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Carbapenemase-producing Enterobacterales are rapidly spreading and adapting
to different environments beyond hospital settings. During COVID-19 lockdown,
a carbapenem-resistant NDM-1-positive Escherichia coli isolate (BA01 strain) was
recovered from a pygmy sperm whale (Kogia breviceps), which was found stranded on
the southern coast of Brazil. BA01 strain belonged to the global sequence type (ST) 162
and carried the blaNDM−1, besides other medically important antimicrobial resistance
genes. Additionally, genes associated with resistance to heavy metals, biocides, and
glyphosate were also detected. Halophilic behavior (tolerance to > 10% NaCl) of
BA01 strain was confirmed by tolerance tests of NaCl minimal inhibitory concentration,
whereas halotolerance associated genes katE and nhaA, which encodes for catalase
and Na+/H+ antiporter cytoplasmic membrane, respectively, were in silico confirmed.
Phylogenomics clustered BA01 with poultry- and human-associated ST162 lineages
circulating in European and Asian countries. Important virulence genes, including the
astA (a gene encoding an enterotoxin associated with human and animal infections)
were detected, whereas in vivo experiments using the Galleria mellonella infection model
confirmed the virulent behavior of the BA01 strain. WHO critical priority carbapenemase-
producing pathogens in coastal water are an emerging threat that deserves the urgent
need to assess the role of the aquatic environment in its global epidemiology.
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INTRODUCTION

The rapid and global spread of carbapenemase-producing
Enterobacterales has triggered an unprecedented public health
crisis due to the lack of novel clinically effective antibiotics
(Queenan and Bush, 2007; Nordmann et al., 2011a; Lee
et al., 2022). Carbapenems are broad-spectrum β-lactam
antibiotics that have been administered as a last-line resort,
being generally reserved to treat life-threatening infections
caused by multidrug-resistant (MDR) Gram-negative bacterial
infections (Papp-Wallace et al., 2011; Lee et al., 2022). The
production of carbapenemases by certain Enterobacterales and
non-fermentative bacteria, can threaten the efficacy of these
antimicrobials making them useless (Queenan and Bush, 2007;
Nordmann et al., 2011a; Lee et al., 2022).

Due to their clinical impacts in human medicine,
carbapenemase-producing bacteria were recent classified as
critical priority pathogens by the World Health Organization
(WHO) (Tacconelli et al., 2018). Particularly, the emergence
of metallo-β-lactamase NDM-1-producing bacteria has been
a phenomenon of global interest (Nordmann et al., 2011a,b;
Dortet et al., 2014). Of epidemiological concern, although the
successful spread of plasmids encoding blaNDM-type genes
has been primarily related to nosocomial settings (Wu et al.,
2019), there is growing evidence of their occurrence beyond
the human medicine context (Mills and Lee, 2019; Ranjan
and Thatikonda, 2021). Indeed, NDM-1-producing bacteria
have been increasingly reported in environmental samples
(mostly in anthropogenic-impacted aquatic environments)
(Ranjan and Thatikonda, 2021). More critically, NDM-
1-positive bacteria have begun to be documented in wild
animals (Fischer et al., 2013; Liao et al., 2019; Mairi et al.,
2020), which could indicate, in part, that these critical-
priority bacteria can spill over into natural ecosystems,
and then further spread in wildlife (Dolejska and Literak,
2019; Mills and Lee, 2019; Cohen et al., 2020; Mairi et al.,
2020).

In this study, we report the identification of an NDM-1-
positive Escherichia coli strain belonging to the international
clone sequence type (ST) 162 in a pygmy sperm whale
(Kogia breviceps), highlighting negative clinical and ecological
implications related to the dissemination of WHO critical
priority pathogens in the marine environment.

