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Introduction: Neurofeedback (NF) using real-time functional magnetic resonance
imaging (fMRI) has proven to be a valuable neuroscientific tool for probing cognition and
promising therapeutic approach for several psychiatric disorders. Even though learning
constitutes an elementary aspect of NF, the question whether certain training schemes
might positively influence its dynamics has largely been neglected.

Methods: To address this issue, participants were trained to exert control on
their subgenual anterior cingulate cortex (sgACC) blood-oxygenation-level-dependent
signal, receiving either exclusively positive reinforcement (PR, “positive feedback”) or
also positive punishment (PP, “negative feedback”). The temporal dynamics of the
learning process were investigated by individually modeling the feedback periods and
trends, offering the possibility to assess activation changes within and across blocks,
runs and sessions.

Results: The results show faster initial learning of the PR + PP group by significantly
lower deactivations of the sgACC in the first session and stronger regulation trends
during the first runs. Independent of the group, significant control over the sgACC could
further be shown with but not without feedback.

Conclusion: The beneficial effect of PP is supported by previous findings of multiple
research domains suggesting that error avoidance represents an important motivational
factor of learning, which complements the reward spectrum. This hypothesis warrants
further investigation with respect to NF, as it could offer a way to generally facilitate the
process of gaining volitional control over brain activity.

Keywords: neurofeedback, punishment, reinforcement (psychology), emotions, magnetic resonance imaging

INTRODUCTION

Neurofeedback (NF) utilizing functional Magnetic Resonance Imaging (fMRI) is a method for
learning to gain control over the activation of almost any region of the brain. This is an important
advantage compared to the traditional NF approaches using electroencephalography (EEG) or
near-infrared spectroscopy, which are methodically limited to mostly large cortical regions. fMRI
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NF has been shown to be a promising therapeutic option for
the treatment of diverse psychiatric and neurological conditions
(Marzbani et al., 2016). Furthermore, it can be used for individual
training and improvement of mental abilities (Yamashita et al.,
2017) and it offers a tool to probe and potentially manipulate
cognition per se (Sorger et al., 2018).

Many fMRI NF studies use simple block designs for training
where subjects apply a certain strategy (regulation block) with
in-between pauses (baseline). Runs without feedback (transfer
runs; TRs), in which the subjects still have to apply the
strategies learned, are often used to test for generalizability of
the training successes. Even though the feedback provided to
the subjects is often a continuous graphical representation of
the target region’s activation (Sokunbi, 2017), the offline analyses
of the recorded data usually follow more static approaches.
The most widespread approach is the general linear model
(GLM) for the analysis of whole-brain neuroimaging data and
the reduction of training blocks, runs or sessions to single
values per subject for subsequent statistical testing. Within the
scope of this work, these terms are used as follows: training
block: the continuous period during which the signal should
be influenced; run: a single fMRI recording; session: everything
that happens between the participant entering and leaving
the MRI scanner.

Because learning is a dynamic process and it requires time
to apply the regulation strategy [e.g., recall autobiographic
memories to evoke certain emotions (Zotev et al., 2011) or
imagine specific actions in sufficient intensity (Scharnowski et al.,
2015)], systematic changes within a training block but also
across runs or sessions can be expected (Hamilton et al., 2011).
Although changes over sessions or between TRs are often used
to show learning successes in NF, investigating the changes
within blocks or feedback runs could give further insight into
the perception or experiences of the individual subjects. Given
recent findings on the importance of several psychological factors
on the success of NF and also in the light of clinical trials, the
additional information of single regulation blocks could be used
to optimize the treatment protocol and uncover confounding
effects like unnecessary long sessions and diminishing motivation
or performance of patients (Kadosh and Staunton, 2019).

The type of feedback provided to the subjects also needs to
be taken into account: A graphical presentation related to the
goal of the NF training or possible strategies can, e.g., lead to
improved regulation results compared to a neutral depiction
(Mathiak et al., 2015). On top of this, the valence of the feedback
signal has to be considered: Feedback which is provided only
for volitional activation changes in the desired direction (positive
reinforcement, PR) does not capture the full range of effects, even
though the experience might be less frustrating for the subject. In
contrast, feedback spanning the whole range of possible values
[i.e., also including positive punishment, PP (Fernández et al.,
2008)] provides additional information and might thereby foster
faster learning.

Therefore, this study investigated the influence of the feedback
type on the regulation and learning dynamics by comparing
two groups, one receiving only PR feedback and the other
PR + PP. The subgenual anterior cingulate cortex (sgACC)

was selected as target since it represents an important emotion-
related brain region typically affected in mood disorders such as
major depression (Lanzenberger et al., 2013; Hoflich et al., 2017).
Moreover, it was shown to be an effective and specific treatment
target for deep brain stimulation (Drevets et al., 2008) and
volitionally controllable using fMRI NF (Hamilton et al., 2011).

MATERIALS AND METHODS

This study was conducted in accordance with the Declaration of
Helsinki and the good scientific practice guidelines of the Medical
University of Vienna and approved by its ethics committee (ethics
committee number 1937/2016).

Subjects
Healthy volunteers were recruited via postings on message boards
at the General Hospital of Vienna and nearby supermarkets, and
from a database of potential subjects kept at the Department of
Psychiatry and Psychotherapy. The inclusion criteria comprised
an age of 18–35 years, right-handedness, general physical and
mental health assessed via a thorough anamnesis and the axis I
and II structural clinical interview according to the Diagnostic
and Statistical Manual of Mental Disorders, version 4 (SCID
I and II for DSM-IV), and signing of the informed consent
form. Subjects were excluded in case of any MR incompatibilities
or pregnancy, later discoveries of major internal, neurological
or psychiatric illnesses, current substance abuse, when having
smoked within 2 h before an MRI session or tried to cheat during
the NF training (e.g., by changing their breathing pattern). The
PR and PR + PP group were matched for sex, and mean and
standard deviation of age. Thirteen volunteers were enrolled in
the study (recruiting was continued until both groups contained
at least five subjects with two successful NF sessions).

Study Design
Each subject participated in two identical NF sessions, which
were separated by 1–12 days. They were given a detailed
instruction sheet with explanations on the different aspects of
the study, which were also discussed with the experimenter
before the first session. The subjects were not informed about
the two different feedback schemes since group assignment would
inevitably be revealed in the first NF run.

Each session started with a short questionnaire [the German
short form of the Positive And Negative Affect Schedule (PANAS-
SF; Kercher, 1992; Breyer and Bluemke, 2016)], in which the
subjects had to rate five positive and five negative adjectives
depending on how much they currently applied to them on a
5-point (0–4) Likert scale.

