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Abstract

Gene expression signatures can predict the activation of oncogenic pathways and other phenotypes of interest via
quantitative models that combine the expression levels of multiple genes. However, as the number of platforms to measure
genome-wide gene expression proliferates, there is an increasing need to develop models that can be ported across diverse
platforms. Because of the range of technologies that measure gene expression, the resulting signal values can vary greatly.
To understand how this variation can affect the prediction of gene expression signatures, we have investigated the ability of
gene expression signatures to predict pathway activation across Affymetrix and Illumina microarrays. We hybridized the
same RNA samples to both platforms and compared the resultant gene expression readings, as well as the signature
predictions. Using a new approach to map probes across platforms, we found that the genes in the signatures from the two
platforms were highly similar, and that the predictions they generated were also strongly correlated. This demonstrates that
our method can map probes from Affymetrix and Illumina microarrays, and that this mapping can be used to predict gene
expression signatures across platforms.
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Introduction

Biological processes are driven by the coordinated actions of

multiple gene products. Consequently, the activation of a process,

whether it is a cellular activity, activation of a signaling pathway,

or other molecular event, is marked by a characteristic change in

the expression of a set of genes, which denotes the signature of that

process [1–3]. In other words, a change in the expression of the

genes in a signature is a marker for functional activity. Gene

expression signatures developed in vitro can be used to predict

phenotypes in vivo and have been used to predict activation of

oncogenic pathways, outcomes in cancers, subtypes of cancers,

and sites of cancer metastases [2,4–6].

Gene expression signature analysis is commonly framed as a

machine learning problem. First, gene expression data from

samples in which a pathway is known to be on or off is collected as

a training set. Then, genes that can distinguish these two states are

selected and combined into a model that can predict the activation

of the pathway in another sample. In our implementation, we

select the genes using a Pearson correlation and generate a model

using a probit regression, but other approaches have also been

explored [7,8]. An implementation to score activation of

oncogenic pathways was recently made available on the web as

part of the SIGNATURE project [9].

The power of gene expression signatures is that they combine

the expression of multiple genes in a quantitative model. However,

as the platforms for measuring gene expression proliferate, the

need for approaches to predict signatures across platforms

increases. Unfortunately, the technologies for measuring gene

expression can be very different and yield gene expression values

that are not directly comparable. For example, Affymetrix

microarrays measure gene expression using a set of short probes

that target a limited region of a single gene [10]. That is, each probe

set on the Human Genome U133A 2.0 array consists of 11 25-mer

probes that target an approximately 400 base pair region on a

transcript. The signal values for each probe in a probe set are

combined to generate the signal value for the gene. In contrast,

Illumina microarrays use a bead-based strategy, where the beads

are conjugated to 50 nucleotide gene-specific probes [11]. Because

the probe technologies are different, and because the targeted

regions may not be the same, the gene expression readings from

the two platforms would be expected to vary. Although there are

other platforms for gene expression, including those from Agilent

or RNA-Seq, for this manuscript, we will focus on Affymetrix and

Illumina as they have been arguably the most commonly used to

this date.

Previous studies have shown that gene expression measures can

be comparable, on the whole, across certain platforms [12,13].

However, it is not yet known whether higher order comparisons

such as those required for signature analysis, which integrates

measures across specific groups of genes, are also robust. To

address this issue, we have developed signatures using both the

Affymetrix and Illumina microarrays, two commonly used
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platforms, and compared the performance of methods to

interconvert gene expression measures. We find that the signatures

from the two platforms use very similar sets of genes, and that their

predicted pathway activities are highly comparable. Taken

together, these analyses provide a proof-of-concept and blueprint

for developing the capacity to navigate the upcoming world of

multi-platform gene expression measures.

Results

Concordance of Gene Expression across Affymetrix and
Illumina Microarrays

We collected total RNA from 16 melanoma tumors and

hybridized aliquots to Affymetrix HG-U133A 2.0 (AFFY) and

Illumina Human HT-12 v4.0 (ILLU) arrays. Then, we compared

the distribution of the gene expression signal values for each

sample and found a pattern that resembles a bi-linear distribution

(Figure 1A). At high expression values (signal greater than 7 in

AFFY and 6.7 in ILLU; roughly 46% of the probes), the AFFY

signal increased by 1.07 for every unit increase in ILLU. This

relationship indicated that the relative differences in the expression

levels of highly expressed genes were roughly equal. This suggested

that a linear model could be applied across platforms, although the

model may be different depending on the expression level of the

gene.

Next, to evaluate the concordance of the expression patterns of

individual genes, we compared strategies to match corresponding

probes across platforms. For each AFFY probe set or ILLU probe,

we mapped the targeted region to the human genome (Figure 1B).