MATERIALS AND METHODS

Bacterial Isolation, Identification, and
Antimicrobial Susceptibility Testing
During a surveillance study conducted to investigate the
occurrence and genomic features of critical priority Gram-
negative pathogens circulating at the marine ecosystems in Brazil,
part of the Grand Challenges Explorations—New Approaches
to Characterize the Global Burden of Antimicrobial Resistance
program, we characterized a multidrug-resistant E. coli recovered
from a pygmy sperm whale (Kogia breviceps), during the COVID-
19 lockdown.

The animal (Supplementary Figure 1) was received at
CEPRAM/R3 Animal (Florianópolis, Santa Catarina state,
Southern Brazil), as part of the Santos Basin Beach Monitoring
Project, licensed by the Brazilian Institute of the Environment
and Renewable Natural Resources (IBAMA) of the Brazilian
Ministry of Environment under ABIO N◦ 755/2016. The whale
was found stranded alive on October 19th, 2020, in a beach
(−28.1663385: −48.6577602), located on the city of Imbituba,
in Santa Catarina state, Southern Brazil. The animal was
immediately monitored in the water by the Santos Basin Beach
Monitoring Project team. External examination revealed multiple
signs of interspecific interaction in the ventral and lateral regions
of the body and a deep circular lesion consistent with bite
marks from cookiecutter sharks (Isistius spp.). The whale was
carefully monitored during transport, receiving benzodiazepines
(Diazepam, 0.1 mg/kg, IM) and bronchodilators (Aminophylline,
4 mg/kg, IM, SID) to dilate the lungs’ airways. Upon arrival
at Associação R3 Animal, in Florianópolis, the whale was
transferred to a 60,000 L tank under continuous supervision.
To replace the animal’s hydration, 1.5 L of water were initially
administered through a 17 mm equine nasogastric tube and later
the volume was increased to 3 L every 3 h and antibiotic therapy
was started (Enrofloxacin, 5 mg/kg, IM, BID). On October 21, the
animal begun to show signs of agitation, swimming erratically,
jumping, and bending its body, even after being sedated.
The veterinary staff observed prolonged periods of apnea and
bradycardia. Cardiac massage and administration of emergency
drugs were attempted, but the animal succumbed to death.

At necropsy, besides other gross alterations, the prescapular
lymph nodes were clearly swollen. A yellowish purulent material
was collected from the lymph nodes and placed in Stuart
transport medium, and immediately sent to a microbiology
laboratory for bacterial culture and antimicrobial susceptibility
testing. The E. coli strain (BA01) was recovered, being identified
by matrix-assisted laser desorption ionization–time of flight mass
spectrometry (MALDI-TOF MS). Antimicrobial susceptibility
was performed and interpreted according to the Clinical
and Laboratory Standards Institute recommendations (CLSI,
2020). In this respect, human and veterinary antibiotics were
tested, including amoxicillin-clavulanic acid, ceftazidime,
cefotaxime, ceftriaxone, ceftiofur, cefepime, cefoxitin, aztreonam,
ertapenem, meropenem, imipenem, ciprofloxacin, levofloxacin,
trimethoprim/sulfamethoxazole, fosfomycin, gentamicin,
tetracycline, and amikacin. A drug-susceptible E. coli (ATCC
25922) was included as a control strain. Moreover, to determinate
whether BA01 strain could survive in the marine environment,
tolerance test of NaCl minimal inhibitory concentration (MIC)
was performed using 0.1–15% NaCl solutions (Fernandes et al.,
2020a).

Whole Genome Sequence Analysis
The whole genomic DNA of E. coli BA01 was extracted
(PureLinkTM; Invitrogen) and used to prepare a library that
was sequenced using the NextSeq550 platform (2 × 75-
bp paired-end) (Illumina). Raw sequencing data were quality
filtered to remove low-quality bases (Phred20 quality score)

Frontiers in Microbiology | www.frontiersin.org 2 June 2022 | Volume 13 | Article 915375

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-915375 June 4, 2022 Time: 15:7 # 3

Sellera et al. Escherichia coli NDM-1/ST162 in a Whale

using Trimmomatic v0.32.1 The sequence reads were assembled
De novo using default parameters of Unicycler v0.4.8.2 Draft
genome sequence was automatically annotated using the NCBI
Prokaryotic Genome Annotation Pipeline v.3.2.3 BA01 circular
genome map (Figure 1) was performed using the Proksee
platform4 and BLASTN.