The following measurements were performed in the order:
(1) pre-NF resting-state (RS), (2) functional localizer (FL), (3)
pre-NF TR, (4–6) three NF runs, (7) post-NF RS, (8) post-NF
TR. An additional T1-weighted anatomical scan was acquired at
the end of the first session as structural reference if functional
images indicated any abnormality. The RS and anatomical data
are not presented here.
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After the measurements, the subjects were given the same
questionnaire again and asked to rate their own performance
using a visual analog scale (VAS) from 0 to 100%. Each session
was concluded with a short interview by the experimenter
regarding the strategies used and personal experiences. During
the final examination, the subjects were also asked how they
arrived at their most successful regulation strategies and whether
they had preferred the feedback to be limited to the positive
(PR + PP group) or to also include the negative range
(PR-only group).

Functional Localizer
A functional localizer was run in each session to allow delineation
of the sgACC (Hamilton et al., 2011). This comprised five blocks
of images with strongly negative valence from the validated
EmoPics dataset (Wessa et al., 2010) alternated with five block
of commands to press and hold a button on an MR-compatible
keyboard (Current Designs, Philadelphia, PA, United States) as
active baseline condition. The pictures were selected randomly
without replacement to reduce a possible scene-dependent bias.
In every block, either 3 images were shown for 6 s each, or
6 commands for 3 s. Overall, the FL took 3 min. Delineation
of the target region of interest (ROI) was performed manually
in Turbo BrainVoyager 4.0 beta (TBV) by selecting the active
voxels inside the sgACC on the underlying functional reference
image after varying the significance threshold until a reasonable
coverage was achieved.

Neurofeedback Presentation
The NF runs consisted of eight active regulation blocks of 30 s
flanked by baseline periods of the same duration. On the basis
of the increased regulation success achieved using a smiling
avatar as graphical representation of a cingulate target region’s
activation (Mathiak et al., 2015), the feedback was displayed as the
degree of smiling of a simple smiley face. The face was presented
in gray with a neutral expression during the baseline and in green
with a variable expression in the active regulation periods. For
the PR-only group, the possible expressions ranged from neutral
to strongly smiling in case of sufficient deactivation (Drevets
et al., 2008; Hamilton et al., 2011), whereas the PR + PP group
also received sad expressions if the regulation was going in the
wrong direction (i.e., for activation). In other words, any negative
feedback in the PR + PP group is represented as a neutral
facial expression in the PR-only one. The maximally positive
and negative expressions were thresholded at ± 5 percent signal
change (PSC). As additional motivation (Chiew and Braver,
2011), indicator of successful strategies (Konicar et al., 2015)
and for providing additional intermittent feedback (Smith and
Kimball, 2010; Emmert et al., 2017; Hellrung et al., 2018) a yellow
reward smiley with maximally positive expression was displayed
directly after a regulation phase for 3 s if the median of the second
half of that block showed at least−0.5 PSC (Figure 1). Besides the
feedback, no further stimuli were presented to the subjects and
the only instruction given was to make the face smile with any
appropriate mental strategy. For self-motivation and in order to
foster learning, the subjects were told to use their most successful
strategy up to then during the second half of the last NF run each

session. During the TRs, the green smiley remained neutral (did
not change its expression due to feedback) and no indications of
successful strategies were shown.

Data Acquisition
The neuroimaging data were recorded using a Siemens Prisma
3T scanner (Siemens, Erlangen, Germany) equipped with a
64-channel head coil. For the FL, NF, and TR, a multiband-
accelerated echo planar imaging sequence was optimized for
high temporal resolution within the computational limits of TBV
in order to provide sufficient data for individually modeling
the single regulation blocks: echo/repetition time = 30/483 ms,
multiband factor = 8, field of view = 190 × 190 × 140 mm at
76 × 76 × 56 voxels, yielding an isotropic resolution of 2.5 mm,
flip angle = 46◦, bandwidth = 2630 Hz/Px. The phase-encoding
direction was set to posterior-anterior to avoid compression of
the frontal cortex due to susceptibility artifacts.

The PANAS-SF and VAS data were acquired by means of
paper-and-pencil questionnaires.

Neuroimaging Data Processing
Online processing was conducted using TBV. Volumetric
smoothing was set to 5 mm full width at half maximum (FWHM).
No temporal averaging was performed. The feedback was
presented using the Psychtoolbox (Brainard and Vision, 1997)
and MATLAB (The MathWorks, Natick, MA, United States).
As a reference, the median signal of the baseline preceding
each regulation block was calculated (excluding the first 6 s to
compensate for the hemodynamic delay), the feedback signal
converted to PSC and thresholded at± 5%.

Offline processing was conducted using Statistical Parametric
Mapping, version 12 (SPM12), and the BrainWavelet Toolbox
(Patel et al., 2014). The data was slice-timing corrected to
the middle slice, realigned using Fourier interpolation in two
passes to the first and afterward the mean image, which was
subsequently used as normalization target to the standard space
defined by the Montreal Neurological Institute (MNI) at the
original isotropic resolution (Mueller et al., 2017). The images
were further gray-matter-masked using a custom template based
on the SPM and Harvard-Oxford tissue probability maps, and
smoothed with a Gaussian kernel of 5 mm FWHM. The gray
matter (GM) voxels were finally cleaned using wavelet despiking,
where the “chain search” option was set to “harsh” in light of the
high sampling rate.

Temporal Modeling
For the fMRI whole-brain analysis, each regulation block was
modeled individually using a boxcar and an orthogonalized
sawtooth function in SPM12. The latter function was used
to detect linear changes during the active condition, which
correspond to the subjects’ ability to influence the sgACC within
a block. A single regressor was also added for all rewards shown
and orthogonalized to the single blocks. All model regressors
were convolved with the canonical hemodynamic response
function (HRF). An overview of the 1st-level model is presented
in Figure 1. Nuisance regressors were defined via the Friston-
24 model (Friston et al., 1996) and an adapted version of the
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FIGURE 1 | Exemplary model design matrix of a neurofeedback run. The feedback block activations were modeled separately (solid lines), each accompanied by a
model for changes within the block (dotted line). Since the reward was of no specific interest for the analysis, a single regressor was used. Gray areas represent
baseline periods, green areas the active regulation condition and the yellow stripes the time when the reward would be given (here seven out of eight times).

