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ABSTRACT: Through theoretical computations, we found that
boron can form thermodynamically stable pentacoordinate
compounds. Pentacoordinate boron (penta-B) is just hyper-
coordinate but not hypervalent because it forms only four covalent
bonds, of which at least one is a multicenter bond. Being electron
deficient, to be pentacoordinate, at least two of its bonding atoms
should have low electronegativity. Penta-B can be formed in
HkB(CH3)m(XH3)n (X = Si, Ge, Sn, and n ≥ 2) and BR5 (R =
BH2NH3, AsH2, and BeH). Based on a systematic investigation of
these model compounds, we designed three thermodynamically stable penta-B compounds that can potentially be synthesized by
hydrogenating their tricoordinate counterparts under mild reaction conditions.

■ INTRODUCTION

Hypercoordination is the property of the main-group elements
in a molecule having a larger than normal coordination
number, typically greater than four.1 Hypercoordination is
common for the elements in period 3 and beyond.2 However,
it is difficult to form hypercoordinate compounds for the
elements in period 2.3 Over the past few decades, several
research studies on hypercoordination in period 2 elements
with more than three valence electrons such as carbon and
nitrogen have been reported.2d,4 However, for electron-
deficient elements such as boron, there is still debate over
whether they can form hypercoordinate compounds and what
their bonding nature is if they exist.
The attempts on synthesizing hypercoordinate single-boron-

center compounds were unsuccessful from our point of view.
Since 1984, a series of the so-called pentacoordinate boron
(penta-B) compounds has been synthesized, by forcing a
tricoordinate boron center to form two additional bonds with
Lewis-base ligands.5,6 However, the two additional B−X (X =
O, N, or Cl) bonds in these compounds (B−O: ∼2.4 Å; B−N:
∼2.5 Å; and B−Cl: ∼2.7 Å) are much longer than normal. In
addition, Wiberg bond indexes (WBI)7 of the B−X bonds are
all below 0.15. Thus, they can hardly be regarded as real penta-
B compounds because there are no covalent bonds formed
between B and the other two additional ligands. So far, only
one theoretical study mentioned five hypothetical silylboranes
whose boron centers look like real pentacoordinate.8 However,
no electronic structure analyses and thermodynamic properties
were provided, and it is unknown what their bonding nature is
and whether they are thermodynamically stable. Because
normal tricoordinate silylboranes can be synthesized and have
many interesting properties,9 we wonder if it is possible to
synthesize penta-B compounds from normal tricoordinate
silylboranes. Hence, in this work, we first studied the electronic

and geometric properties of a hierarchy of model penta-B
compounds to reveal their bonding nature. Then, we try to
design several thermodynamically stable silylboranes with a
penta-B center that may be synthesized by experiments under
mild reaction conditions.

■ RESULTS AND DISCUSSION
We first studied the electronic structure and stability of penta-
B silylboranes in detail. The geometries of 10 structurally
stable silylboranes, HkB(CH3)m(SiH3)n (k = 1∼5, m = 0∼2, n
= 1∼5, and k + m + n = 5), optimized using the M06-2X/aug-
cc-pVTZ method,10 are listed in Figure 1. To be
pentacoordinate, the five bonds around B should have normal
covalent bond lengths of the ordinary B−H, B−Si, and B−C
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Figure 1. Geometries of HkB(CH3)m(SiH3)n (k = 1∼5, m = 0∼2, n =
1∼5, and k + m + n = 5).
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bonds, which are about 1.20, 2.03, and 1.56 Å, respectively.
The distances of the longest B−Si/B−H bond in each
HkB(CH3)m(SiH3)n molecule (results for the B−C bonds are
not listed because they all have normal covalent bond lengths)
are tabulated in Table 1. The B−Si/B−H bonds in 1b∼1e,