1https://github.com/timflutre/trimmomatic
2https://github.com/rrwick/Unicycler
3www.github.com/tseemann/prokka
4https://beta.proksee.ca/

Multilocus sequence type (MLST), plasmid replicons,
resistome, virulome, type fimbrial, and serotype were performed
in silico using MLST v2.0, PlasmidFinder v2.0, ResFinder
4.0, VirulenceFinder 2.0, FimTyper v1.0, and SerotypeFinder
v2.0, respectively; available from the centre for Genomic
Epidemiology.5 In addition, ABRicate v0.9.86 was used to screen
putative virulence factors through VFDB database.7

5http://genomicepidemiology.org/
6https://github.com/tseemann/abricate
7https://github.com/haruosuz/vfdb

FIGURE 1 | Circular genome view of the Escherichia coli BA01 strain.
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The presence of heavy metal (HM) genes was predicted by
comparison with the BacMet—Antibacterial Biocide and Metal
Resistance Genes Database,8 whereas for detection of mercury,
arsenic, and disinfectant resistance genes DRG (quaternary
ammonium compounds), we performed alignment of sequenced
reads against our in-house database. Moreover, the presence of
halotolerance-associated genes (katE and nhaA) was in silico
investigated using BLASTN. A≥ 90% identity threshold was used
as a filter for all accessed databases.

Phylogenetic Analysis
In order to compare BA01 with other E. coli strains, we
performed a search for E. coli ST162 on Escherichia/Shigella
database in Enterobase.9 For phylogenetic analysis purpose,
FastANI v1.3210 was used to select the 30 genomes with highest
average nucleotide identity (ANI) to BA01 among 542 genome
assemblies of strains with data for country, year, and source
of isolation downloaded from Enterobase. CSI phylogeny v1.411

was used with default settings to generate a maximum-likelihood
phylogenetic tree with BA01 and the 30 selected genomes. E. coli
ST162 strain W2-5 chromosome sequence (RefSeq accession
number NZ_CP032989.1) was used as reference. ABRicate v1.0.1
(see text footnote 6) was used with ResFinder and PlasmidFinder
databases to screen the genomes for antimicrobial resistance and
plasmid replicons. Identity and coverage were set to 98 and 100%,
respectively. Mutations in quinolone resistance-determining
regions were assessed using CGE PointFinder pipeline.12 iTOL
v613 was used to root the tree at midpoint and to annotate the
tree with Enterobase and ABRicate data.

In vivo Virulence Assays in the Galleria
mellonella Infection Model
To evaluate the virulence potential of strains, an in vivo
experiment was carried out with the Galleria mellonella infection
model (Tsai et al., 2016; Moura et al., 2018). G. mellonella larvae,
of nearly 250–350 mg, were inoculated with 105 CFU of each
strain and survival analysis was evaluated each hour, for 96 h. For
each strain, groups of G. mellonella containing five larvae were
evaluated. E. coli strain ATCC 25922 was used as non-virulent
control, whereas hypervirulent meningitis/sepsis-associated K1
E. coli MNEC RS218 strain was used as hypervirulent control
samples (Fuentes-Castillo et al., 2021a). Data were analyzed by
the log rank test, with P of 0.05 indicating statistical significance
(Graph Pad Software, San Diego, CA, United States).

Plasmid Conjugation
To evaluate the transferability of the blaNDM−1 gene, conjugation
experiments were carried out. Plasmid conjugation was assessed
by mating-out assay using E. coli BA01 and sodium azide-
resistant E. coli C600 (lactose-negative) as donor and recipient

8http://bacmet.biomedicine.gu.se
9https://enterobase.warwick.ac.uk
10https://github.com/ParBLiSS/FastANI
11https://cge.cbs.dtu.dk/services/CSIPhylogeny/
12https://bitbucket.org/genomicepidemiology/pointfinder
13https://itol.embl.de

strains, respectively. Transconjugants were obtained from
MacConkey agar plates supplemented with ertapenem (4 µg/mL)
and sodium azide (100 µg/mL).