For the AFFY probe, we found the closest ILLU probe on the

same gene, and repeated the complementary procedure with the

ILLU probes. That is, for each probe, we identified the closest

from the other platform. Because each platform could have

multiple probes for the same gene, two AFFY probes may share

the same closest ILLU probe. However, the ILLU probe will be

closest to only one of those AFFY probes (unless they are

equidistant). We called pairs that are both closest to each other

mutually best matches. We further annotated these probe mappings

by calculating their distance across the genome (number of bases).

The goal of the probe matching was to identify sets of probes

that were likely to have similar expression patterns across

platforms. To evaluate this, we calculated the Pearson correlation

of the corresponding probes across the melanoma samples. First,

to determine the impact of the distance between corresponding

probes, we grouped the matches according to distance, ,500 base

pairs (bp) apart, 500–1000 bp, and .1000 bp. Among the

Figure 1. Correspondence of gene expression between the Affymetrix and Illumina platforms. A. The signal values on Affymetrix and
Illumina microarrays are bilinear. The x-axis shows the distribution of gene expression values of a melanoma tumor on an Affymetrix microarray. The
y-axis shows the distribution of the expression of the same sample on an Illumina microarray. Both high and low expression values are linearly
related, but with different slopes. B. Probes from Affymetrix and Illumina microarrays are mapped onto their target in the human genome. The
distance to the nearest probe of the other platform are calculated. If a pair of probes from the opposing platform are both closest to each other, they
are considered mutual best matches, for example, Affy-1 and Illu-1. However, Illu-1 and Affy-2 are not mutual best matches. While Illu-1 is the best
match for Affy-2, the converse is not true in this case. C. This histogram shows the correlation of the expression profiles of probes that are different
distances apart. There is an enrichment of correlations close to 1.0 in probes that are closer. Probes that are over 1000 base pairs apart show no
enrichment of highly correlated probes. D. This shows the differences in the correlations between pairs of probes that are mutual best matches and
ones that are not. Probes that are mutual best matches have higher correlations than otherwise.
doi:10.1371/journal.pone.0079228.g001
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matches, 9,178 pairs were less than 500 bp apart, while 1,492 and

9,784 probes were 500–1000 bp and .1000 bp apart, respective-

ly. As shown in Figure 1C, the correlation of the expression of the

probe pairs varied depending on their distance (p,6.6610216;

Kruskal-Wallis rank sum test). Furthermore, probes that were

mutually best matches were more correlated than best matches

that were not mutual (Figure 1D; p,2.2610216; Mann-Whitney

U test). These results showed that a subset of the probes had

higher correlation, and consequently, to accurately convert

expression profiles, we can use these criteria to focus on the

probes that are most likely to be concordant.

Similarity of Genes in Gene Expression Signatures
While the previous analysis showed that gene expression

patterns could be, overall, concordant between the AFFY and

ILLU platforms, we next examined the similarity of the genes that

comprised gene expression signatures. For this analysis, we

collected ,10 biological replicates of human mammary epithelial

cells expressing either a GFP control, E2F1, MYC, or RAS. We

hybridized total RNA from those samples onto both AFFY and

ILLU arrays. Then, we mapped the probes across the arrays by

selecting the ones that were mutual best matches within 1000 base

pairs, the subset of probes that were previously found to exhibit

highest correlation in expression. Finally, we generated gene

expression signatures on both platforms using the CreateSignature

tool [9]. Using parameters previously established [4], we used 150,

500, and 350 genes for the E2F1, MYC, and RAS signatures,

respectively. On both platforms, we were able to select genes that

could differentiate the controls from the other samples (Figure 2A).

By visual examination of the heat maps, we noted that the samples

for the MYC and RAS signatures on ILLU exhibited greater

heterogeneity in gene expression than could be seen on AFFY.

However, we could not distinguish whether this was due to an

intrinsic difference in the platforms, or whether it was due to other

technical reasons (see Methods).

Comparing the genes selected, we found that 52% to 69% of the

genes were shared in the signatures between the two platforms

(Figure 2B). Although this was already a highly significant overlap,

we examined whether the genes from the AFFY signature that did

not meet the cutoff for the ILLU signature still had a strong score

(Figure 2C). To do this, we scored the AFFY genes in the ILLU

data set using GSEA [14] and found that they were enriched

(p = 0.01). The converse comparison was also significant

(p = 0.002). Similar results were seen for the MYC and RAS

signatures.

Next, we assessed the quality of the common genes. Using the

genes that occur in the signatures for both platforms, we looked at

the distance between the probes across the platforms (Figure 2D).

Since we had restricted our selection to a set of probes that

occurred within 1000 base pairs or less of each other, the

maximum distance was 1000. However, we saw that the vast

majority of probes were found within 400 base pairs of each other.