CompCor approach (Behzadi et al., 2007), which individually
derived the number of combined white matter and cerebrospinal
fluid components via an automated scree method. Prior to
component extraction, the tissue signals were subjected to the
same wavelet despiking as the GM voxels and z-scored. No
highpass filtering was applied to avoid interferences with the
estimation of the non-periodic regressors and the autocorrelation
method was set to “FAST” (Olszowy et al., 2019). The regulation
block estimates were converted to PSC prior to further analysis.

For the behavioral analysis, the feedback signal was also
modeled by extracting the above-described regressors from
the SPM analysis [HRF-convolved and pre-whitened boxcar
and sawtooth functions (normalized to an amplitude of 1) to
compensate for the physiological delay]. In contrast to the
feedback presentation, the baseline periods were not forced to
zero and the regulation blocks not limited to positive values for
the PR-only group for the GLM fitting. By design, the resulting
regression coefficients were in the range [−1, 1] for the constant
and [−2, 2] for the linear terms. The coefficients were Fisher-z-
transformed to achieve an unbound distribution {after scaling the
linear terms to [−1, 1]}.

Statistical Modeling
For the sgACC analysis, the transformed z-values of the feedback
time courses were entered into a linear mixed effects (LME)

model in MATLAB with the factors Group (G: PR, PR + PP),
Session (S: S1, S2) and Run (R: TR1, NF1. . .3, TR2), Block as
single, linear regressor (B: B1. . .B8) with mean corrected to zero
and a random intercept per subject. Additional models were
estimated for the NF or TR data only to exclude the influence
of the presence or absence of the visual feedback. In a first run,
interaction effects with the group factor were investigated. After
removal of the interaction terms, also the pure main effects of the
factors were estimated. The factors were dummy-encoded and the
first level of each factor (G: PR, S: S1, R: TR1 or NF1) and their
interactions were always used as reference. All analyses were run
for the boxcar and the sawtooth coefficients separately. Due to the
orthogonality and, hence, independence of the model functions,
a Sidak correction was applied to the two LME models of the
target region and three separate datasets (i.e., six models). Post
hoc comparisons for the runs were again corrected for multiple
testing using the Sidak method (five for the combined NF + TR
dataset and three for the NF data only).

The complementary whole-brain analysis used the Sandwich
Estimator (SwE), version 2 (Guillaume et al., 2014), which
allowed for inclusion of subjects with missing scans. The basic
model comprised all available NF and TR blocks and was set up
using the “Classic” SwE, “C2” small-sample adjustment and the
“Naïve” degrees of freedom (DoF) estimation. The same models
and analytical strategies were followed as for the feedback signals.
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The SwE results were corrected for false discovery rate (FDR) at
voxel-level (q ≤ 0.025 for each side).

The PANAS-SF sum scores (positive minus negative items)
and the VAS self-ratings were also analyzed using LME with G
and S factors, a random intercept per subject and an additional
factor for the pre/post-session assessment of the questionnaire.
Since the VAS data was limited on [0, 100], it was also rescaled to
[−1, 1] and z-transformed. Restricted maximum likelihood was
used for all model fittings.

The averages over significant main effects of Run were
Spearmen partially correlated (corrected for the two sessions)
with the psychometric scores on an exploratory basis given the
limited sample size. A possible relationship between the average
and regulation trend was assessed for all blocks again using partial
Spearman correlation with corrections for all factors.

RESULTS

Demographics
Of the 13 volunteers enrolled in the study, one was excluded
based on movement patterns locked to the NF time course
and the self-report of having concentrated on his breath as
a regulation strategy, potentially leading to a biased blood-
oxygenation-level-dependent signal. The remaining 12 subject
were included in the current analysis. Due to technical issues,
for one subject, two of the NF runs of the second session
were excluded and for another subject no regulation trials
could be conducted in the second session. Detailed demographic
information in given in Table 1.

Psychometric Scores
The LME analysis of the VAS data yielded no significant
interaction or main effects. Also no interaction effects were
found in the PANAS-SF data but a significant main effect of
the time of assessment {p < 0.05, β = −1.67, 95% confidence
interval = [−2.97, −0.38]} with the scores being significantly
lower after the NF sessions. The VAS and the sum scores of the
PANAS-SF as well as its single items are presented in Figure 2.

Regulation
During S1, the PR + PP group showed a significantly higher
average regulation success then the PR-only group compared to
S1. This is indicated by a significantly negative interaction effect
for the PR + PP group in S2 (fitted mean PSCs: PR-only S1:
−0.049, PR-only S2: −0.209, PR + PP S1: −0.277, PR + PP

TABLE 1 | Group demographics.

Group N Age: Mean ± Std Sex: m/f Days between
sessions:

min/median/max

PR 6 (5) 24.50 ± 2.26 (24.80 ± 2.39) 3/3 (3/2) 1/2.5/13 (1/3/13)

PR + PP 6 (5) 27.67 ± 5.99 (26.20 ± 5.36) 4/2 (3/2) 2/3/11 (2/3/11)

The values for only the subjects with complete neurofeedback runs are given in
parentheses. RP, positive reinforcement; PP, positive punishment.

S2: −0.098). A significant effect of NF3 compared to the TR1
indicates a general learning effect over each session. However, the
effect was not transferrable to the post-TRs (TR2).

A significantly stronger regulation trend was found during
NF1 of the PR + PP group compared to TR1 of the PR-only
group (fitted mean PSC changes: PR-only TR1: −0.045, PR-only
NF1:−0.027, PR+ PP TR1:−0.041, PR+ PP NF1:−0.585). For
the combined NF and TR data as well as the NF dataset alone,
significantly smaller regulation trends of the sgACC were found
for S2 as well as a decreasing trend over the training blocks (B).
In the overall data, a significantly stronger trend in the regulation
was observed during NF1 compared to TR1. For the NF data
alone, a further decrease in the regulation trend was found for the
third (NF3) compared to the first (NF1) run. Additional post hoc
comparisons confirmed these effects. The significant factors and
covariates of the models and post hoc comparisons are listed in
Table 2. The group-related interaction effects are further depicted
in Figure 3.

Correlation With Psychometric Measures
The VAS and difference in PANAS-SF scores were correlated with
the average regulation success of NF3 and the average trends
over NF1 and NF3. The scores themselves showed a moderate
correlation of ρ = 0.41. The VAS ratings positively correlated with
the regulation average over NF3 with ρ = 0.45 and the trend over
NF1 with ρ = 0.33. The post-pre difference of the PANAS-SF
scores showed a higher correlation of ρ = 0.58 with the regulation
success in NF3 and was the only value approaching significance
(p = 0.061). All other coefficients were of small magnitude
(|ρ| < 0.1). There was no significant correlation between the
regulation successes and trends.

