks. The right-hand column displays the fitness reduction in aerobic competitive chemostats of the five mutants

that showed a significant disadvantage in anaerobic competitive chemostats. The mmax data of the mutants were compared to the reference

strain (ygr059wD) data by means of a t test. The significance of the difference is indicated by the P value (P>0.05). Data are presented as

the mean±SD of results from two independent cultures for each strain.

Deletion mutant Anaerobic batch Aerobic batch (shake flask)

mmax (h”1) t test P value mmax (h”1) t test P value Fitness reduction (%)

plb2D 0.31±0.01 7.0561022 0.39±0.00 3.9961021 7.0±3.7

ylr413wD 0.25±0.08 3.8361021 0.38±0.02 6.0761021 11.6±3.3

izh2D 0.32±0.00 1.3161022 0.38±0.01 4.8761021 15.8±7.4

eug1D 0.29±0.01 3.4261022 0.37±0.02 6.3861021 8.6±0.1

yor012wD 0.29±0.00 4.0561023 0.34±0.00 3.1561023 14.8±5.6

ygr059wD 0.34±0.00 2 0.40±0.02 2 2

CEN.PK 113-7D 0.34±0.01 2 0.39±0.00 2 2
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greater sensitivity than quantitative PCR, colony plate
counts or Affymetrix tag3 arrays); (ii) cost-effective (goal-
orientated gene-deletion selection); and (iii) yielded
reproducible results (as determined by the immediate
fitness test from steady-state conditions and prototrophic
strains). In mixed populations, the possibility cannot be
excluded that reduced fitness results from interactions
between strains with different genotypes. For example,
excretion of a metabolic intermediate by one of the deletion
mutants might be toxic to another, or a mutation that is
strongly disadvantageous in pure culture may be rescued by
cross-feeding by other strains (Pronk, 2002). We sought to
minimize the impact of such phenomena by keeping the
abundance of each of the mutants in the culture very low.

Our study yielded five priority targets for further functional
analysis of the molecular basis for anaerobic growth in S.
cerevisiae. Further analysis will involve the use of multiple
mutations to narrow down gene function. The available
literature provides some interesting leads. Lyons et al.
(2004) have reported that IZH2 is involved in coordinating
both sterol and zinc metabolism under anoxia. The
possibility that izh2 mutants may be impaired in uptake
of sterols, which are essential for anaerobic growth of S.
cerevisiae (Andreassen & Stier, 1953), merits further
research. YLR413w encodes a protein of unknown function
that has a 49 % sequence similarity to YKL187c, which is
transcriptionally upregulated during growth on oleate (Kal
et al., 1999). It is conceivable that these genes are implicated
in the uptake of essential unsaturated fatty acids, which are
essential for anaerobic growth. It is relevant to note that,
in the present study, oleate was provided as Tween-80
(polyoxyethylene sorbitan monooleate). Tween-80 was
introduced to compensate for the inability of S. cerevisiae
to synthesize unsaturated fatty acids de novo under
anaerobic conditions. However, for Tween-80 to act as a
source of oleate, the acyl-ester bond that links the oleate
chain to the polyoxyethylene sorbitan complex must be
cleaved. It is conceivable that this reaction is linked to the
loss of fitness recorded for the plb2D strain. Plb2 may
catalyse the hydrolysis of Tween-80 at the single fatty acid
ester bond to yield oleate, as it does with lysophos-
phatidylcholine (Fyrst et al., 1999). The incomplete
functional complementation of PLB1 and PLB3, which
were also expressed under anaerobic conditions, might then
reflect differences in substrate affinity and specificity of all
three yeast phospholipases B, as already reported (Merkel
et al., 2005).