2b∼2d, and 3a are all shorter than 2.09/1.24 Å, while in 1a
and 2a, they are longer than 2.20/1.30 Å. Therefore, 1b∼1e,
2b∼2d, and 3a can be regarded as penta-B compounds from a
geometrical point of view.
WBI7 analysis results show that the weakest B−Si/B−H

bonds in 1a and 2a are just 0.38/0.62 and 0.33/0.54,
respectively. They are certainly neither completely broken
nor normal covalent bonds. Both geometrical and WBI data
suggest that 1a and 2a are η2-complexes formed through the
interaction between a σ Si−H bond orbital of SiH4 and the 2p
empty orbital of the B center. On the other hand, most of the
B−Si/B−H bonds in the other eight molecules can be viewed
as weak covalent bonds because their WBIs are in the range of
[0.47, 0.84]/[0.77, 0.93] (Table S4). Therefore, they can be
regarded as penta-B compounds.
The low WBIs of the B−Si/B−H bonds of the eight

molecules suggest that they are not normal single covalent
bonds. Meanwhile, the sum of the WBIs of five B−X (X = H,
Si, or C) bonds for the eight molecules is no more than 8,
implying that no more than four covalent bonds are formed.
These results suggest that B must have formed multicenter
bonds with its five bonding atoms. Adaptive natural density
partitioning (AdNDP) analyses11 show that there are four,
three, and two multicenter bonds around the B center in 1c,
2c, and 3a (Figure 2; Figure S1 for the other five molecules),
respectively. These results suggest that boron is not hyper-
valent,1 and the Lewis octet rule is not violated. Boron

accommodates five bonding atoms by forming multicenter
bonds with some of them.
For formation of multicenter bonds, at least two of the

bonds between boron and its ligands should not be too strong.
It is critical for boron to be hypercoordinate. In addition,
because boron is electron deficient, forming covalent bonds
requires its bonding atoms to give electrons to boron.
Therefore, at least two bonding atoms must have similar
electronegativity to boron. Other than silicon, beryllium,
germanium, tin, and arsenic also meet such criteria. Replacing
the Si atoms by Ge/Sn in HkB(CH3)m(SiH3)n (n ≥ 2), 16
penta-B compounds (Figure 3) could be optimized. Similarly,
3 penta-B compounds, BR5 (R = BH2NH3, AsH2, and BeH),
could be optimized.

Hypercoordination usually means instability. Table 2
tabulates the Gibbs free-energy changes (ΔrG) and barriers

(ΔG‡) of five decomposition reactions of 2b (Table S5 for the
other seven) at 298.15 K. The results indeed show that these
hypothetical compounds are unstable. Among them, releasing
SiH4 is the easiest one with a ΔG‡ of just 2.9 kcal/mol.
Releasing disilane is the second-easiest one, with a 13.8 kcal/
mol ΔG‡ and a negative ΔrG. However, the positive ΔrG of the
pathway to release H2 and its low ΔG‡ imply that it is possible
to synthesize pentacoordinate silylboranes by hydrogenating
their tricoordinate counterparts with at least two silyl groups.
To obtain pentacoordinate silylboranes stable at room
temperature (RT), we need to increase ΔG‡ of the lowest-
energy decomposition pathway so that they are kinetically
stable at RT or increase ΔrG to be positive if ΔG‡ must be low
so that they are thermochemically stable.
The first attempt we tried is to replace the SiH3 groups in

HkB(CH3)m(SiH3)n by more realistic SiR3 (R = methyl (Me)
or phenyl (Ph)) groups. A total of five such compounds (“A”
series) were designed (A1 to A5, Figure S2). Among them, A5
(pentacoordinate H2B(SiPh3)3) is a potential candidate of

Table 1. Longest B−Si/B−H Bond Lengths in
HkB(CH3)m(SiH3)n (k = 1∼5, m = 0∼2, n = 1∼5, and k + m
+ n = 5)

bond length (Å) bond length (Å)

1a 2.20/1.30 2a 2.27/1.35
1b 2.05/1.22 2b 2.09/1.24
1c 2.02/1.21 2c 2.05/1.23
1d 2.03/1.21 2d 2.08/−
1e 2.04/− 3a 2.06/−

Figure 2. AdNDP multicenter orbitals of 1c, 2c, and 3a, where the
pink, yellow, cyan, and white balls represent B, Si, C, and H atoms,
respectively, and ON is the corresponding occupation number of the
AdNDP orbital. H atoms in the silyl and methyl groups are omitted
for clarity.