The MYC signature had the most probes within 200 base pairs,

while RAS had the least. In addition to this distance, we also

examined the Pearson correlation of these common probes in the

gene expression data across the two platforms (Figure 2E). Nearly

all probes had a correlation of at least R = 0.4, while all of the

E2F1 probes are correlated at R.0.80. Of the three signatures,

RAS had the least correlated probes.

Taken together, the above results showed a large degree of

similarity in the genes that comprised the signatures across

platforms, as well as high concordance in the expression values of

these genes. Although the exact identities of the genes were not the

same, their patterns of expression were preserved on the whole.

Comparing Predictions from Gene Expression Signatures
Finally, we examined whether we could apply the signatures to

predict the activation of pathways across platforms. Using the

E2F1 samples on AFFY as the training set, we applied

CreateSignature to predict their score on the AFFY and ILLU

samples (with leave-one-out cross-validation). We found that

across platforms, the control samples (with E2F1 off) received

low probabilities while the E2F1-expressing samples (with E2F1

on) had high scores (Figure 3). We saw the same pattern using the

ILLU samples as the training set. The MYC and RAS signatures

also showed a strong distinction between the control and pathway

activated samples, although the distinctions in the ILLU scores

were slightly lower than could be seen in E2F1. The probabilities

in the control samples were slightly higher, and the ones in the

pathway-activated samples were slightly lower. However, there

was still a strong and clear distinction between the two types of

samples.

To compare the predictions of signatures across platforms, we

applied the E2F, MYC, and RAS signatures to the melanoma data

set. As a baseline, we used the AFFY data for both the signatures

and the melanoma data set. Then, we compared these to three

cross-platform conditions: 1) both the training data (the three

pathways) and the test data (the melanoma data set) were on the

ILLU platform, 2) the training data was on AFFY and the test was

on ILLU, and 3) training AFFY and test ILLU (Figure 4).

Comparing the cross-platform predictions, all showed signifi-

cant similarity to the baseline, with one exception. The predictions

for the RAS signature were most variable, with several outliers

seen in the predictions made in the Train:Illumina/Test:Illumina

and Train:Illumina/Test:Affymetrix conditions, although the

direction of the predictions were generally correct. This parallels

the observation that the probes that comprise the RAS signature

were the least concordant (with respect to distance and expression

values) of the three signatures. In all other comparisons, there was

a clear linear relationship between the cross-platform predictions

and the predictions made entirely on the Affymetrix platform.

These results showed that the Illumina platform could generate

similar signature predictions as the Affymetrix platform, that they

were similar even if the training and test data were on different

platforms, and that we have a probe mapping strategy that could

reliably reproduce signature predictions.

Discussion

As the number of popular platforms to measure gene expression

increases, the ability to compare and integrate gene expression

measures across diverse platforms becomes correspondingly

important. Prior studies have shown an overall concordance of

gene expression measures across platforms, and in this work, we

have extended those studies to show that predictions from gene

expression signatures can also be robust across the Affymetrix and

Illumina microarray platforms. One critical issue with gene

expression platforms that we have not addressed is whether

signatures or gene sets are portable across single channel array

platforms (such as the ones we analyzed) and dual channel ones

(e.g. Agilent). The degree of difficulty in converting signals with

that include different channels of information remains unknown.

Some principles emerge from our analyses. The first is that

expression measurements between probes targeting similar regions

of the gene are most robust. This may be due to biological (distant

probes are more likely to probe distinct isoforms) or technical

(close probes may have similar hybridization characteristics or

suffer from similar degradation effects) reasons. Secondly, the

similarity between the gene expression signature predictions

Cross-Platform Gene Expression Signatures
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between the Affymetrix and Illumina platforms shows that

relatively simple mapping procedures are robust enough to

preserve the changes in transcriptional profiles that best capture

biological phenotypes.

We believe that our approach provides a model for future

analyses comparing gene expression signatures across platforms.

As new technologies for gene expression measurements are

developed, for example sequencing-based approaches [15], the

need to integrate data across platforms will intensify. Having an

understanding of the capacity to convert measures across

platforms will be necessary to derive the full value across the

entire corpus of transcription profiles that have been generated.