Whole-Brain Analysis
The most significant result, as well as the largest and any further
significant cluster with an extent of 50 voxels or more are listed
in Table 3. No significant interaction or linear trend effects
were found for the comparison between the scans. The following
results are based on the reduced models without interaction
terms for the average activation per block (Figure 4, top three
rows): Significant differences in brain activation were found
between the single NF runs and the first TR as reference but not
within the TR or NF runs. Stronger activations in the attention
networks were especially prominent in NF1 and similar patterns,
although to a lesser extent, in the remaining two NF runs
(Figure 4, red circles).

All NF and TRs were included in the assessment of the
respective baseline activations, as intra-condition differences
were found not to be significant (Figure 4, lower four rows):
Activation during the regulation periods could be observed
especially in the cerebellum, the supplementary motor area
(SMA), the attention network (anterior insulae, parts of the
temporal lobes) and the limbic system [anterior thalamus,
putamen, caudate nucleus (CN)]. Deactivations were found
in the somato-motor (SM), fronto-parietal (FP), and default
mode (DM) networks, the bilateral (para-)hippocampi, posterior
thalamus and the pons. A negative trend during the regulation
was present mainly in the putamen, CN and cerebellum. The TRs
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FIGURE 2 | Psychometric scores. Left panel: Mean ± standard error of the PANAS-SF questionnaire post-pre difference and the VAS self-ratings for the separate
groups. Both scales are lower for the second compared to the first session. Right panel: The single items of the PANAS-SF questionnaire for the pre- and
post-measurement assessment (mean ± standard error). Four out of five positive items show a decrease after the NF training. PANAS-SF, Positive And Negative
Affect Schedule – Short Form; VAS, visual analog scale.

TABLE 2 | Significant linear mixed effects results and post hoc comparisons for the feedback region.

Model Effect Dataset Factor/Covariate β 95% CI p-value β* PSC

Average Interaction NF S2:PR + PP −0.068 [−0.112, −0.023] 0.020 −0.067 0.337

Average Main NF + TR NF3 0.047 [0.019, 0.075] 0.007 0.047 −0.234

Trend Interaction NF + TR NF1:PR + PP 0.057 [0.022, 0.093] 0.010 0.114 −0.571

Trend Main NF + TR S2 −0.019 [−0.031, −0.008] 0.007 −0.039 0.193

Trend Main NF + TR NF1 0.025 [0.007, 0.043] 0.033 0.051 −0.253

Trend Main NF + TR B −0.005 [−0.008, −0.003] <0.001 −0.011 0.055

Trend Main NF S2 −0.024 [−0.039, −0.009] 0.008 −0.048 0.240

Trend Main NF NF3 −0.029 [−0.046, −0.011] 0.008 −0.058 0.289

Trend Main NF B −0.007 [−0.01, −0.004] <0.001 −0.013 0.066

Model Effect Dataset Comparison β 95% CI p-value β* PSC

Average Main NF + TR NF3-TR1 0.047 [0.019, 0.075] 0.033 0.047 −0.234

Trend Interaction NF + TR NF1:PR + PP-TR1:PR 0.057 [0.022, 0.093] 0.050 0.114 −0.571

Trend Main NF + TR NF3-NF1 −0.029 [−0.047, −0.011] 0.042 −0.058 0.291

Trend Main NF + TR TR2-NF1 −0.034 [−0.052, −0.016] 0.008 −0.067 0.337

Trend Main NF NF3-NF1 −0.029 [−0.046, −0.011] 0.023 −0.058 0.289

The average was modeled using a boxcar and the trend within a regulation block with a sawtooth function. The first level of each factor was used for reference dummy
coding for the basic models (Group: positive reinforcement only, Session: first session, Runs: first transfer run/first neurofeedback run). The references were swapper for
the post hoc tests. Confidence intervals refer to the raw β estimates and were not corrected; β* denotes the back-transformed coefficients. All p-values were multiplicity-
adjusted. CI, confidence interval; PSC, percent signal change; NF(1/3), (first/third) neurofeedback run; TR(1/2), (first/second) transfer run; S2, second session; PR, positive
reinforcement; PP, positive punishment; B, blocks.

showed similar but considerably weaker effects (blue and cyan
circles in Figure 4).

The analysis of changes within the regulation blocks mostly
identified negative activation trends in regions that showed
increased activation especially during the NF runs (cerebellum,
especially lobule 6, BG, and the attention networks during the
TRs; green and cyan circles in Figure 4).

Debriefing
The strategies reported as being most effective during
the debriefing generally fall into two categories: positive
autobiographical memories (PAM) or imagination of positively
connoted situations. In each group, three of the six subjects
described the (potential) PP as helpful, two as distracting or

stressful and one as having no influence. Of note, three female
volunteers (two in the PR + PP group) reported having achieved
better regulation success with closed eyes (more rewards) and one
male subject (in the PR + PP group) focused on a point outside
of the smiley face. Lastly, several volunteers described the overall
experience as positive and the feedback sessions as relaxing but
also exhausting. The repetitive application of the same regulation
strategy was also anecdotally mentioned as tiring.

DISCUSSION

The current study investigated the promotive potential of PP and
its influence on the related but previously generally disregarded
dynamics in NF learning.
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FIGURE 3 | Time courses of the average regulation and regulation trends with their respective standard errors. In the top graph the interaction effect present for the
three neurofeedback runs (NF1-3) can be roughly estimated as the positive reinforcement and positive punishment (PR + PP) group lies mostly above the PR-only
group during the first session (left half) and below during the second one (right half). The increased trend in the PR + PP group as compared to the first transfer runs
(TR1) as reference is more clearly visible in both sessions. The trend approaches zero over the duration of the residual sessions.

Psychometrics and Strategies
The decrease in PANAS-SF score, which was intended to capture
effects of the NF training on emotions, can be explained
by the demanding task but also subjectively relaxing scanner
environment (as reported during the debriefing) in conjunction
with the focus on activity of the positively valenced items. Similar
NF-related decreases on the positive affect scale of the PANAS
have been previously reported (Lorenzetti et al., 2018; Zahn
et al., 2019). It has further been shown that NF has a significant
influence on feelings of fatigue (Rana et al., 2016) which, in
turn, might affect the regulation performance (Moll et al.,
2014). Especially novelty and the related attention could play a
major role (Moll et al., 2014), which is in line with activation
in the dorsal and ventral attention networks and reports of
the current population. The correlation with the individual
regulation success (ρ = 0.58) still points toward a relationship
between the psychometric measure and the NF training. Smaller
positive correlations were found for the self-rating via the VAS,
including the regulation trend. It might thus be speculated that
the dynamics within each training block are partly reflected in
the participants’ subjective impression of their success but not
on a behavioral level. This, however, needs to be confirmed in a
larger population since the correlations reported here should be
understood as effect sizes in the light of the limited sample size.