RESULTS AND DISCUSSION

The E. coli strain BA01 strain displayed a MDR profile to
amoxicillin/clavulanic acid, cefotaxime, ceftriaxone, cefepime,
cefoxitin, ceftiofur, ertapenem (MIC = 16 mg/L), imipenem
(MIC = 16 mg/L), meropenem (MIC = 16 mg/L), amikacin,
ciprofloxacin, enrofloxacin, levofloxacin, chloramphenicol, and
tetracycline (Magiorakos et al., 2012), remaining susceptible
to aztreonam, gentamicin, sulfamethoxazole/trimethoprim,
and fosfomycin. Additionally, BA01 strain displayed NaCl
tolerance (>10%), confirming its ability to survive in the
marine environment.

TABLE 1 | Genomic and epidemiological data of E. coli strain BA01 isolated from
a pygmy sperm whale (Kogia breviceps) in Brazil.

Strain BA01

Genome size (Mbp) 5.7

No. of CDSa 4,744

tRNA (n) 56

rRNA (n) 71

Non-coding RNA (n) 11

Pseudogenes 136

CRISPR 2

MLST (ST)b 162

Resistome

β-lactams blaNDM−1, blaTEM−1C, blaOXA−1

Aminoglycosides aph(6)-Id, aph(3′′)-Ib, aph(3′)-VI

Fluoroquinolones aac(6′)-Ib-cr, qnrB6, gyrA (S83F, D87A), parC
(S80I)

Tetracyclines tet(A)

Rifamycins arr-3

Phenicols catB3, floR

Sulphonamides sul1, sul2

Macrolides ermB, mdf, mphA

Heavy metal and Biocides acrEF, arsBCR, emrDK, mdtEFKN, mvrC,
phnCDGHIJKLMNOP, tehAB, tolC, yjiO

Halotolerance genes katE, nhaA

Virulome astA, entA, entC, entE, entB, entD, entF, entS,
csgB, csgD, csgF, csgG, espX4, espX5, fdeC,
fepA, fepB, fepC, fepD, fepG, fes, espL1,
espR1, fimA, fimB, fimC, fimD, fimE, fimF, fimG,
fimH, fimI, gspC, gspD, gspE, gspF, gspG,
gspH, gspI, gspJ, gspK, gspL, gspM, espX1,
iroB, iroC, iroD, iroE, iroN, iucA, iucB, iucC,
iucD, iutA, ompA, ykgK/ecpR, yagZ/ecpA,
yagY/ecpB, yagX/ecpC, yagW/ecpD,
yagV/ecpE

Plasmidome IncC-ST3, IncFIB [F18:A-:B1]

GenBank accession number JAENJJ000000000

OneBR ID ONE128

aCDSs, coding sequences.
bMLST, Multilocus sequence type. ST, sequence type.
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Genomic analysis revealed a broad resistome, with genes
conferring resistance to β-lactams (blaNDM−1, blaTEM−1C, and
blaOXA−1), aminoglycosides [aph(6)-Id, and aph(3′′)-Ib, aph(3′)-
VI], macrolide, (ermB, mdfA, and mphA), rifamycin (arr-3),
quinolones [aac(6′)-Ib-cr, and qnrB6], phenicols (catB3 and floR),
sulfonamide (sul1 and sul2), and tetracycline (tetA) (Table 1).
Additionally, chromosomal point mutations in ParC (S80I)
and GyrA (S83L and D87N) were detected, which may justify
the fluoroquinolone-resistant profile. Furthermore, plasmid
replicons IncFIB and IncA/C2 were also detected (Table 1).

