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Summary

The inflammatory response to transformed cells forms the cornerstone of

natural or therapeutically induced protective immunity to cancer. Regula-

tory T (Treg) cells are known for their critical role in suppressing inflam-

mation, and therefore can antagonize effective anti-cancer immune

responses. As such, Treg cells can play detrimental roles in tumour pro-

gression and in the response to both conventional and immune-based

cancer therapies. Recent advances in our understanding of Treg cells

reveal complex niche-specific regulatory programmes and functions, which

are likely to extrapolate to cancer. The regulation of Treg cells is reliant

on upstream cues from haematopoietic and non-immune cells, which dic-

tates their genetic, epigenetic and downstream functional programmes. In

this review we will discuss how Treg cells are themselves regulated in nor-

mal and transformed tissues, and the implications of this cross talk on

tumour growth.

Keywords: cancer; chemokine/chemokine receptors; cytokines/cytokine

receptors; regulatory T cells; tumour immunology.

Introduction

The interplay between cancer and inflammation is note-

worthy in both its importance and its complexity. It is now

appreciated that the immune system has a critical impor-

tance in both carcinogenesis and tumour rejection.

Whereas inflammation can contribute to carcinogenesis

and thereby serve a deleterious role, the effect of immune

activation during tumour progression is often beneficial

and can promote tumour rejection. Although superficially

paradoxical, this disparity can be explained by differences

in disease stage, location and host, among many other fac-

tors.1 Nevertheless, it is generally accepted that certain

inflammatory signatures correspond with either pro- or

anti-tumorigenic potential. Cytotoxic lymphocytes, such as

natural killer or CD8+ T cells, or type 1 helper CD4+ T

(Th1) cells, have potent direct and indirect anti-cancer

tumour activity and their presence in human tumours is

frequently associated with favourable outcomes (reviewed

in ref. 2). In contrast, regulatory T (Treg) cells suppress the

function of conventional T (Tconv) cells including CD4+

and CD8+ T cells and although this function is required to

prevent unwanted autoimmune and allergic inflammation,

it is now known that Treg cells play a critical role in sup-

pressing immune responses in cancer.3,4 Treg cells also

have a number of non-classical functions, some of which

may directly influence tumour cell biology, or act in a tis-

sue-specific manner. Hence, it is imperative to resolve the

role of Treg cells at each distinct stage of cancer, from car-

cinogenesis to tumour progression and metastasis. In this

review we will focus on the known and proposed mecha-

nisms that regulate the recruitment, local homeostasis, and

function of Treg cells during cancer progression.

Identification of Treg cells

Treg cells are a suppressive subset of CD4+ T cells required

to prevent lethal inflammation.5,6 In mice, Treg cells aris-

ing early in neonatal life are required for tolerance to self-

antigens, a conclusion made from the paradoxical observa-

tion that neonatal thymectomy results in a lethal inflam-

matory disorder, that is reversible by the transfer of

CD4+ CD25+ Treg cells.7 Treg cells are dependent upon

the lineage-specifying transcription factor Foxp3 and mice

and humans carrying inactivating mutations of Foxp3 suc-

cumb to lethal inflammatory disease within approximately
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3 weeks and in early infancy, respectively.8–14 Whereas

Foxp3 expression is predominantly restricted to Treg cells

in mouse, FOXP3 is expressed in both Treg and Tconv

cells upon acute activation in humans.15–17 Hence,

although Foxp3 expression usefully distinguishes murine

Treg cells from CD4+ Tconv cells, human FOXP3+ T cells

may comprise both Treg and Tconv cells, especially during

ongoing immune responses. Instead, demethylation of the

intronic Foxp3 cis-regulatory element CNS2 (conserved

non-coding sequence 2) is a cardinal feature of Treg cells,

both in human and mouse.18,19

Dual ontogeny of Treg cells

Thymus-derived (tTreg) cells develop in response to

high-affinity interactions between the T-cell receptor

(TCR) of double-positive and CD4 single-positive thymo-

cytes and self-peptide–major histocompatibility complex

(MHC) complexes in the thymus, and, among other

functions, suppress autoimmune reactions directed

against self-antigens. As a product of this selection pro-

cess in the thymus, tTreg cells have a largely distinct TCR

repertoire to conventional CD4+ T cells.20,21 Thymic

selection results in differentiation of Treg cells with speci-

ficity for self-antigens, but tolerance to innocuous foreign

antigens unanticipated in the thymus is mediated by

peripheral Treg (pTreg) cells, induced in peripheral tis-

sues.22 This occurs when antigens are encountered by

naive CD4+ T cells in the absence of optimal co-stimula-

tion or in the presence of transforming growth factor-b
(TGF-b) abundant at mucosal sites but also within