Figure 3. Geometries of HkB(CH3)m(XH3)n (X = Ge, Sn, k = 1∼5, m
= 0∼2, n = 2∼5, and k + m + n = 5) and BR5 (R = BH2NH3, AsH2,
and BeH).

Table 2. Gibbs Free-Energy Changes (ΔrG) and Barriers
(ΔG‡) of the Five Decomposition Pathways of 2b at 298.15
K (in kcal/mol) in the Gas Phasea

decomposition products of 2b ΔG‡ ΔrG

(SiH3)2BCH3 + H2 12.0 0.8
H2B(SiH3)CH3 + SiH4 2.9 2.3
H2BCH3 + Si2H6 13.8 −8.6
HB(SiH3)2 + CH4 20.3 −0.4
H2BSiH3 + H3SiCH3 23.1 −2.5

aThe results were computed by the G4//M06-2X/aug-cc-pVTZ
method.
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thermodynamically stable penta-B compounds. To design it,
we make use of the π−π stack interaction to stabilize A5 and to
increase ΔrG and ΔG‡ of the decomposition pathways. In
addition to the π−π stack effect, another effect could be the
electron-withdrawing effect of the phenyl group, which makes
Si more electron deficient for forming such hypercoordinate
bonding. Table 3 tabulates the ΔGrs and ΔG‡s of three

possible decomposition pathways of A5 at 298.15 K in
heptane, the solvent to synthesize B(SiPh3)3.

9a It should be
noted that solvation effect is small for these reactions. The
results are indeed promising because all three decomposition
pathways have positive ΔrG. Considering that the pathway to
HB(SiPh3)2 has a low ΔG‡ and boranes with at least one B−H
bond may dimerize, we computed the ΔrG of the reaction 2A5
→ (HB(SiPh3)2)2 + 2HSiPh3 and 3H2 + 2B(SiPh3)3 →
3(SiPh3)2 + B2H6. For the first reaction, we found that it has a
positive ΔrG of +1.4 kcal/mol. For the other reaction, although
it has a very negative ΔrG of −37.3 kcal/mol, the second step
of the reaction, i.e., to release Si2Ph6 from A5, has too high a
ΔG‡ (39.7 kcal/mol) to occur at RT. These results show that
A5 is indeed thermodynamically stable. In addition, the
B(SiPh3)3 + H2 → A5 reaction has a negative ΔrG (ΔrGH2

)

and a moderate ΔG‡ (ΔGH2

‡ ) at RT. ΔGH2

‡ is so low that it is
possible to synthesize A5 by hydrogenating B(SiPh3)3 even
below RT.
However, a potential disadvantage of synthesizing A5 is that

H2B(SiPh3)3 has two low-energy conformers in fast equili-
brium (Figure 4). Except BLYP and B3LYP, other seven

functionals (PBE, ωB97XD, M06-L, MN15-L, M06, M06-2X,
and MN15) all give similar results that A5 is 1.6∼3.6 kcal/mol
lower in free energy than η2-H2B(SiPh3)3 at 298.15 K (Table
S9). Although an ∼2 kcal/mol free-energy lowering cannot
guarantee that the experiment can surely obtain A5 other than
η2-H2B(SiPh3)3 due to uncertainties in theoretical computa-

tions, our results indicate that the chance to observe A5 by
hydrogenating B(SiPh3)3 is high and it is worth a try because
B(SiPh3)3 had been synthesized in 1984 with a relatively easy
method.9a

Other than the “A” series, we have designed other 17 penta-
B compounds (Figure S2): the “B” series (B1 to B7)
containing two silyl groups, and the “C” series (C1 to C7)
containing three silyl groups. Backbones were used to
constrain the silyl groups and hinder the release of HSiR3
and (SiR3)2. Their stability and tricoordinate counterparts
(removing two bonding H atoms on B) have been studied by
searching all possible decomposition and deformation path-
ways (Figure S3) based on knowledge of chemical bonding
and reactions. The ΔrG and ΔG‡ values of the lowest-energy
pathway are named as ΔrGMin or ΔGMin

‡ , respectively.
Promising penta-B candidates should have (1) negative
ΔrGH2

and low ΔGH2

‡ , i.e., they are easy to be synthesized
from hydrogenating their tricoordinate counterparts (Table
S10), and (2) positive ΔrGMin or high ΔGMin