Halotolerance associated genes katE and nhaA, which encodes
for catalase and Na + /H + antiporter cytoplasmic membrane,
respectively, were in silico predicted (Rimon et al., 2007;
Prodhan et al., 2008). Furthermore, genes conferring resistance
to heavy metals [i.e., arsenic resistance (arsBCR), tellurite
(tehAB)] and biocides [i.e., quaternary ammonium compounds
(acrEF, emrK, mdtEFKN, mvrC, tolC, yjiO) and glyphosate
(phnCDEFGHIJKLMNOP)] were also detected (Table 1).

The blaNDM−1 gene was located on the IncC plasmid
and was successfully transferred to the E. coli C600
strain, being confirmed by PCR-based replicon typing of
transconjugant (Carattoli et al., 2005). The transconjugant E. coli
displayed resistance to amoxicillin/clavulanic acid, cefotaxime,
ceftriaxone, cefepime, cefoxitin, ceftiofur, ertapenem, imipenem,
meropenem, amikacin, ciprofloxacin, enrofloxacin, levofloxacin,
chloramphenicol, and tetracycline, remaining susceptible
to aztreonam, gentamicin, sulfamethoxazole/trimethoprim,
and fosfomycin. However, due to limitations of short-read
sequencing technology, it was not possible to obtain complete
nucleotide sequences of this plasmid. Further analysis revealed
that the aminoglycoside 3′-phosphotransferase [aph(3′)-VI]
and the carbapenemase-encoding blaNDM−1 genes were
located downstream of ISAba125 and ISAba14 mobile genetic
elements, respectively, along with the bleomycin resistance
protein (bleMBL), N-(5′-phosphoribosyl)anthranilate isomerase
(iso) and twin-arginine translocation pathway signal protein
(tat) being harbored by a Tn125-like transposon (Figure 2A)
identified in a 8,630-bp contig highly similar (100% nucleotide

identity; 100% query coverage) to that found on Klebsiella
pneumoniae plasmids (Genbank accession number: LR697132.1;
LR697099.1; CP021961.1) and close related (100% nucleotide
identity; 70% query coverage) to pAB17 plasmid (Genbank
accession number: MT002974.1) identified in a nosocomial
lineage of Acinetobacter baumannii in Brazil (Rossi et al., 2021).
In addition, we also identified a class 1 integron carrying an
integron-integrase gene (intI1) along with other genes encoding
antimicrobial resistance, including aminoglycoside-6′-N-
acetyltransferase-Ib [aac(6′)Ib-cr], class D beta-lactamase OXA-1
(blaOXA−1), chloramphenicol O-acetyltransferase (catB3),
rifampin ADP-ribosyl transferase (arr-3), and quaternary
ammonium compound (qacE11) (Figure 2B). In this respect,
there is a growing concern about the spread of biocides
contaminating aquatic environments, especially QACs, since
these compounds are widely used in domiciliary and hospital
setting, including disinfectants formulations (Zubris et al.,
2017). As a consequence, ecosystems impacted by heavy metal
and biocides could favor the selection and persistence of MDR
bacteria harboring broad resistomes (Baker-Austin et al., 2006;
Kim et al., 2018).

E. coli ST162 is a pandemic lineage that has been isolated from
multiple sources including clinical, environmental, and domestic
and wild animal samples (Fuentes-Castillo et al., 2020). When
compared with BA01, the 30 selected E. coli ST162 genomes
for the phylogenetic tree had ANI ranging between 99.7994 and
99.8948%. Among the 31 genomes analyzed, SNP counts variated
between 0 and 1,343 (Supplementary Table 1).

Phylogenetic analysis revealed that BA01 is closely related to
two strains isolated in 2018 from poultry in Hungary, differing
from both strains by 59 SNPs (Figure 3 and Supplementary
Table 1). While these two strains from Hungary share the same
resistome, BA01 has several resistance genes that are absent
in these strains [blaNDM−1, blaOXA−1, blaTEM−1C, aac(6′)-lb-cr,
aph(3′)-VI, sul1, catB3, erm(B), mph(A), and qnrB6], as well as an
IncC-type plasmid.