tumours. As a result, pTreg cells prevent inflammation

directed against innocuous antigens often found at muco-

sal sites, including antigens expressed by commensal

microflora or dietary components. Whereas tTreg and

pTreg cell development have important similarities, such

as their dependency upon the activity of the transcription

factors FOXP3 and BACH2,23–26 their distinct ontogeny is

reflected in differences in gene regulatory mechanisms

underlying their development. This is best illustrated by

the finding that an intronic Foxp3 cis-regulatory element,

CNS1, which contains SMAD3 binding sites, is necessary

for pTreg cell differentiation but dispensable for tTreg cell

differentiation.27 Although deletion of Foxp3 leads to loss

of both tTreg and pTreg cells and to lethal multi-organ

auto-inflammation, selective ablation of the pTreg cell

pool resulting from deletion of the CNS1 locus only leads

to a mild late-onset mucosal type 2 inflammation in the

gut and the lungs.28 Additionally, the TCR specificity of

tTreg cells and pTreg cells is largely distinct.22,29

Functional specialization of Treg cells

Treg cells suppress inflammation through a number of

mechanisms and it is now apparent that Treg cells

undergo functional specialization to share some of the

molecular characteristics of the cell types that they con-

trol.30,31 For example, expression of the Th1 cell-associ-

ated transcription factor, T-bet, promotes Treg-mediated

restraint of type 1 inflammation.32,33 Similarly, Treg

cells expressing other CD4+ helper T lineage-specific

transcription factors such as ROR-ct, GATA3 and IRF4

exert specialized functions suited to suppression of

inflammation driven by their cognate Th cell counter-

parts.34–37 It is notable that despite expressing lineage-

specifying transcription factors in some cases required for

production of helper cytokines by Th cells, Treg cell sub-

sets are configured to suppress these cell types. Mecha-

nisms by which specialized Treg cell subsets suppress

their cognate T helper counterparts are unclear, expres-

sion of lineage-specifying transcription factors such as T-

bet or GATA3 may drive Treg cells to express a similar

spectrum of chemokine receptors permitting more effec-

tive co-localization with cognate Th cells. It may also pro-

mote a similar responsiveness to environmental cues as

their cognate Th counterparts.

Non-classical functions of Treg cells

Recent research has uncovered a pleiotropy of non-clas-

sical mechanisms by which Treg cells contribute to

homeostasis with diverse roles in physiological processes

as control of tissue metabolism, stem cell maintenance

and wound healing. It is significant that these processes

also play fundamental roles in cancer pathophysiology.

For instance, pioneering work on adipose tissue Treg

cells, which express the transcription factor PAPR c,
demonstrate that these resident cells play critical roles

in controlling tissue metabolism and insulin sensitiv-

ity.38,39 Importantly, adipose tissue Treg cells exert their

function in concert with a number of other tissue-resi-

dent immune cells, such as macrophages, and group 2

innate lymphoid cells (reviewed in ref. 40). Other tis-

sues, such as the muscle, harbour similar tissue-resident

Treg cell populations, which, upon detection of tissue-

damage, activate tissue-regenerative programmes.41 Skin

Treg cells have also been observed in close association

with the stem-cell-containing dermal follicular regions.42

Surprisingly, Treg cells were in dynamic equilibrium

with hair-regrowth phases, and influenced follicular stem

cell quiescence by expression of the Notch1 ligand

Jagged 1. Similarly, Treg cells play an active role in pro-

tecting the intestinal epithelial, and bone marrow stem

cell niche.43,44 Finally, tissue-resident Treg cells also

express certain genes involved in epithelial cell repair,

such as the growth factor amphiregulin (Areg),41,45 and

thereby contribute to wound healing. Hence, our appre-

ciation of Treg cell biology is rapidly evolving, and it is

likely that ‘non-classical’ functions of Treg cells are

co-opted by cancer.
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Regulation of Treg cells in cancer

Origin of Treg cells within tumours

In human tumours, the frequency of FOXP3+ cells rela-

tive to total CD3+ T cells or CD8+ T cells is negatively

correlated with survival in multiple cancer types, includ-

ing renal cell carcinoma,46 non-small-cell lung carci-

noma,47 hepatocellular carcinoma,48 pancreatic cancer,49

gastric cancer,50 cervical cancer,51 ovarian cancer,52,53

breast cancer54 and colorectal cancer.55 The frequency of

Treg cells as a ratio of total CD4+ T cells can be extre-

mely high – as high as 60–80% of total CD4+ T cells in

murine orthotopic B16 tumours where Treg cells can be

unambiguously defined using intranuclear Foxp3 stain-

ing.56 The size of Treg cell populations within tumours

can be affected by a number of processes: the conversion

of conventional CD4+ Foxp3� (Tconv cells) into pTreg

cells under the influence of tumour-derived factors

including TGF-b, recruitment of Treg cells from the

periphery into tumours, the rate of proliferation and sur-

vival of recruited, peripherally induced or tissue-resident

Treg cells (Fig. 1). We will hereafter review the evidence

in favour or against each of these hypotheses.