Regarding the participants who reported achieving higher
regulation success when not looking at the smiley, analogies
to continuous vs. intermittent feedback (Emmert et al., 2017;
Hellrung et al., 2018) and “operant conditioning” vs. “delay-
retention” (Renner, 1964; Kulhavy and Anderson, 1972; Smith
and Kimball, 2010) seem reasonable. Since NF-based as well as
learning-theoretical investigations are inconclusive on which is
the more effective feedback scheme, a combination of both was
employed in the current design.

The Role of Positive Punishment
With the PR + PP group having a higher regulation success
during S1 and stronger regulation trends (i.e., more control
in the desired direction) in NF1, this finding in particular
indicates potentially faster learning when PP is added as a
feedback mechanism. Beyond these group-related effects, a
generally higher trend was observed in NF1 compared to TR1
and a significantly lower trend in NF3 compared to NF1. In
conjunction with the significant average regulation in NF3, it
can be speculated that an increased regulation trend represents
faster initial learning which reduces as successful strategies are
identified. This would be corroborated by the observation of a
significant decrease in the trends within single runs. The lack of
a direct correlation between the regulation average and the trend
is interpreted as subjects having gained control over the target
region from different starting points (i.e., corrected the direction
of the activation as well as improved it).

PR was previously shown to provide a more encouraging
EEG feedback mechanism than negative reinforcement and also
generated more positive affect (Reinschluessel and Mandryk,
2016). In a study using EEG NF for children with learning
disabilities, it was further reported that PP alone led to additional
improvements in the understanding of reading and reasoning
as well as greater EEG-related changes compared to using PR
(Fernández et al., 2008). It is possible that negative and positive
feedback (i.e., positive reinforcement and punishment) work
via different neuronal mechanisms with varying influences on
emotion, motivation, and learning success (Chiew and Braver,
2011). This idea is of particular interest in scenarios such as
the current one, where feedback and reward cannot be clearly
distinguished since the feedback itself was provided by means of a
social reward – a smile (Cordes et al., 2015; Mathiak et al., 2015).
That there was still no significant activation difference between
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TABLE 3 | Details on selected significant whole-brain results.

Contrast Coordinates q-value Cluster size AAL region Functional network Neurosynth association

NF1 > TR1 53/13/30 0.013 106 Frontal inferior operculum DA Parietal, Posterior inferior

−17/−72/−20 0.013 236 Cerebellum 6 VI

48/−67/−10 0.013 496 Cerebellum crus 1 DA Fusiform, Fusiform face

66/−27/30 0.013 77 Supramarginal VA Pain, Limb

TR1 > NF1 −34/−14/65 0.013 45 Precentral SM Finger, Finger movements

NF2 > TR1 50/10/32 0.005 5 Precentral DA Task, ASD, parietal

56/−60/−5 0.024 15 Temporal inferior Da Visual, vision

NF3 > TR1 50/10/30 0.017 43 Frontal inferior operculum DA Task, ASD

48/−57/−12 0.024 77 Temporal inferior DA Occipito

NF avg. > 0 46/10/5 <0.001 1091 Insula VA Insula, Noxious

−30/−67/−25 <0.001 387 Cerebellum 6 Cerebellum, VI

3/13/58 0.001 377 Supplemental motor area FP Pre supplementary

56/−57/2 0.001 739 Temporal mid DA Motion, Spectrum disorder

58/−37/20 0.002 245 Temporal superior VA Action observation

−47/−70/−5 0.002 98 Occipital inferior Vi Visual, ASD

−42/−4/52 0.007 62 Precentral DA Premotor, Eye movements

NF avg. < 0 53/−4/0 0.002 942 Temporal superior SM Acoustic

−4/−30/48 0.002 6375 Cingulum mid SM Foot

30/23/52 0.003 487 Frontal mid DM Gyrus middle, Behavioral response

46/−64/42 0.003 493 Angular DM Connectivity, SN

−20/18/65 0.003 397 Frontal superior FP Discriminated

−50/−54/50 0.003 271 Parietal inferior FP Parietal, Lobule IPL

46/−64/−40 0.003 56 Cerebellum crus 2

−22/58/10 0.003 189 Frontal superior FP Social cognition, Frontopolar

30/−22/−15 0.003 129 Parahippocampal HI Hippocampal, anterior Hippocampus

6/43/0 0.003 185 Cingulum anterior DM Anterior cingulate, Taste

−12/−30/8 0.004 61 Thalamus BG Thalamus, Cortex thalamus

26/63/18 0.004 134 Frontal superior DM OCD

−47/50/−10 0.005 66 FP

−27/−30/−12 0.006 76 Parahippocampal HI Hippocampus, lobe MTL

NF trend < 0 23/13/2 0.009 54 Putamen BG Putamen

28/−57/−30 0.010 78 Cerebellum 6 Cerebellum, Rehearsal

TR avg. < 0 56/−2/5 0.002 6 Temporal superior SM

TR trend > 0 36/−27/18 0.006 1 Heschl SM Posterior insula

TR trend < 0 −4/16/42 0.004 141 Cingulum mid VA Task, Choose

−40/−54/−32 0.004 156 Cerebellum crus 1 Cerebellar, VI

40/−54/−35 0.004 147 Cerebellum crus 1 Cerebellar, VI

8/−64/−22 0.007 91 Cerebellum 6 Cerebellum, Inferior superior

−34/43/25 0.007 60 Frontal mid VA Dorsolateral, Conductance

The most significant as well as the result contained in the largest cluster are shown for the comparison of the neurofeedback (NF) with the first transfer run (TR), and
the average and linear trend summarized over all respective runs of the two conditions. Clusters with 50 or more voxels are additionally listed for all inferences. The
respective region of the automatic anatomic labeling (AAL) atlas, the functional network from the Yeo atlas (Yeo et al., 2011) and the Neurosynth terms with the highest
z-score and posterior probability are given for each coordinate if available. VI, visual; SM, somato-motor; DA, dorsal attention; VA, ventral attention; FT, fronto-temporal;
FP, fronto-parietal; DM, default mode; HI, hippocampal; BG, basal ganglia.

the groups on the whole-brain level is likely due to the similarities
in the goal of the training and the applied strategies. Even though
reward-based and avoidance (of punishment) learning were
shown to correspond to different neuronal activation patterns
(Kim et al., 2015), the amount of PP could and should by
design be implicitly reduced in this study making it only a
transient condition. Larger sample sizes might, however, uncover
subtle activation differences in the target and related regions and
varying relationships with the training results as it was shown in

Argyelan et al. (2018) where learning positively correlated with
the response of the putamen to punishment but not reward.