Virulome of BA01 strain, included genes/operons that encodes
to enteroaggregative EAST-1 heat-stable toxin (astA), iron

FIGURE 2 | Schematic presentation of the genetic environment context of the blaNDM-1 gene (A) and the class I integron (B) identified in the Escherichia coli BA01
strain. Arrows indicate protein-coding sequences and are colored by function.
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FIGURE 3 | Phylogenetic tree of 31 Escherichia coli ST162 strains, plotted in a 180◦ arc, as well as their predicted phenotype for antimicrobial resistance, source
and country of isolation. The highlighted clade with 3 strains is shown in a subtree with resistome, plasmidome, country and year of collection of each isolate.

acquisition systems (entACEDFS, fepABCDG, fes, iroBCDEN,
iucABCD, and iutA), adherence factors (fdeC, ecpRABCDE,
csgBDFG, and fimABCDEFGHI), secretion systems components
(espL1, espR1, espX1, espX4, espX5, and gspCDEFGHIJKLM) and
outer membrane protein A (ompA). Of note, the astA virulence
factor has been commonly found in E. coli strains associated
with extra-intestinal disease in animals and outbreaks of diarrhea
in humans and animals worldwide (Zajacova et al., 2012; Silva
et al., 2014; Maluta et al., 2016; Ochi et al., 2017; Dubreuil,
2019). Indeed, the presence of astA gene along with other

virulent associated genes detected in the BA01 genome (i.e., genes
encoding for adherence factors and iron acquisition systems)
could favor the virulent behavior of this strain (Fuentes-Castillo
et al., 2020, Fuentes-Castillo et al., 2021a), which was supported
by in vivo experiments using G. mellonella larvae. In this respect,
the E. coli BA01 strain and the hypervirulent meningitis/sepsis-
associated K1 E. coli MNEC RS218 strain killed 70 and 100% of
the G. mellonella larvae within 80 h post-infection, respectively,
presenting higher mortality rates than the non-virulent E. coli
ATCC 25922 strain (P < 0.05) (Figure 4).
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FIGURE 4 | Virulent behavior of NDM-1-positive Escherichia coli isolated from
a pygmy sperm whale (Kogia breviceps), in Brazil. Kaplan-Meier survival
curves of G. mellonella infected with 105 CFU/larvae of the NDM-1-positive
E. coli BA01 strain (orange line), the non-virulent E. coli ATCC 25922 strain
(dashed black line) and the hypervirulent meningitis/sepsis associated E. coli
strain MNEC RS218 strain (blue line). The E. coli BA01 strain and the
hypervirulent meningitis/sepsis-associated K1 E. coli MNEC RS218 strain
killed 70 and 100% of the G. mellonella larvae within 80 h post-infection,
respectively, leading to higher mortality rates than the non-virulent E. coli
ATCC 25922 strain (P < 0.05). For each strain, groups of G. mellonella
containing five larvae were evaluated in three separate experiments.

The blaNDM−1 gene was firstly reported in Klebsiella
pneumoniae and E. coli recovered from a patient in Sweden
that was transferred from a New Delhi hospital in 2008
(Yong et al., 2009). Since then, NDM-type carbapenemases
have triggered global attention due to their rapid epidemiologic
expansion among Enterobacterales and Acinetobacter spp., and
more rarely, in Pseudomonas aeruginosa (Dortet et al., 2014). Of
note, recent reports have documented the spreading of NDM
producers beyond the boundary of human healthcare settings
where they were originally related (Ranjan and Thatikonda,
2021). The environmental spread of NDM-producing bacteria
has been associated to several human activities that result in
chemical and microbial pollution mostly in aquatic environments
(Ranjan and Thatikonda, 2021).