Conversion of Tconv into pTreg cells

An initial study by Valzasina et al.57 revealed that

CD4+ CD25� transferred into tumour-bearing hosts

could convert into Foxp3+ Treg cells within tumours. In

addition, conditioned media from murine tumour cells

could convert CD4+ CD25� in CD4+ CD25+ Foxp3+ T

cells.58 Because a blocking antibody to TGF-b reversed

this effect, the authors concluded that the secretion of

TGF-b by tumour cells promotes an environment favour-

able to the peripheral conversion of Tconv cells into

tolerogenic pTreg cells. Along the same lines, the group

of Zitvogel showed that rodent tumour cells induced the

production of TGF-b by immature myeloid dendritic cells

that in turn sustain the proliferation of Treg cells.59 Simi-

larly, myeloid-derived suppressor cell-derived interleukin-

10 (IL-10) and TGF-b supports Treg cell development

both in vitro and in experiments where myeloid-derived

suppressor cells and T cells are adoptively transferred into

irradiated tumour-bearing mice.60

Recently, expression of the surface protein Neuropilin-

1 and the transcription factor Helios have been proposed

to distinguish tTreg cells from pTreg cells,61,62 although

whether expression of these markers faithfully reports

tTreg cells has been called into question.63,64 This may

explain contradictory reports regarding the relative fre-

quency of pTreg and tTreg cells assessed using these

markers in transplantable tumour models in mice.65–67

TCR repertoire analyses of mouse and human tumour-in-

filtrating lymphocytes have been proposed to provide evi-

dence of a low frequency of Tconv to pTreg conversion

within tumours, as the TCR repertoire of tumour-infil-

trating Treg cells was found to be largely distinct from

that of tumour-infiltrating Tconv cells.68–72 However, the

efficiency of pTreg induction is affected by antigen dose

in addition to cytokine signalling73 and it is not incon-

ceivable that pTreg cells arising from Tconv cells could

have a substantially skewed repertoire to Tconv cells, hav-

ing expanded from a small fraction of naive CD4+ T cells

among the total Tconv pool.

Hence, it has been difficult to precisely discern the

role of pTreg cells in Treg-mediated tumour immuno-

suppression, although comparison of tumour growth

Recruitment Tissue-residentConversion

Naive
CD4+ pTreg

TCR/TGF-β/IL-2
CCL22

CCL28

CCL1

Normal tisssue

ST2 KLRG1

GATA3

Tumour

tTreg

tTreg

Treg
Figure 1. Origin of regulatory T (Treg) cells in

tumours. Depicted are the three scenar-

ios – not mutually exclusive – that could

account for the presence of Treg cells within

tumours. Left, conversion of naive CD4+ T

cells into peripheral Treg (pTreg) cells; centre,

recruitment of thymus-derived Treg (tTreg)

cells from the circulation; right, expansion of

tissue-resident Treg cells.
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and immune infiltrates in wild-type and Foxp3 CNS1

knockout mice should allow the functional contribution

of pTreg cells to be defined. However, it has been pro-

posed that decreased susceptibility of mice lacking T-

cell intrinsic expression of all three isoforms of the oxy-

gen-sensing prolyl hydroxylase family is attributable to

defective pulmonary pTreg cell differentiation.74

Evidence that tTreg cells can contribute to tumour

immunosuppression is much clearer. Malchow et al.72

used an autochthonous mouse model of prostate cancer

driven by the restricted expression of the SV40 oncogene

in the prostate to study the TCR reactivity of tumour-

associated Treg cells. On a fixed TCR-b background,

TCR-a sequencing revealed that one TCR-a sequence

was recurrently expressed by Treg cells isolated from

tumours of distinct animals, suggesting that Treg cells of

a single specificity are recurrently enriched within these

prostate tumours. They further showed that this

sequence was only overrepresented in the prostate

tumour and draining lymph node, but not in the spleen

or the thymus, in line with the idea of a tumour-speci-

fic enrichment. Repertoire analysis also confirmed the

absence of overlap between Tconv and Treg cells iso-

lated from these tumours. Interestingly, transgenic

expression of this TCR on a Rag1�/� background led to

the spontaneous accumulation of activated transgenic T

cells in the prostate and draining lymph nodes of male

tumour-free mice, whereas in female mice transgenic T

cells showed no signs of activation. Further analysis

showed that thymic development of Treg cells expressing

the transgenic TCR was dependent on the autoimmune

regulator Aire. Altogether, these results clearly demon-

strate that pre-existing tTreg cells reactive to self-anti-

gens are expanded upon tumorigenesis.