‡ , i.e. both the
pentacoordinate silylborane and its tricoordinate counterpart
are stable at RT (Table S11). For ΔG‡, we set the criteria for
ΔGH2

‡ to be better below 25 kcal/mol and ΔGMin
‡ to be better

above 25 kcal/mol, based on an estimation of the half-life of
reaction from classical transition state theory. The calculations
show that the half-life of a unimolecular reaction is about 66 h
and the half-life of a bimolecular reaction is about 94 h at
298.15 K with a ΔG‡ of 25 kcal/mol. The geometries of two
promising compounds, B3_Me from the “B” series and C5
from the “C” series that meet such criteria, are presented in
Figure 5. Between them, we would recommend the synthesis of
B3_Me first because it has fewer backbones and consequently
can be synthesized more easily.

Once these pentacoordinate silylboranes are synthesized,
they can be verified by NMR spectroscopy. Table 4 tabulates
the NPA charges and the 11B NMR chemical shifts (δ(B)) of
simple and recommended silylboranes. Penta-B draws
electrons from silyl groups and are negatively charged.
Consequently, it is much more shielded than tricoordinate
boron and has very negative δ(B) values. Indeed, for penta-B
silylborane compounds, δ(B) has a linear relationship with the
NPA charge of the boron atom (Figure S4). On the other
hand, neutral tricoordinate silylboranes have very positive δ(B)
values. In addition, η2-complex and pentacoordinate con-
formers can be well differentiated by NMR spectroscopy
because δ(B) of the pentacoordinate conformer is more

Table 3. Gibbs Free-Energy Changes (ΔrG) and Barriers
(ΔG‡) of Three Possible Decomposition Pathways of A5 at
298.15 K (in kcal/mol) in Heptane Solutiona

decomposition products of A5 ΔG‡ ΔrG

B(SiPh3)3 + H2 31.9 18.3
HB(SiPh3)2 + HSiPh3 15.6 12.3
H2BSiPh3 + Si2Ph6 39.7 9.4

aThe energies were computed by the M06-2X functional.

Figure 4. Gibbs free-energy profiles of the B(SiPh3)3 + H2 reaction at
298.15 K in heptane solution computed by the M06-2X functional.

Figure 5. Geometries of two stable pentacoordinate silylboranes.
Hydrogen atoms on the carbons are omitted for clarity.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06415
ACS Omega 2022, 7, 2391−2397

2393

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06415/suppl_file/ao1c06415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06415/suppl_file/ao1c06415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06415/suppl_file/ao1c06415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06415/suppl_file/ao1c06415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06415/suppl_file/ao1c06415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06415/suppl_file/ao1c06415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06415/suppl_file/ao1c06415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06415/suppl_file/ao1c06415_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06415?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06415?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06415?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06415?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06415?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06415?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06415?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06415?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


negative than that of the η2-complex conformer: For
H2B(SiPh3)3, δ(B) of A5 is −51.92 ppm, while that of η2-
H2B(SiPh3)3 is −37.31 ppm. The same phenomenon can be
observed for the hypothetical silylboranes, 1a and 2a. They are
two η2-complexes and their δ(B) are just −42.04 and −23.65
ppm, respectively.

■ CONCLUSIONS
In summary, boron can be pentacoordinate by forming
multicenter covalent bonds with elements, e.g., Be, B, Si, Ge,
Sn, and As, having similar electronegativities to boron. We
showed that penta-B is not hypervalent and does not violate
the Lewis octet rule. Although hypercoordination usually
implies instability, we designed three thermodynamically stable
pentacoordinate silylboranes, A5, B3_Me, and C5, that may
potentially be synthesized by hydrogenating their tricoordinate
counterparts under mild reaction conditions. Potential usage of
pentacoordinate silylboranes recommended in this study is
hydrogenation catalysts or reductants.