Materials and Methods

Data Sets
To generate the Myc and Ras gene expression signatures, we

used total RNA that was previously collected from a prior project

[2]. Although total RNA for E2F was also collected in that project,

no more remained. Therefore, we re-generated RNA for E2F

using the same procedure. We cultured HMEC in low serum

medium for 36 hours, and then transduced them with adenovi-

ruses expressing either E2F1 or GFP at a multiplicity of infection

of 150. 16 hours after transduction, we collected total RNA using

Qiagen RNeasy Mini Kits. For the 16 melanoma samples, we used

total RNA collected in a prior project [16]. We processed the

RNA for the E2F and melanoma samples on both Affymetrix HG-

U133Av2 and Illumina HumanHT-12 v4 microarrays. The newly

generated Affymetrix and Illumina data were deposited into the

Figure 2. Comparison of gene expression signatures across the Affymetrix and Illumina platforms. A. These heatmaps show the gene
expression signatures of the E2F1, MYC, and RAS pathways collected on Affymetrix and Illumina. Each row in the heatmap represents a gene in a
signature. Each signature contains a different set of genes, so the genes are not aligned across all heatmaps. Each column represents a sample
expressing either a vector control or pathway gene. The color indicates the expression level of the gene, where red indicates high expression, and
blue indicates low expression. B. This table shows the number of genes in each signature. Total indicates the total number of genes in the signature,
Common is the number of genes shared between the Affymetrix and Illumina platforms, Unique is the number of genes unique to each platform, and
% Overlap is the percent of genes shared. C. These are GSEA Enrichment plots that show the similarity between the genes in the Affymetrix and
Illumina signatures. Each of the three rows contains a different signature. The Affymetrix signatures are in the left column, and the Illumina ones are
on the right. In the top left plot, the Affymetrix gene expression file are sorted from left to right according to the GSEA signal-to-noise metric, where
the ones most highly associated with E2F1 are on the left, and the ones most highly associated with the vector control are on the right. The vertical
black bars in the middle of the plot show the position of the genes associated with E2F1 in the Illumina signature. Most of the black bars are clustered
on the left, indicating a high concordance of the genes associated with E2F1 across the two platforms. The other plots can be interpreted similarly. D.
This histogram shows the relative percent frequency of the genomic distance between the Affymetrix and Illumina probes that are shared in the RAS,
MYC, and E2F1 signatures. E. This histogram shows the relative percent frequency of the Pearson correlation of the expression values between the
probes in the Affymetrix and Illumina signatures.
doi:10.1371/journal.pone.0079228.g002
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Gene Expression Omnibus under accession GSE50051. For the

Myc and Ras samples, we used the Affymetrix data generated

previously from those samples and processed them on Illumina

only.

Affymetrix CEL files were preprocessed with RMA and MAS5

using Bioconductor [17,18]. Illumina IDAT files were prepro-

cessed using the IlluminaExpressionFileCreator module on

GenePattern [19]. The Affymetrix data sets contained 22,277

probe sets, and the Illumina data sets contained 47,323 probes.

Matching Probes
To find corresponding probes between the Affymetrix and

Illumina platforms, we aligned each of the probes to the human

genome sequence. For the Affymetrix probe sets, we extracted the

targeted region using files available from the NetAffx resource on

the Affymetrix website. The probe sequences for the Illumina

probes were available from the Illumina website. We mapped both

the Affymetrix and Illumina probes to human genome assembly

hg18 from the UCSC genome database using the BLAT algorithm

[20,21]. This generated for each probe the genomic coordinate of

the region that was targeted. We calculated the distances between

every pair of probes as the number of bases between the centers of

each probe. For each Affymetrix probe, we found the closest

Illumina probe on the same gene. We performed the converse

operation for the Illumina probes. If a pair of Affymetrix and

Illumina probes were closest to each other, we considered them

mutually best matches. To merge an Affymetrix and Illumina data set,

we aligned the probes that were mutually best matches and

Figure 3. These plots show the ability of the Affymetrix and Illumina signatures to predict the activation of pathways. Each of the
three rows contains a different signature. The Affymetrix signatures are in the left column, and the Illumina ones are on the right. On the top-left plot,
the y-axis shows the predicted probability of the E2F1 pathway. The x-axis is comprised of four groups of predictions. The first group contains the
predicted probabilities of the Affymetrix E2F1 signature on the Affymetrix control samples (calculated using a cross-validation strategy). The second
are the probabilities of this signature on the Affymetrix E2F1 samples. The third and fourth are the probabilities of this signature on the Illumina
control and E2F1 signatures. The remaining five plots can be interpreted similarly.
doi:10.1371/journal.pone.0079228.g003
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discarded all non-matching probes. This yielded merged data sets

with 7,589 probes.

Signature Predictions
We used the CreateSignature module on the GenePattern

instance running at http://genepattern.uth.tmc.edu/ [9]. For the

signature analyses, we used parameters previously established [4].

For E2F1, we used the RMA preprocessed data with 150 genes, 2

metagenes, and quantile normalization. For Ras, we used the

MAS5 preprocessed data with 500 genes, 2 metagenes, and

quantile normalization. For MYC, we used the MAS5 prepro-

cessed data with 350 genes, 3 metagenes, and quantile

normalization.
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