EUG1 encodes a protein disulfide isomerase of the
endoplasmic reticulum lumen. It has been suggested else-
where (Ter Linde & Steensma, 2002) that EUG1 is involved
in glycosylation and isomerization of disulfide bonds during
the folding of anaerobically synthesized Dan/Tir cell-wall
proteins, but this suggestion has not yet been experimentally
followed up. The reason for the fitness loss of the yor012WD

strain, which was actually equivalent to that of the double
mutant yor012WD/yor013WD, remains unknown. As a

consequence of the overlap between the ORFs, a more
elaborated knock-out strategy should be applied to study
each deletion individually and sort out which of the two
genes contributes to the reduction of fitness observed.

Of 24 S. cerevisiae genes that showed a strong and consistent
transcriptional upregulation under anaerobic conditions,
but were not previously implicated in anaerobic metabo-
lism, based on other experimental approaches, only five
were shown to contribute to fitness under anaerobic
conditions, via competitive cultivation of null mutants. At
first glance, it might be argued that this low hit rate was due
to the low dilution rate in the chemostat cultures (0.1 h21,
which is threefold lower than the mmax of S. cerevisiae
CEN.PK113-7D; Kuyper et al., 2004). This interpretation is
not correct, however, as mutations that have a negative
effect on the maximum specific growth rate will directly
affect fitness because they lead to a lower affinity (mmax /Ks)
for the growth-limiting nutrient (where Ks is the substrate
saturation constant) (Button, 1991; Monod, 1942). Indeed,
the mmax of five mutants with reduced fitness in anaerobic
chemostat conditions differed by <20 % from that of the
reference strain. This indicates that a reduced mmax was not
the sole or predominant cause of the reduced fitness. A
similar observation has been made in the bacterium
Ralstonia eutropha, in which the fitness of a mutant
construct cannot be attributed to a reduced mmax

(Fuchslin et al., 2003). Subsequent kinetic analysis has
shown that expression of the R. eutropha gfp gene directly
affects Ks, resulting in displacement of the gfp-expressing
strain by the wild-type strain in carbon-limited chemostat
cultures (Fuchslin et al., 2003).

Of the five deletion mutants with reduced fitness in
anaerobic chemostat cultures, three (izh2D, plb2D and
ylr413WD) carry mutations in genes that encode membrane
proteins. It is conceivable that these mutations affect
membrane structure and thereby the affinity of nutrient-
import systems.

Even though we sought to enrich the set of target genes by
only including genes that showed a strong and consistent
transcriptional upregulation under anaerobic conditions,
the low hit rate observed in our study was consistent with
two earlier genome-scale comparisons between transcript
profiles and fitness, in which S. cerevisiae was exposed to
DNA-damaging agents (Birrell et al., 2002), and grown
under various stress and growth conditions (1 M NaCl,
1.5 M sorbitol, pH 8, and galactose) (Giaever et al., 2002).
Our observations show that high transcript levels cannot be
interpreted as evidence for unique physiological relevance of
the encoded protein under the experimental conditions.
This conclusion does not, however, imply that the observed
transcriptional upregulation under anaerobic conditions is
without biological significance.

Several mechanisms may explain why transcriptional upre-
gulation of a gene is not accompanied by reduced fitness of
the corresponding null mutant under the experimental
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conditions. Functional redundancy is a problem inherent in
the analysis of (single) deletion mutants. While we sought to
reduce the impact of redundancy by eliminating members of
highly related gene families from our study, several of the
genes displayed sequence similarity with a single second yeast
gene (Fig. 1). For example, the role of the anaerobic ATP/
ADP translocase encoded by AAC3 may well be taken over by
its aerobic counterparts Aac1p and/or Aac2p (Drgon et al.,
1992). AAC1 is the only aerobic counterpart, since it is only
expressed under aerobic conditions; however, AAC2/PET9,
despite a higher expression in the presence of oxygen, is still
expressed under anaerobic conditions (Table 2; Tai et al.,
2005). Similar functional complementation could occur for
UPC2 and ANB1, since their respective homologues ECM22
and HYP2 were expressed irrespective of the oxygen regime
(Table 2; Tai et al., 2005).