Particularly for marine environments, it has been
demonstrated that anthropogenic pollution by improper
discharge of effluents from hospitals, domestic sewage, and
industrial, urban and/or agricultural wastewaters can runoff to
ocean carrying MDR bacteria, antibiotic-resistant genes (ARGs),
and heavy metals (Hatosy and Martiny, 2015; Li et al., 2020;
Zhang et al., 2022). While it has been suggested that beaches
and coastal waters from urbanized and densely populated
coastlines are more prone to be contaminated by WHO critical
priority bacteria, ocean currents and migratory animals can
also favor the spread of these pathogens through long distances,
sometimes reaching remote geographical areas with limited
human footprints such Polar regions (Hernández and González-
Acuña, 2016; Akhil Prakash et al., 2021) and inhospitable oceanic
islands (Ewbank et al., 2022).

In this investigation, we report the occurrence of a
carbapenem-resistant NDM-1- producing E. coli isolated from
a pygmy sperm whale. In this regard, the pygmy sperm whale
is a small cetacean from the Kogiidae family that is found in
mesopelagic regions near the continental shelves (between 600
and 1,200 m depth) of the tropical and temperate Atlantic,
Indian, and Pacific Oceans (Moura et al., 2016; Brentano and
Petry, 2020; Kiszka and Braulik, 2020). Although cetacean
research in oceanic waters has significantly progressed over the
last decades, there is scarce information on the population,
distribution, and behavior of pygmy sperm whales (Kiszka and
Braulik, 2020). This could be explained by their short surfacing
interval, cryptic surface behavior, and long deep dives, which
make challenging to see these whales in the ocean (Kiszka
and Braulik, 2020). Indeed, most data come from stranded
animals, being generally affected by anthropogenic material,
including accidental ingestion of plastic debris (Brentano and
Petry, 2020). Alarmingly, increasing reports of WHO critical
priority Gram-negative pathogens (MCR-type, carbapenemase-
and/or ESBL-producing bacteria) on the Brazilian coast have
been occurred in the last decade, which may indicate, in part,
the adaptation of such pathogens in the sea. In this regard,
the occurrence of such bacteria was documented in coastal
waters from in densely coastal areas (Montezzi et al., 2015;
Campana et al., 2017; Fernandes et al., 2017, 2020a; Paschoal
et al., 2017; Sellera et al., 2017a; Corrêa et al., 2021; Furlan et al.,
2021; Cordeiro-Moura et al., 2022), in marine fishes (Sellera
et al., 2018a) and benthic invertebrates (Sellera et al., 2018b;
Monte et al., 2019; Fernandes et al., 2020b), and also infecting
penguins (Sellera et al., 2017b; Wink et al., 2021), a sea turtle
(Goldberg et al., 2019), and a dolphin (Fuentes-Castillo et al.,
2021b). More specifically, the presence of NDM-1-producing
bacteria have been so far identified in K. pneumoniae and
Acinetobacter chengduensis from coastal waters of Rio de Janeiro
(Campana et al., 2017; Paschoal et al., 2017; Corrêa et al., 2021),
whereas a single case of E. coli carrying blaNDM−1 infecting
a penguin was also documented in the South coast of Brazil
(Wink et al., 2021).

CONCLUSION

In summary, we report for the first time the occurrence of the
NDM-1-producing E. coli ST162 clone in a marine cetacean.
Our findings are worrisome because may indicate that NDM-
producing E. coli can spill over from the human clinical context
to the aquatic environment reaching marine animals with serious
clinical implications in wildlife with a further threat to marine
ecosystem maintenance. Indeed, recent studies have already
demonstrated that WHO critical priority E. coli may display
halotolerant behavior (Fernandes et al., 2020a), which could
favor their spread and persistence in the marine environment.
Considering that marine cetaceans are usually found in nearshore
waters, exposure to critical priority carbapenemase-producing
bacteria could emerge as a new challenge for the conservation
of these threatened species. Last but not least, strengthening the
epidemiological surveillance of antimicrobial resistance in the
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ocean is crucial to understanding the ecological implications of
these bacteria on marine populations.
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