From the perspective of decision making, the additional
punishment can be seen as a cost of learning that ought
to be minimized. Within this context, the respective costs
have been identified as a better model for choices than the
expected reward (Gray and Tallman, 1987), which would
partly explain the supportive aspects or even superiority of PP
over PR (Fernández et al., 2008). However, contrary to previous
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FIGURE 4 | Whole-brain results. The first three rows show the activation differences between the neurofeedback runs (NF1-3) and the first transfer run (TR) as
reference. As there were no significant differences in whole-brain activation within the three NF and the two TRs, they were summarized (TR/NF average) and are
shown with their respective linear trends (TR/NF trend). All results were significant at a peak-level false discovery rate of q ≤ 0.05 two-sided. Red circles indicate
regions significantly activated in multiple NF runs, blue circles effects visible in the NF and TRs, green circles regions that show activation as well as temporal trends
within the same condition and cyan circles areas that display activations and trends across NF and TRs. The top three rows are shown at z = −24, −6, 9, 34, 63, the
lower four at z = −41, −26, −20, 4, 9, 48, 64.

investigations, PP was here not used as alternative feedback
mechanism but as an additional one, doubling the feedback
range. Thus, not only complementary feedback was available
but also more information on the effectiveness of the current

regulation strategy, which probably also contributed to the faster
learning. Future studies aiming at investigating the influence of
the information content alone might hence need to scale the
feedback accordingly.
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More complex underlying phenomena may also be indicated
by the fact that children regained control over their brain slow
cortical potentials after the feedback direction was switched – of
what they were left unaware – without changing their control
strategies (Siniatchkin et al., 2000). In line with Siniatchkin
et al. (2000), it might be hypothesized that the presentation
of the feedback plays a more important role than the search
for an effective regulation strategy. In another study supporting
this reasoning fMRI feedback was provided to the subjects via
positively (PR) or negatively (PP) connoted auditory stimuli
without informing them that the sounds depend on their brain
activation (Ramot et al., 2016). The majority of subjects showed
a modulation of the target regions in the intended direction and
related changes in functional connectivity without awareness of
the NF training. It would of course be interesting to examine
whether this result could also be achieved in the absence of PP.

Emotion Regulation and Dynamics
The putamen, CN and lobule 6 of the cerebellum all showed
activation during the regulation periods accompanied by a
decrease over time. For the CN, involvement in learning from
prediction errors had been shown (Schiffer et al., 2012). This
adds to the previous argumentation for a model of PP-driven cost
reduction (Gray and Tallman, 1987). In case of an application
to psychiatric populations and possible concomitant medication,
modulatory effects should further be considered (Graf et al.,
2011). An involvement in emotion processing of the CN and the
putamen was also found for subjects implicitly reading neutral or
unpleasant words (Szekely et al., 2017). Moreover, the putamen
was shown to play a role in volitional emotion control (Seo et al.,
2014). A stronger activation in the preparatory compared to the
regulatory phase could also explain the negative trend visible in
the current results. Beyond this, the CN and the putamen are
known to be involved in learning and memory (Packard and
Knowlton, 2002), essential aspects of NF training. Furthermore,
potential interactions of the emotional and cognitive facets of the
task would be of particular interest (Borchardt et al., 2017). For
the cerebellum, a functional organization comparable to that of
the cerebrum was suggested (Stoodley and Schmahmann, 2010,
2018) where lobule 6 is involved in cognitive processes and
especially mental imagery (Higuchi et al., 2007). Furthermore,
contributions to working memory and motor learning have been
shown (Bernard and Seidler, 2013; Kowalczyk et al., 2020), which
are also reasonable in the context of NF given the necessity to
learn and remember strategies, often including the imagination
of physical activities. Specific activity in other regions of the
cerebellum was also reported in NF before (Banca et al., 2015).

Limitations
The major limitation of the current study is the sample size which
renders investigations besides the main hypothesis exploratory.
This is particularly true for the correlations with the psychometric
data, which were therefore primarily interpreted as effect sizes.
No sham group was included since the focus of this study was to
investigate the influence of additional PP compared to a standard
feedback scheme. This allows for interpretation of the effect of PP

when added to PR, but not PR alone. The subject- and session-
specific delineation of the sgACC served the individualization
of the NF training but could likely increase residual differences
in the activation pattern after spatial normalization explaining a
certain discrepancy between the ROI and whole-brain analysis.
Even though the subjects gained volitional control over the
region, this did not generalize to the TRs. This finding is, however,
in line with the only previous study using the sgACC as NF
target (Hamilton et al., 2011). On the contrary, the amygdala, for
which transferability of the regulation was shown multiple times,
also exhibits decreased activation to subsequent aversive stimuli
without applying a regulation strategy (Walter et al., 2009). Such
divergent findings for functionally related brain regions demand
further investigation. A final aspect that should be considered in
future studies is a potential non-linear effect on emotion-related
training regions when emotionally connoted feedback is used.

CONCLUSION

The current work investigated whether additional positive
punishment facilitates emotion regulation learning by
broadening the available range of the feedback and providing a
complementary training mechanism. In contrast to conventional
analyses, this was realized by separately modeling the average
of and trends in the regulation signals of each single feedback
period, allowing temporal effects within blocks, runs, sessions,
and over the study to be assessed. Additional positive punishment
was shown to lead to a higher regulation success in the first
session and increased controllability in the desired direction
during the respective first runs, both indicating faster initial
learning. It therefore seems that the reduction of errors also
in neurofeedback represents an important driving factor of
learning and complements the reward spectrum to facilitate
self-control over brain activity. Future work should aim for a
more detailed investigation of different feedback types and target
regions to address the generalizability of findings, differences and
advantages of each brain area.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the ethics committee of the Medical University
of Vienna. The participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

MK, AH, and RL planned the study. MK recorded and analyzed
the data under the methodological supervision of AH and SR.

Frontiers in Human Neuroscience | www.frontiersin.org 10 July 2020 | Volume 14 | Article 304

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00304 July 23, 2020 Time: 17:23 # 11

Klöbl et al. Punishment and Neurofeedback Dynamics

PM and GG performed the pre-screenings and final exams.
PM provided the medical support throughout the study. RL
was the principal investigator and supervisor of the study. All
authors have read and revised the manuscript and agreed to
the final version.