FET4 is another anaerobic marker gene. It encodes an Fe(II)
low-affinity iron/zinc/copper transport system, and its
expression is coregulated by iron and oxygen (Jensen &
Culotta, 2002). Under aerobic conditions, iron uptake is
mainly achieved through the product of FET3, which
encodes an Fe(II) high-affinity transport system (Askwith
et al., 1996). It is conceivable that deletion of the FET4 gene
was compensated by overexpression of one or more high-
affinity transport systems (Table 2). A comparable mechan-
ism of gene-expression autoregulation has already been
reported. Upon deletion of PDC1, which encodes the major
pyruvate decarboxylase, growth on glucose is rescued by
overexpression of PDC5 (Hohmann & Cederberg, 1990).
Overall, in S. cerevisiae, a quarter of the gene deletions that
have no phenotype are compensated by duplicate genes (Gu
et al., 2003).

The impact of the upregulation of a gene on fitness may be
context dependent. For example, ammonia-limited growth
of S. cerevisiae leads to coordinated upregulation of
transporters and enzymes involved in the assimilation of
alternative nitrogen sources, even if these are not available in
the growth medium (Boer et al., 2003; Magasanik & Kaiser,

2002; ter Schure et al., 1998). Similar mechanisms may
underlie the transcriptional upregulation under anaerobic
conditions of some of the genes included in this study. For
example, the oxidoreductase encoded by YGL039w may
provide an excellent energy-efficient redox sink for
anaerobic growth, but only in the presence of its unknown
substrate. This would also mean that assessing the
contribution of transcriptionally upregulated genes would
imply testing strains carrying multiple combinatorial
deletions of differentially expressed transcripts.

The implied teleological relationship between transcript
profiles and fitness does not necessarily have to exist for all
genes that show a consistent transcriptional response to a
given stimulus. For example, transcriptional regulation
networks may have evolved to couple transcriptional
responses to environmental stimuli that tend to coincide
in the natural environment. When these stimuli are
separated in the laboratory or in industry, not all
transcriptional responses have a direct bearing on each
individual stimulus.

The present study underlines that, in S. cerevisiae, increased
transcript levels cannot be interpreted as evidence for a
contribution of the encoded protein to the fitness of the cell
in the immediate experimental context. A similar conclu-
sion has been drawn based on a comparison of metabolic
fluxes and transcript levels of the corresponding genes,
which has shown that transcript levels cannot be used as flux
indicators (Daran-Lapujade et al., 2004). Rather than
diminishing the value of transcriptome analysis, these
observations underline the need for integrated systems
approaches to understand functions of genes and genomes.
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Table 2. Transcription intensities of genes with corresponding homologues in anaerobic (ANAe) and aerobic (Ae) chemostat
cultures with limitations in carbon (C-Lim), nitrogen (N-Lim), phosphorus (P-Lim) and sulfur (S-Lim)

Means±SD derived from three independent chemostat experiments.

Gene name Transcription intensity (arbitrary Affymetrix hybridisation unit)

C-Lim ANAe N-Lim ANAe P-Lim ANAe S-Lim ANAe C-Lim Ae N-Lim Ae P-Lim Ae S-Lim Ae

AAC3 355±148 311±71 588±23 387±105 12±0 20±3 21±4 22±7

AAC1 60±2 118±15 72±10 103±22 529±76 483±67 440±234 353±26

AAC2/PET9 803±70 463±34 396±23 364±21 1425±122 1445±47 1478±145 1276±98

UPC2 36±25 50±22 90±16 66±15 15±3 12±0 14±3 12±0

ECM22 182±58 176±30 164±16 201±33 138±12 152±21 165±20 176±6

ANB1 3320±457 2392±254 3193±444 2967±299 25±6 16±3 25±4 18±3

HYP2 2534±625 3041±384 3253±505 2695±170 p2985±1161 3547±167 3572±66 3699±496

FET4 157±41 334±88 293±19 316±28 12±0 123±30 55±5 17±3

FET3 15±4 15±3 13±1 46±23 128±43 29±3 136±19 110±36
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Dow, S., Lucau-Danila, A., Anderson, K. & other authors (2002).
Functional profiling of the Saccharomyces cerevisiae genome. Nature

418, 387–391.