Recruitment and retention of Treg cells to tumours

Identification of the chemokines and their cognate recep-

tors involved in specific Treg cell recruitment and/or

retention into tumour lesions is an active area of

research, given their potential as druggable targets. In

human ovarian cancer, Curiel et al.53 showed that, similar

to blood CD4+ CD25+ Treg cells, CD4+ CD25+ T cells

isolated from malignant ascites express the chemokine

receptor CCR4. Furthermore, the authors found that

CCL22, the ligand of CCR4, is highly expressed in the

ascites and tumour tissue of patients with ovarian cancer

in comparison with control groups. They demonstrated

with in vitro migration assays that CD4+ CD25+ Treg cells

migrate to malignant ascites, and that this effect is abol-

ished upon addition of an anti-CCL22 antibody. Other

authors later reported the same observation in prostate,

breast and gastric tumours.75–77 In the context of cancer,

CCL22 is probably derived from activated myeloid cells,

although lymphocytes and tumour cells are potential

alternative sources.78–80 Upstream, CCL22 is strongly

induced by IL-4 and IL-13, which can be produced by

adaptive and innate lymphoid cells, as well as some mye-

loid cell types.81 CCL17, another ligand for CCR4, is also

implicated as a chemoattractant in cancer,76 although it is

suggested that, due to different affinities for conforma-

tional isoforms of CCR4 leading to distinct signalling

characteristics, CCL17 is more important in recruiting

CCR4+ effector T cells.82,83 Additionally, the Sakaguchi

group further ascribed high CCR4 expression in human T

cells to a subset of effector Treg cells, defined as

FOXP3hi CD45RA�, in both melanoma tissues and

peripheral blood.84 Ex vivo depletion of CCR4+ cells using

an anti-CCR4 monoclonal antibody selectively ablated

effector Treg cells in healthy donors and individuals with

melanoma, and was associated with an increase in CD4+

and CD8+ T-cell responses to the cancer-germline antigen

NY-ESO-1 upon in vitro re-stimulation. Furthermore,

in vivo administration of Mogamulizumab, a CCR4-de-

pleting monoclonal antibody, in two adults with T-cell

leukaemia-lymphoma diminished the percentage of blood

effector Treg cells. In one patient whose leukaemic cells

expressed NY-ESO-1, the reduction in effector Treg cells

was further associated with an enhanced NY-ESO-1-speci-

fic CD8+ T-cell response.

Apart from CCL22, CCL28 produced by ovarian

tumour cells under hypoxia has also been implicated in

the preferential recruitment of Treg cells, both in in vitro

migration assays using mouse and human Treg cells and

in an in vivo model of ascitic ovarian tumours.85 CCR10,

rather than CCR3, was shown to be the receptor involved

in this effect.

In human breast cancer, RNA-seqencing analyses of

tumour-infiltrating CD4+ CD25+ Treg cells revealed high

expression of the genes encoding the chemokine receptors

CCR5, CCR8, CCR10, CX3CR1, CXCR3 and CXCR6 com-

pared with blood CD4+ CD25+ Treg cells.70 Among these,

some were also shared with tumour-infiltrating Tconv

cells (CCR5, CXCR3 and CXCR6), suggesting that Treg

cells may employ both unique and shared pathways to

migrate to breast tumour lesions. The authors further

focused on CCR8, and showed that its surface expression

was restricted to Treg cells and to a subset of natural

killer T cells among CD45+ and non-CD45 cells within

tumours. CCR8 expression was shared by Treg cells infil-

trating breast, lung and colorectal cancers, as well as in

melanoma and in angiosarcoma.70,86 Functionally, sorted

tumour-infiltrating CD4+ CD25+ Treg cells were able to

migrate more robustly than Tconv cells towards the

CCR8 ligand CCL1.70 Consistent with its tumour-specific

pattern of expression, robust CCR8 expression by Treg

cells was shown to require TCR engagement as well as

soluble tumour-derived factors using tumour explant co-

cultures. Finally, analysis of the breast samples from the

The Cancer Genome Atlas data sets revealed a strong
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association of CCR8 mRNA amounts normalized to

FOXP3, but not FOXP3 mRNA amounts alone, with poor

prognosis, suggesting a detrimental role for CCR8-ex-

pressing Treg cells in breast cancer progression.

High endothelial venules (HEV) which can be associ-

ated with tertiary lymphoid structures are present within

tumours. The presence of HEV is promoted by activa-

tion of Tconv cells and dependent upon tumour necro-

sis factor receptor signalling.87 As HEV themselves drive

further T-cell recruitment, it has been proposed that this

supportive relationship between Tconv cells and HEV

forms the potential for a self-amplifying loop that can

drive tumour destruction. HEV neogenesis is indirectly

inhibited by Treg cells through their suppression of

Tconv cell activation.87 However, tertiary lymphoid

structures contain Treg cells88 and whether and how

HEV play an active role in recruitment of Treg cells is

unclear. L-selectin expression is required for appropriate

trafficking and tissue distribution of Treg cells under

physiological conditions.89 Whereas a majority of Treg

cells in tumours are activated and express low levels of

L-selectin, it is possible that L-selectin+ Treg cells are

recruited by tumour HEV, which subsequently down-

regulate L-selectin expression in response to the activat-

ing environment of the tumour. This may represent a

physiological regulatory feedback mechanism in inflamed

tissues that is co-opted by tumours to counteract an

otherwise beneficial self-reinforcing feedback loop of

Tconv-driven HEV neogenesis in cancer, which could be

subject to therapeutic intervention.