FUNDING

This work was supported by grants of the Austrian
Science Fund (FWF, KLI516) and the Vienna Science and
Technology Fund (WWTF, CS18-039) awarded to RL.
Additional support for the project was provided by the
Austrian Science Fund project FWF31452 and the Marie

Skłodowska-Curie Action MS-fMRI-QSM 794298 to SR.
This work was further supported by a DOC Fellowship of
the Austrian Academy of Sciences awarded to MK at the
Department of Psychiatry and Psychotherapy of the Medical
University of Vienna.

ACKNOWLEDGMENTS

We want to thank Elisa Sittenberger for managing the
subject recruitment, Pia Baldinger-Melich, Gregor Gryglewski,
Jakob Unterholzner, and Alexander Kautzky for their medical
assistance, Siegfried Kasper for medical supervision and the
students of the Neuroimaging Labs for their support.

REFERENCES
Argyelan, M., Herzallah, M., Sako, W., Delucia, I., Sarpal, D., Vo, A., et al. (2018).

Dopamine modulates striatal response to reward and punishment in patients
with Parkinson’s disease: a pharmacological challenge fMRI study. Neuroreport
29, 532–540. doi: 10.1097/wnr.0000000000000970

Banca, P., Sousa, T., Catarina Duarte, I., and Castelo-Branco, M. (2015). Visual
motion imagery neurofeedback based on the hMT+/V5 complex: evidence for
a feedback-specific neural circuit involving neocortical and cerebellar regions.
J. Neural Eng. 12:066003. doi: 10.1088/1741-2560/12/6/066003

Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based
noise correction method (CompCor) for BOLD and perfusion based fMRI.
Neuroimage 37, 90–101.

Bernard, J., and Seidler, R. (2013). Cerebellar contributions to visuomotor
adaptation and motor sequence learning: an ALE meta-analysis. Front. Hum.
Neurosci. 7:27. doi: 10.3389/fnhum.2013.00027

Borchardt, V., Fan, Y., Dietz, M., Melendez, A. L. H., Bajbouj, M., Gärtner, M., et al.
(2017). Echoes of affective stimulation in brain connectivity networks. Cereb.
Cortex 28, 4365–4378. doi: 10.1093/cercor/bhx290

Brainard, D. H., and Vision, S. (1997). The psychophysics toolbox. Spatial Vis. 10,
433–436. doi: 10.1163/156856897x00357

Breyer, B., and Bluemke, M. (2016). Deutsche Version der Positive and Negative
Affect Schedule PANAS (GESIS Panel). Mannheim: GESIS - Leibniz Institute for
the Social Sciences.

Chiew, K. S., and Braver, T. S. (2011). Positive affect versus reward: emotional
and motivational influences on cognitive control. Front. Psychol. 2:279. doi:
10.3389/fpsyg.2011.00279

Cordes, J. S., Mathiak, K. A., Dyck, M., Alawi, E. M., Gaber, T. J., Zepf, F. D., et al.
(2015). Cognitive and neural strategies during control of the anterior cingulate
cortex by fMRI neurofeedback in patients with schizophrenia. Front. Behav.
Neurosci. 9:169. doi: 10.3389/fnbeh.2015.00169

Drevets, W. C., Savitz, J., and Trimble, M. (2008). The subgenual anterior
cingulate cortex in mood disorders. CNS Spectr. 13, 663–681. doi: 10.1017/
s1092852900013754

Emmert, K., Kopel, R., Koush, Y., Maire, R., Senn, P., Van De Ville, D., et al. (2017).
Continuous vs. intermittent neurofeedback to regulate auditory cortex activity
of tinnitus patients using real-time fMRI - A pilot study. Neuroimage Clin. 14,
97–104. doi: 10.1016/j.nicl.2016.12.023

Fernández, T., Garcí, A. F., Prado Alcalá, R. A., Santiago, E., Fernández Bouzas,
A., Harmony, T., et al. (2008). 260. Positive vs. Negative reinforcement
in neurofeedback applied to learning disabled children. Clin. Neurophysiol.
119:e163. doi: 10.1016/j.clinph.2008.04.276

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., and Turner, R. (1996).
Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355.
doi: 10.1002/mrm.1910350312

Graf, H., Abler, B., Freudenmann, R., Beschoner, P., Schaeffeler, E., Spitzer, M., et al.
(2011). Neural correlates of error monitoring modulated by atomoxetine in
healthy volunteers. Biol. Psychiatry 69, 890–897. doi: 10.1016/j.biopsych.2010.
10.018

Gray, L. N., and Tallman, I. (1987). Theories of choice: contingent reward and
punishment applications. Soc. Psychol. Q. 50, 16–23.

Guillaume, B., Hua, X., Thompson, P. M., Waldorp, L., and Nichols, T. E.
(2014). Fast and accurate modelling of longitudinal and repeated measures
neuroimaging data. Neuroimage 94, 287–302. doi: 10.1016/j.neuroimage.2014.
03.029

Hamilton, J. P., Glover, G. H., Hsu, J. J., Johnson, R. F., and Gotlib, I. H. (2011).
Modulation of subgenual anterior cingulate cortex activity with real-time
neurofeedback. Hum. Brain Mapp. 32, 22–31. doi: 10.1002/hbm.20997

Hellrung, L., Dietrich, A., Hollmann, M., Pleger, B., Kalberlah, C., Roggenhofer,
E., et al. (2018). Intermittent compared to continuous real-time fMRI
neurofeedback boosts control over amygdala activation. Neuroimage 166, 198–
208. doi: 10.1016/j.neuroimage.2017.10.031

Higuchi, S., Imamizu, H., and Kawato, M. (2007). Cerebellar activity evoked by
common tool-use execution and imagery tasks: an Fmri study. Cortex 43,
350–358. doi: 10.1016/s0010-9452(08)70460-x

Hoflich, A., Hahn, A., Kublbock, M., Kranz, G. S., Vanicek, T., Ganger, S., et al.
(2017). Ketamine-dependent neuronal activation in healthy volunteers. Brain
Struct. Funct. 222, 1533–1542. doi: 10.1007/s00429-016-1291-0

Kadosh, K. C., and Staunton, G. (2019). A systematic review of the psychological
factors that influence neurofeedback learning outcomes. Neuroimage 185, 545–
555. doi: 10.1016/j.neuroimage.2018.10.021

Kercher, K. (1992). Assessing subjective well-being in the old-old: the PANAS as
a measure of orthogonal dimensions of positive and negative affect. Res. Aging
14, 131–168. doi: 10.1177/0164027592142001

Kim, S. H., Yoon, H., Kim, H., and Hamann, S. (2015). Individual differences in
sensitivity to reward and punishment and neural activity during reward and
avoidance learning. Soc. Cogn. Affect. Neurosci. 10, 1219–1227. doi: 10.1093/
scan/nsv007

Konicar, L., Veit, R., Eisenbarth, H., Barth, B., Tonin, P., Strehl, U., et al. (2015).
Brain self-regulation in criminal psychopaths. Sci. Rep. 5:9426.