Giaever, G., Flaherty, P., Kumm, J., Proctor, M., Nislow, C., Jaramillo,
D. F., Chu, A. M., Jordan, M. I., Arkin, A. P. & Davis, R. W.
(2004). Chemogenomic profiling: identifying the functional interac-

tions of small molecules in yeast. Proc Natl Acad Sci U S A 101,

793–798.

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B.,
Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C. & other authors
(1996). Life with 6000 genes. Science 274, 546–567.

Gu, Z., Steinmetz, L. M., Gu, X., Scharfe, C., Davis, R. W. & Li, W. H.
(2003). Role of duplicate genes in genetic robustness against null

mutations. Nature 421, 63–66.

Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J. H.
(1996). A new efficient gene disruption cassette for repeated use in

budding yeast. Nucleic Acids Res 24, 2519–2524.

Hirschman, J. E., Balakrishnan, R., Christie, K. R., Costanzo, M. C.,
Dwight, S. S., Engel, S. R., Fisk, D. G., Hong, E. L., Livstone, M. S. &
other authors (2006). Genome Snapshot: a new resource at the

Saccharomyces Genome Database (SGD) presenting an overview of the

Saccharomyces cerevisiae genome. Nucleic Acids Res 34, D442–D445.

Hohmann, S. & Cederberg, H. (1990). Autoregulation may control

the expression of yeast pyruvate decarboxylase structural genes PDC1

and PDC5. Eur J Biochem 188, 615–621.

Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W.,
Weissman, J. S. & O’Shea, E. K. (2003). Global analysis of protein

localization in budding yeast. Nature 425, 686–691.

Iglewicz, B. & Hoaglin, D. (1993). How to Detect and Handle

Outliers. Mikwaukee, WI: ASQC Quality Press.

Jansen, M. L. A., Diderich, J. A., Mashego, M., Hassane, A.,
de Winde, J. H., Daran-Lapujade, P. & Pronk, J. T. (2005). Prolonged

selection in aerobic, glucose-limited chemostat cultures of

Saccharomyces cerevisiae causes a partial loss of glycolytic capacity.

Microbiology 151, 1657–1669.

Jensen, L. T. & Culotta, V. C. (2002). Regulation of Saccharomyces

cerevisiae FET4 by oxygen and iron. J Mol Biol 318, 251–260.

Kal, A. J., van Zonneveld, A. J., Benes, V., van den Berg, M.,
Koerkamp, M. G., Albermann, K., Strack, N., Ruijter, J. M., Richter, A.
& other authors (1999). Dynamics of gene expression revealed by

comparison of serial analysis of gene expression transcript profiles

from yeast grown on two different carbon sources. Mol Biol Cell 10,

1859–1872.

Karpichev, I. V., Cornivelli, L. & Small, G. M. (2002). Multiple

regulatory roles of a novel Saccharomyces cerevisiae protein, encoded

by YOL002c, in lipid and phosphate metabolism. J Biol Chem 277,

19609–19617.

Kimura, T., Hosoda, Y., Sato, Y., Kitamura, Y., Ikeda, T., Horibe, T. &
Kikuchi, M. (2005). Interactions among yeast protein-disulfide

http://mic.sgmjournals.org 885

Fitness of S. cerevisiae deletion strains



isomerase proteins and endoplasmic reticulum chaperone proteins
influence their activities. J Biol Chem 280, 31438–31441.

Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko,
A., Li, J., Pu, S., Datta, N. & other authors (2006). Global landscape
of protein complexes in the yeast Saccharomyces cerevisiae. Nature
440, 637–643.

Kuyper, M., Winkler, A. A., van Dijken, J. P. & Pronk, J. T. (2004).
Minimal metabolic engineering of Saccharomyces cerevisiae for
efficient anaerobic xylose fermentation: a proof of principle. FEMS
Yeast Res 4, 655–664.

Lee, K. S., Patton, J. L., Fido, M., Hines, L. K., Kohlwein, S. D.,
Paltauf, F., Henry, S. A. & Levin, D. E. (1994). The Saccharomyces
cerevisiae PLB1 gene encodes a protein required for lysophos-
pholipase and phospholipase-B activity. J Biol Chem 269, 19725–
19730.

Lyons, T. J., Villa, N. Y., Regalla, L. M., Kupchak, B. R., Vagstad, A. &
Eide, D. J. (2004). Metalloregulation of yeast membrane steroid
receptor homologs. Proc Natl Acad Sci U S A 101, 5506–5511.

Magasanik, B. & Kaiser, C. A. (2002). Nitrogen regulation in
Saccharomyces cerevisiae. Gene 290, 1–18.

Merkel, O., Fido, M., Mayr, J. A., Pruger, H., Raab, F., Zandonella, G.,
Kohlwein, S. D. & Paltauf, F. (1999). Characterization and function
in vivo of two novel phospholipases B/lysophospholipases from
Saccharomyces cerevisiae. J Biol Chem 274, 28121–28127.

Merkel, O., Oskolkova, O. V., Raab, F., El Toukhy, R. & Paltauf, F.
(2005). Regulation of activity in vitro and in vivo of three
phospholipases B from Saccharomyces cerevisiae. Biochem J 387,
489–496.

Monod, J. (1942). Recherche sur la Croissance des Cultures
Bacteriennes. Paris: Hermann et Cie.

Norgaard, P., Westphal, V., Tachibana, C., Alsoe, L., Holst, B. &
Winther, J. R. (2001). Functional differences in yeast protein disulfide
isomerases. J Cell Biol 152, 553–562.

Novick, A. & Szilard, L. (1950). Experiments with the chemostat on
spontaneous mutations of bacteria. Proc Natl Acad Sci U S A 36,
708–719.

Pronk, J. T. (2002). Auxotrophic yeast strains in fundamental and
applied research. Appl Environ Microbiol 68, 2095–2100.

Snoek, I. S. & Steensma, H. Y. (2006). Why does Kluyveromyces
lactis not grow under anaerobic conditions? Comparison of essential
anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces
lactis genome. FEMS Yeast Res 6, 393–403.

Tachibana, C. & Stevens, T. H. (1992). The yeast EUG1 gene encodes
an endoplasmic reticulum protein that is functionally related to
protein disulfide isomerase. Mol Cell Biol 12, 4601–4611.

Tai, S. L., Boer, V. M., Daran-Lapujade, P., Walsh, M. C., de Winde,
J. H., Daran, J. M. & Pronk, J. T. (2005). Two-dimensional
transcriptome analysis in chemostat cultures. Combinatorial effects
of oxygen availability and macronutrient limitation in Saccharomyces
cerevisiae. J Biol Chem 280, 437–447.

Ter Linde, J. J. & Steensma, H. Y. (2002). A microarray-assisted
screen for potential Hap1 and Rox1 target genes in Saccharomyces
cerevisiae. Yeast 19, 825–840.

ter Schure, E. G., Sillje, H. H., Vermeulen, E. E., Kalhorn, J. W.,

Verkleij, A. J., Boonstra, J. & Verrips, C. T. (1998). Repression of

nitrogen catabolic genes by ammonia and glutamine in nitrogen-

limited continuous cultures of Saccharomyces cerevisiae. Microbiology

144, 1451–1462.

Tong, A. H., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D.,
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