It is worth noting that the pathways described above

may not only account for Treg cell recruitment but also

for their retention within the tumour, thanks to the con-

tinuous secretion of chemo-attractants by either tumour

cells or their associated stroma. In addition, recent evi-

dence suggests that the early activation marker CD69

could play a role in Treg cell retention within tumours,

as a large proportion of tumour-infiltrating Treg cells

express high levels of this protein.90 Indeed, CD69 has

been shown to be crucial for T-cell trafficking by interfer-

ing with the expression of S1P1, so preventing lympho-

cyte egress from peripheral tissues.91,92 Interestingly,

CD69 is also linked to Treg cell function as CD69-defi-

cient Treg cells display an altered suppressive function

in vitro and in vivo.90,93 How CD69 affects Treg cell

retention and function at the molecular level remains to

be addressed.

There is now evidence to support the rationale of tar-

geting chemokine receptors to alter Treg cell accumula-

tion and/or retention in several types of tumours.

However, it is worth noting that these pathways may also

be shared with Tconv,94 and may not be unique to can-

cer, providing a potential for on-target side effects. More-

over, the mechanisms driving chemokine receptor

expression among Treg cells are unclear but there may be

considerable overlap with the mechanisms that drive such

receptor expression among cognate T helper counterparts,

including the involvement of lineage-specifying transcrip-

tion factors of the T helper lineages that are also

expressed in Treg cells.

Local expansion of tissue-resident Treg cells

Recent developments in the field have led to the emerg-

ing idea that tissue-resident Treg cells may contribute

to the accumulation of Treg cells seen within tumour

lesions. Although some markers of tissue-resident Treg

cells appear to be present in Treg cells in multiple tis-

sues, large-scale transcriptional analyses also suggest that

tissue-resident Treg cells within distinct tissues have

unique phenotypes.95,96 Pan-tissue tissue-resident Treg

markers include the IL-33 receptor ST2 (encoded by

gene Il1rl1), the activation marker KLRG1, the tran-

scription factor GATA-3 and the growth factor

Amphiregulin.

In searching for a potential role of tissue-resident Treg

cells in tumour progression, Green et al.97 analysed trans-

plantable lung tumours in mice and found that tumour-

infiltrating Treg cells expressed higher levels of Amphireg-

ulin compared with normal lung Treg cells. In one of the

two lung tumour models tested, conditional deletion of

Areg in Treg cells resulted in a decreased tumour volume.

Although the authors excluded both immune and tumour

cells, the precise identity of the cells targeted by the Treg-

derived Amphiregulin remains to be addressed. In line

with these data, an increased proportion of Treg cells

were shown to be ST2+ in both primary orthotopic

mouse mammary carcinoma and lung metastases, and

ST2+ lung tumour Treg cells, but not ST2�, were shown

to produce Amphiregulin.98

In human breast tumour and healthy adjacent tissue,

RNA-sequencing analyses from the Plitas et al.70 study

described above revealed that the gene expression profile

of tumour-infiltrating Treg cells was similar to those of

the tissue-resident Treg cells of the normal breast par-

enchyma, but distinct from the profile of the CD45RO+

activated Treg cells isolated from peripheral blood, used

here as a reference of activated Treg cells. Surprisingly

though, extraction of the TCR repertoire of these cells

from RNA-sequencing data did not support the hypoth-

esis of local tissue-resident Treg cell expansion: only

low clonal overlap was found between the tumour-infil-

trating Treg cells and those from the normal adjacent

tissue.

Altogether, there is not much evidence supporting

the hypothesis of the local amplification of tissue-resi-

dent Treg cells within tumour lesions. However, this

does not imply that they do not make a significant

contribution to tumour progression. Alternatively, their

pre-existence in the tissue-of-origin of cancer may

ª 2019 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology, 157, 219–231 223

REVIEW SERIES: TREGS IN CANCER: WHERE ARE WE NOW?

Regulation of Treg cells in cancer



position them to contribute to early events in carcino-

genesis and metastasis through classical or non-classical

functions. Further studies will be needed to address

these hypotheses.

Signals regulating Treg cells within tumours

Co-stimulatory and co-inhibitory receptors

Tumour-associated Treg cells are known to express

numerous co-stimulatory (i.e. ICOS, OX40, GITR) and

co-inhibitory (i.e. Lag-3, Klrg1, Tim-3, TIGIT, PD-1)

receptors that modulate their function (Fig 2). Resolving

the functional role of such receptors is important, but is

complicated by their frequent expression on conventional

T and other immune cell-types. Hence, lineage-specific

deletion experiments are often required to fully under-

stand their role in cancer. Many potential therapeutic

strategies targeting these co-receptors are primarily aimed

at promoting effector T cells in cancer but could induce

changes that either help or hinder the therapeutic

response, highlighting the importance of considering their

role on tumour-associated Treg cells.