■ COMPUTATIONAL METHODS
Validation of Computational Methods. First, we took

pentacoordinate silylborane H3B(SiH3)2 (Figure 6) as an
example to test the effect of basis set and method on the
geometry. Eight methods including MP2, M06-2X,10a

MN15,13a ωB97XD,13b PBE0,13c TPSSH,13d DSD-PBE-
P86,13e,f and PBE0DH13g were tested. Two basis sets were
tested: (a) a large basis set in which the aug-cc-pVTZ (AVTZ)
basis set10b−d was used for all the atoms; (b) a smaller basis set
(SBS) in which the 6-31+G(d,p) basis set14a,b was used for B
and its five bonding atoms, whereas the 6-31G(d,p) basis
set14c−g was used for the other atoms. Selected bond lengths of
H3B(SiH3)2 are listed in Table 5. From the results in Table 5,

it can be concluded that the method and basis set both have
small effect on the geometry of H3B(SiH3)2: The standard
deviation of all 16 combinations of methods and basis sets is
below 0.01 Å for each B−X (X = H or Si) bond; the mean
absolute deviation between the two basis sets for the eight
methods is also below 0.01 Å for each B−X bond.
Second, we tested the performance of density functional

theory (DFT) methods on computing relative energies. We
used the M06-2X/AVTZ method to optimize the geometries
of eight pent-B silylboranes, HkB(CH3)m(SiH3)n (k = 1∼5, m =
0∼2, n = 2∼5, and k + m + n = 5). A total of 23 decomposition
reactions (Table S2) for them were studied. The geometry
optimizations and harmonic vibrational frequency analyses of
the reactants, transition states, and products were all
performed with the M06-2X/AVTZ method. The G4
method15 was used to perform single-point energy calculations
on these optimized geometries. The errors of the M06-2X
method using two basis sets, AVTZ and SBS, on the energetics
of the 23 reactions are summarized in Table 6. The results in
Table 6 indicate that the smaller basis set (SBS) systematically
underestimates the reaction energies and energy barriers by
about 1 kcal/mol. On the other hand, using a larger basis set,
AVTZ, there is almost no systematic error because the mean
error is close to 0. In addition, using AVTZ, both reaction
energies and energy barriers are improved and the overall root
mean square error (RMSE) over 46 relative energies is just 1.2
kcal/mol. Therefore, these results indicate that geometry
optimization can be performed using an SBS, whereas a larger
basis set is better to be used to further refine the energetic

Table 4. 11B NMR Chemical Shifts (δ(B)) and NPA Charges
of the B Center in Selected Silylboranesd

compound δ(B) (ppm) NPA charge of B (a.u.)

1a −42.04 −0.54
1b −57.01 −1.13
1c −67.37 −1.51
1d −72.29 −1.72
1e −78.11 −1.92
2a −23.65 −0.20
2b −48.39 −0.75
2c −60.39 −1.14
2d −65.33 −1.36
3a −55.50 −0.84
B(SiPh3)3 155.15 −0.18
A5a −51.92 −1.40
η2-H2B(SiPh3)3

b −37.31 −1.18
B3_Me (-H2)

c 112.94 0.12
B3_Me −41.63 −0.87
C5 (-H2)

c 152.66 −0.39
C5 −56.71 −1.87

aPentacoordinate conformer of H2B(SiPh3)3.
bη2-complex conformer

of H2B(SiPh3)3.
cTricoordinate counterpart removing two bonding

hydrogen atoms on B. dδ(B) was computed by a scaling method at
the mPW1PW91/6-311+G(2d,p) level of theory.12

Figure 6. Geometry of H3B(SiH3)2 and the indices of atoms. H atoms
in the silyl groups are omitted for clarity.

Table 5. Selected Bond Lengths of H3B(SiH3)2 (Unit: Å)

B1−Si2 B1−Si3 B1−H4/H5 B1−H6
M06-2X/SBSa 2.049 2.007 1.221 1.197
M06-2X/AVTZb 2.037 2.000 1.218 1.197
MN15/SBS 2.038 1.996 1.221 1.198
MN15/AVTZ 2.025 1.984 1.217 1.194
ωB97XD/SBS 2.041 2.009 1.224 1.202
ωB97XD/AVTZ 2.031 2.001 1.222 1.203
PBE0/SBS 2.029 2.008 1.223 1.202
PBE0/AVTZ 2.024 2.002 1.222 1.203
TPSSH/SBS 2.050 2.016 1.225 1.200
TPSSH/AVTZ 2.040 2.009 1.225 1.203
MP2/SBS 2.049 2.009 1.214 1.192
MP2/AVTZ 2.034 2.004 1.218 1.196
DSDPBEP86/SBS 2.050 2.010 1.222 1.198
DSDPBEP86/AVTZ 2.041 2.005 1.225 1.200
PBE0DH/SBS 2.031 2.002 1.221 1.198
PBE0DH/AVTZ 2.022 1.996 1.222 1.200
standard deviation 0.009 0.007 0.003 0.003
MADc 0.008 0.006 0.002 0.003