Co-stimulatory receptors

Inducible T-cell co-stimulator (ICOS) is important in

Treg cell homeostasis and function,99–101 and is highly

expressed by activated Treg cells in prostate cancer77 and

melanoma.102 In the context of cancer, ICOS ligand

(ICOSL) can be expressed by tumour cells103 as well as

myeloid infiltrates, primarily antigen-presenting cells,

including transformed follicular lymphoma B cells104 and

dendritic cells.105 These findings, in conjunction with

studies on the function of ICOS/ICOSL signalling in non-

tumour settings, suggest that this pathway is instructive

in supporting local Treg cell expansion and function.

The tumour necrosis factor receptor superfamily

(TNFRSF) members, including GITR, OX40, CD27 and

4-1BB are important co-stimulatory molecules on T cells.

In addition to influencing Treg cell development in the

thymus, TNFRSF members are critical for the mainte-

nance of Treg cells in peripheral tissues, in part via

nuclear factor-jB/RelA-mediated signalling.106

GITR is highly expressed by Treg cells, and plays an

important role in Treg cell expansion.107 However, GITR

signalling has been proposed to impair Treg cell suppres-

sive capacity, although interrogation of this receptor is

complex because of concurrent effects on conventional

CD4+ and CD8+ T cells.108 As for ICOSL, GITR ligand

(GITRL) is mainly expressed by antigen-presenting cells,

but also endothelial and neuronal cells.109,110 In the con-

text of cancer, in vitro studies show that tumour-derived

TGF-b can induce GITRL on dendritic cells, which subse-

quently support expansion of Treg cells.111 Interestingly,

an association was observed between single nucleotide

polymorphisms in GITR (and OX40) and poor survival

in ovarian cancer.112

OX40 is expressed constitutively by a subset of Treg

cells, but also on activated non-Treg cells.113 In cancer,

Treg cells can comprise a significant proportion of

tumour-resident OX40+ cell types.114–116 Although OX40-

agonistic reagents are used to stimulate anti-tumour T-

cell responses, the effect on Treg cells in cancer is not

well understood. In wild-type mice, OX40 is important

for Treg cell development in the thymus, as well as

expansion in the periphery, although its effect on Treg

cell function is less clear. Administration of agonistic

reagents demonstrates that OX40-signalling reduces Treg

cell suppressive function in vitro and in vivo;117 however,

other studies suggest that Treg cells are not impaired.118

One potential explanation is that the context of OX40

ligand (OX40L) expression can have different effects on

Treg cells.113 In the context of cancer, OX40L is expressed

by glioblastoma, especially under hypoxic conditions. In

vitro experiments indicated that OX40L expression pro-

moted OX40-driven activation of Treg cells.119 In another

study of patients with hepatocellular carcinoma, liver-resi-

dent monocytes and macrophages expressed OX40L (in

response to concurrent hepatitis C virus infection), which

in turn promoted liver Treg cell expansion.120 Moreover,

two studies identified an association between single

nucleotide polymorphisms in OX40L and increased

occurrence of breast cancer.121,122

4-1BB is expressed by both lymphoid and myeloid cell

types and among T cells, it is expressed by Treg cells and

activated CD4+ and CD8+ T cells.123 4-1BB activation

provides a potent stimulus for anti-tumour natural killer,

CD4+ and CD8+ T cells and 4-1BB agonistic antibodies

can provoke rejection of tumours in multiple mouse

models but non-specific agonism results in generalized T-

cell activation, cytokine release and systemic inflamma-

tion.123 Despite initial signs of efficacy, clinical develop-

ment of agonistic clinical 4-1BB agonists urelumab and

utomilumab has been hampered by inflammatory liver

toxicity at moderate systemic doses.124 Similar to OX40,

4-1BB is expressed both on Treg cells and activated CD4+

and CD8+ Tconv cells. Consequently, it has been difficult

to distinguish the effect of therapy on either subset alone

and there is contradictory evidence for the effect of 4-

1BB ligation on Treg cells, with some studies demonstrat-

ing an inhibitory effect on their immunoregulatory func-

tion125,126 and others suggesting a stimulatory effect on

proliferation.127,128 Hence, there is a need to dissect the

effect of 4-1BB agonists on Treg and Tconv cells both in

the context of anti-tumour immunity and the on-target

toxicity that they provoke.

CD27 is expressed mainly by naive and subsets of

memory CD4+ and CD8+ T cells, as well as Treg cells.113

CD70 can be expressed by antigen-presenting cells, but
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also by tumour-infiltrating Treg and effector T cells.129

Engagement of CD27 with CD70 within tumours is

important for expansion of Treg cells within tumours.129

Intriguingly, it was proposed that this activity is indirect,

and acts through the ability of CD27-CD70 signalling to

drive IL-2 production by Tconv cells, although evidence

supporting this hypothesis was derived from in vitro

experiments.

In summary, it is clear that co-stimulatory receptor sig-

nalling is critical not only for anti-tumour immunity, but

also influences local Treg cell biology. It is likely that con-

tact-mediated regulation of Treg cells varies greatly

depending on tissue- and tumour-type, and the presence

of a shared niche containing cell-types that express co-

stimulatory ligands.

Co-inhibitory receptors

The co-inhibitory receptor T-cell immunoglobulin and

ITIM domain (TIGIT) marks a population of Treg cells

with enhanced suppressive capacity in tumours.130,131

Interestingly, TIGIT+ Treg cells preferentially suppress

Th1 and Th17 (but not Th2) cells, the former being

important in anti-tumour immunity. Moreover, TIGIT

competes for its ligands CD112 and CD155 with the co-

stimulatory receptor CD226 which, unlike conventional T

cells, is associated with functionally suppressed Treg

cells.132 This study suggests that the CD226/TIGIT ratio

correlates with Treg cell stability, and clinical outcome in

individuals with melanoma. Moreover, both CD112 and

CD155 over-expression is reported in cancer,133 although

further work is required to delineate the interaction

dynamics with the multiple TIGIT-expressing cell-types.

Although the role of the inhibitory receptor pro-

grammed-death 1 (PD-1) on conventional T cells is well

established, its function in Treg cells is less clear. Work

by the Sharpe laboratory demonstrated that PD-1 and its

ligand PD-L1 are important for pTreg cell development

and function.134 Subsequently, PD-1 was demonstrated to

contribute to tTreg cell stability in Foxp3low conditions.135

Moreover, PD-L1 expression on antigen-presenting cells

can expand Treg cells in patients after allogeneic bone

marrow transplants.136 However, in the context of cancer,

PD-1 expression by Treg cells has been associated with

their dysfunction.137

The inhibitory receptor lymphocyte activation gene 3

(Lag-3) is expressed on Treg cells, in addition to other

lymphocytes, and binds to two known ligands (MHC-II

and LSECtin). Lag-3 also promotes suppressive function

of Treg cells in homeostasis and cancer.138,139 In addition

to Treg cell modulation, Lag-3/MHC-II interactions are

proposed to suppress the maturation of MHC-II+ den-

dritic cells.140 Moreover, LSECtin expression has been

reported on tumour cells, suggesting potential Lag-3-de-

pendent mechanisms of Treg cell regulation.141 T-cell

immunoglobin and mucin domain 3 (Tim-3) is a co-in-

hibitory receptor expressed by different myeloid and lym-

phoid cells, including Treg cells, and binds to several

identified ligands (i.e. galectin-9, HMGB1, caecam-1,

phosphatidyl serine, reviewed in ref. 142). Tim-3+ Treg

cells are detected in many murine and human tumour

samples, and have increased suppressive capacity. Con-

versely, Tim-3 ligands are widely expressed on both

immune and non-immune cell types in cancer and home-

ostasis. Another co-inhibitory receptor, killer cell lectin-

like receptor G1 (Klrg1) is expressed by many immune

cells including Treg cells, and binds to its ligands (E- and

N-cadherin). Although Klrg1 is used to identify Treg cell

subsets, little is known about its functional role. In the

gut, Klrg1-signalling on Treg cells impairs their suppres-

sive function.143 Interestingly, loss of E-cadherin has been

shown in cancer progression, suggesting a potential

mechanism by which tumour cells promote Treg cell-me-

diated immunosuppression.144

In summary, cell-to-cell interactions via co-stimulatory

or co-inhibitory receptors are important for local regula-

tion of Treg cell function in cancer. Importantly, the

function of these receptors also frequently differs in Treg

cells compared with Tconv cells. Moreover, their expres-

sion often overlaps with other immune cell-types, high-

lighting the need for careful dissection of functional

effects on Treg cells.

Cytokines

Interleukin-2. Treg cells are mainly dependent upon IL-2

signalling for both their thymic and peripheral differenti-

ation and for their survival, although IL-15 and IL-7 can

partially substitute for IL-2 in maintaining Treg cell sur-

vival in the genetic absence of IL-2145or following Treg-

specific disruption of CD25 expression,146 respectively.

This leads to the question of whether IL-2 production

within tumours is required for maintenance of intratu-

moural Treg cell populations and what the dominant cel-

lular source of IL-2 is within tumours (reviewed in ref.
147). There is contradictory evidence regarding the role of

IL-2 in intratumoural Treg homeostasis. Consistent with

a role for IL-2 in tumour immunosuppression, IL-2 neu-

tralization has been shown to retard the growth of

implanted renal cell carcinoma tumours.148 Administra-

tion of IL-2 to mice bearing syngeneic B16 melanoma

tumours results in an increase in the frequency of Foxp3+

cells within the intratumoural CD4+ T-cell pool.149 How-

ever, the frequency of Treg cells in tumours of mice bear-

ing methylcholanthrene-induced fibrosarcomas was not

affected by administration of IL-2/anti-IL-2 complexes

though this does not exclude the possibility that endoge-

nous intratumoural IL-2 levels are already at functionally

saturating levels in such tumours or that other limits to

the size of the Treg pool prevent further Treg cell
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expansion.90 In humans, whereas high-dose IL-2 therapy

is an established treatment for metastatic melanoma and

can drive striking clinical responses in a small subset of

patients, IL-2 therapy can also drive expansion of ICOS+

Treg cells, the extent of which correlates with worse clini-

cal outcomes following therapy.150

In general, CD4+ and CD8+ Tconv cells are the major

cellular source of IL-2 in vivo although the cytokine is

also expressed by B cells and dendritic cells.151 It is

important to note that not all Tconv cells produce IL-2.