aSBS: 6-31+G(d,p) for B and its five bonding atoms and 6-31G(d,p)
for other atoms. bAVTZ: aug-cc-pVTZ. cMean absolute deviation
between the two basis sets for the eight methods.
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results. In the present study, for small systems, we used the
M06-2X/AVTZ method to optimize geometry and used the
G4 method to perform single-point energy calculations. For
large systems where G4 calculations are prohibitively
expensive, we used M06-2X/SBS to optimize geometry and a
larger basis set to perform single-point energy calculations. The
basis set used for single-point energy calculations is also a
combined basis set: the AVTZ basis set was used for B and its
five bonding atoms, and the aug-cc-pVDZ (AVDZ) basis set
was used for the other atoms. This combination basis set was
abbreviated as LBS. LBS is a compromise between accuracy
and efficiency because for those key atoms involved in bond
making and broken processes, the large AVTZ basis set was
used, whereas for other “observing” atoms, a smaller AVDZ
basis set was used.
Although G4 is very accurate, it is prohibitively expensive for

large systems. We should find a cheaper method as accurate as
possible. In the present study, we tested a total of 11 DFT
functional methods: two GGA functionals, BLYP and PBE;
two hybrid GGA functionals, B3LYP and ωB97XD; two meta-
GGA functionals, M06-L and MN15-L; three hybrid meta-
GGA functionals, M06, M06-2X, and MN15; and two double
hybrid GGA functionals, PBE0DH and DSD-PBEP86. All
energetic results were obtained by performing single-point
energy calculations on geometries optimized with the M06-
2X/AVTZ method. The errors of these functionals using G4 as
the standard are summarized in Table 7. The results in Table 7
indicate that M06-2X is the best method, which has the
smallest error on both reaction energy changes and energy
barriers. Therefore, for the calculations of large systems, we
will use the M06-2X/SBS method to perform both geometry
optimizations and vibrational frequency analyses. Then, we will
use the M06-2X/LBS method to perform single-point energy
calculations.

Computational Details. All quantum calculations were
performed with the Gaussian 16 program package.16 Wiberg
bond indices,7 NPA atomic charges, and AdNDP orbitals11

were performed with the NBO17 and Multiwfn programs.18 In
all the DFT calculation, a pruned (99,590) grid (using
keyword “int. = ultrafine” in Gaussian 16) was used. Solvation
effect was considered using the polarizable continuum
solvation model19a with radii and nonelectrostatic terms for
Truhlar and co-workers’ SMD solvation model.19b Except H2,
for which it is a gas under standard state, Gibbs free energy of a
compound in the solution (GT) is computed by the following
equation:

= + + Δ +→G E GZPE 1.9 kcal/mol,T e 0 T

where Ee is the electronic energy computed with solvation
effect considered, ZPE and ΔG0 → T are the zero-point
vibrational correction and thermal correction to Gibbs free
energy in the gas phase computed by the M06-2X/SBS
method, and 1.9 kcal/mol is the correction from the gas-phase
standard state of 1 bar to the solution standard state of 1 mol/
L. The geometry used for the single-point calculation in the
solution was optimized in the gas phase.

11B NMR chemical shifts were computed by a well validated
method.12 In this method, NMR calculations were computed
with the mPW1PW91/6-311+G(2d,p) method in THF
solution under the SMD solvation model. The 11B NMR
chemical shift (δ(B), in ppm) was computed using the
following scaling equation:

δ
σ

=
−

−
(B)

intercept
slope

where σ is the computed isotropic shielding constant, and the
intercept and slope are 106.67 ppm and −1.1050, respectively.
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