Cells in the early stages of differentiation, such as naive

and memory CD8+ T cells, produce IL-2 upon stimula-

tion whereas cells that have undergone full effector

differentiation do not.147 Indeed, loss of the ability of

Tconv populations to produce IL-2 upon full effector dif-

ferentiation is associated with a catastrophic decline in

Treg cell numbers during infection of wild-type mice with

Toxoplasma gondii and of perforin-deficient mice with

lymphocytic choriomeningitis virus.152,153 Given this

exclusively supportive role of Tconv cells in the early

stages of differentiation to Treg cell survival, it is impor-

tant to test whether such cells are present and function-

ally relevant within tumours. Indeed, a proportion of

CD8+ T cells within tumours have an early memory phe-

notype154,155 and it will be interesting to determine

whether these cells produce IL-2 and whether similar
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early memory cells contribute to intratumoural Treg cell

maintenance using mouse models. Given the ability of IL-

15 and IL-7 to act as surrogates for the absence of IL-2

signalling, it would also be interesting to determine

whether these cytokines play a role in Treg cell mainte-

nance in tumours. Finally, Treg cells differ in their

requirement for IL-2 signalling, with CD25lo Treg cells

less dependent and intrinsically short-lived compared

with CD25hi cells whose longevity requires CD25 sig-

nalling. Hence, the role of IL-2 will need to be considered

in the context of heterogeneity of Treg cell populations

and differential requirements for IL-2.

Interleukin-33. Accumulating evidence indicates that IL-

33 is an important homeostatic factor for Treg cells in

multiple tissue sites, in line with their expression of the

IL-33 receptor ST2. Direct action of IL-33 on Treg cells

has been shown to enhance their expansion in the colonic

lamina propria, or in the visceral adipose compartment

for example.156,157 Interleukin-33 is mostly produced by

non-haematopoietic cells, including fibroblasts and

epithelial cells, but also by some activated myeloid cells.

Although the precise mechanism remains unclear, it is

believed that IL-33 is released from cells upon certain

types of cell death. IL-33 further functions as an alarmin

through the binding to its receptor complex, composed

of ST2 and IL1RAcP, expressed on a variety of immune

cells, so including Treg cells. In cancer, the role of IL-33

remains controversial, with both pro-tumorigenic and

anti-tumorigenic effects reported across different cancer

types and cellular sources. Whether the IL-33/ST2 axis on

Treg cells plays a role in tumour progression has yet to

be established. Interestingly, administration of IL-33 to

tumour-bearing mice was shown to expand tumour-infil-

trating Treg cells,98,158 in line with the aforementioned

IL-33-driven expansion of Treg cells in healthy tissues.

Recent generation of Foxp3-Cre 9 Il1rl1fl/fl mice159 should

shed light on the relevance of this pathway in vivo.

Metabolic fitness

Co-stimulatory ligands, cytokines and chemokines are

well-established contributors to tTreg cell preferential

expansion/maintenance in the tumour microenvironment,

but recent evidence points also towards a peculiar cell-in-

trinsic metabolism as a means by which tTreg cells sur-

vive, expand and exert their function within tumours.160

Importantly, tumour-infiltrating tTreg cells display high

expression of the glucose transporter Glut1 compared

with splenic Treg cells, and are capable of increased glu-

cose uptake in mouse tumour models.161,162 Such an

improved glucose usage may in turn fuel fatty acid

biosynthesis, in line with observations of a tTreg high

neutral lipid content.162 Given the important role of both

the glycolytic and lipid pathways in tTreg proliferation,

suppressive function and trafficking,160,163,164 it is tempt-

ing to speculate that the adaptation of Treg cell metabo-

lism to ensure exquisite function at the expense of other

T cells within the tumour bed is a feature that may be

promoted under the influence of tumour and/or stroma-

lly derived factors. Identification of such specific cues and

pathways may reveal promising therapeutic targets in the

near future.

Future direction and conclusion

Our understanding of Treg cells is rapidly evolving,

addressing both long-standing questions in Treg cell

ontogeny and antigen-specificity while simultaneously

exploring new frontiers in the realm of tissue-residency

and interactions with non-haematopoietic cell types.

These new findings may have significant impact in our

understanding of tumour immunology, given the clear

evidence of Treg cell enrichment, association with poor

prognosis, and immune-regulatory functions in cancer.

Importantly, it is clear that Treg cell identity and function

are influenced by their niche. In conclusion, our under-

standing of how Treg cells are themselves regulated will

be essential to design novel immunotherapies and lever-

age existing cancer treatments with greater effect.
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