Kowalczyk, O. S., Pauls, A. M., Fuste, M., Williams, S. C. R., Hazelgrove, K.,
Vecchio, C., et al. (2020). Neurocognitive correlates of working memory and
emotional processing in postpartum psychosis: an fMRI study. Psychol. Med.
doi: 10.1017/s0033291720000471 [Epub ahead of print].

Kulhavy, R. W., and Anderson, R. C. (1972). Delay-retention effect with multiple-
choice tests. J. Educ. Psychol. 63, 505–512. doi: 10.1037/h0033243

Lanzenberger, R., Baldinger, P., Hahn, A., Ungersboeck, J., Mitterhauser, M.,
Winkler, D., et al. (2013). Global decrease of serotonin-1A receptor binding
after electroconvulsive therapy in major depression measured by PET. Mol.
Psychiatry 18, 93–100. doi: 10.1038/mp.2012.93

Lorenzetti, V., Melo, B., Basílio, R., Suo, C., Yücel, M., Tierra-Criollo, C. J., et al.
(2018). Emotion regulation using virtual environments and real-time FMRI
neurofeedback. Front. Neurol. 9:390. doi: 10.3389/fneur.2018.00390

Marzbani, H., Marateb, H. R., and Mansourian, M. (2016). Neurofeedback: a
comprehensive review on system design, methodology and clinical applications.
Basic Clin. Neurosci. 7, 143–158.

Mathiak, K. A., Alawi, E. M., Koush, Y., Dyck, M., Cordes, J. S., Gaber, T. J.,
et al. (2015). Social reward improves the voluntary control over localized brain

Frontiers in Human Neuroscience | www.frontiersin.org 11 July 2020 | Volume 14 | Article 304

https://doi.org/10.1097/wnr.0000000000000970
https://doi.org/10.1088/1741-2560/12/6/066003
https://doi.org/10.3389/fnhum.2013.00027
https://doi.org/10.1093/cercor/bhx290
https://doi.org/10.1163/156856897x00357
https://doi.org/10.3389/fpsyg.2011.00279
https://doi.org/10.3389/fpsyg.2011.00279
https://doi.org/10.3389/fnbeh.2015.00169
https://doi.org/10.1017/s1092852900013754
https://doi.org/10.1017/s1092852900013754
https://doi.org/10.1016/j.nicl.2016.12.023
https://doi.org/10.1016/j.clinph.2008.04.276
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1016/j.biopsych.2010.10.018
https://doi.org/10.1016/j.biopsych.2010.10.018
https://doi.org/10.1016/j.neuroimage.2014.03.029
https://doi.org/10.1016/j.neuroimage.2014.03.029
https://doi.org/10.1002/hbm.20997
https://doi.org/10.1016/j.neuroimage.2017.10.031
https://doi.org/10.1016/s0010-9452(08)70460-x
https://doi.org/10.1007/s00429-016-1291-0
https://doi.org/10.1016/j.neuroimage.2018.10.021
https://doi.org/10.1177/0164027592142001
https://doi.org/10.1093/scan/nsv007
https://doi.org/10.1093/scan/nsv007
https://doi.org/10.1017/s0033291720000471
https://doi.org/10.1037/h0033243
https://doi.org/10.1038/mp.2012.93
https://doi.org/10.3389/fneur.2018.00390
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00304 July 23, 2020 Time: 17:23 # 12

Klöbl et al. Punishment and Neurofeedback Dynamics

activity in fMRI-based neurofeedback training. Front. Behav. Neurosci. 9:136.
doi: 10.3389/fnbeh.2015.00136

Moll, J., Weingartner, J. H., Bado, P., Basilio, R., Sato, J. R., Melo, B. R., et al. (2014).
Voluntary enhancement of neural signatures of affiliative emotion Using fMRI
neurofeedback. PLoS One 9:e97343. doi: 10.1371/journal.pone.0097343

Mueller, K., Lepsien, J., Möller, H. E., and Lohmann, G. (2017). Commentary:
cluster failure: why fMRI inferences for spatial extent have inflated false-positive
rates. Front. Hum. Neurosci. 11:345. doi: 10.3389/fnhum.2017.00345

Olszowy, W., Aston, J., Rua, C., and Williams, G. B. (2019). Accurate
autocorrelation modeling substantially improves fMRI reliability. Nat.
Commun. 10:1220.

Packard, M. G., and Knowlton, B. J. (2002). Learning and memory functions of the
Basal Ganglia. Annu. Rev. Neurosci. 25, 563–593.

Patel, A. X., Kundu, P., Rubinov, M., Jones, P. S., Vertes, P. E., Ersche, K. D.,
et al. (2014). A wavelet method for modeling and despiking motion artifacts
from resting-state fMRI time series. Neuroimage 95, 287–304. doi: 10.1016/j.
neuroimage.2014.03.012

Ramot, M., Grossman, S., Friedman, D., and Malach, R. (2016). Covert
neurofeedback without awareness shapes cortical network spontaneous
connectivity. Proc. Natl. Acad. Sci. U.S.A. 113, E2413–E2420.

Rana, M., Varan, A. Q., Davoudi, A., Cohen, R. A., Sitaram, R., and Ebner, N. C.
(2016). Real-time fMRI in neuroscience research and its use in studying the
aging brain. Front. Aging Neurosci. 8:239. doi: 10.3389/fnagi.2016.00239

Reinschluessel, A. V., and Mandryk, R. L. (2016). “Using positive or negative
reinforcement in neurofeedback games for training self-regulation,” in
Proceedings of the 2016 Annual Symposium on Computer-Human Interaction
in Play, (Austin, TX: ACM).

Renner, K. E. (1964). Delay of reinforcement: a historical review. Psychol. Bull. 61,
341–361.

Scharnowski, F., Veit, R., Zopf, R., Studer, P., Bock, S., Diedrichsen, J., et al.
(2015). Manipulating motor performance and memory through real-time fMRI
neurofeedback. Biol. Psychol. 108, 85–97. doi: 10.1016/j.biopsycho.2015.03.009

Schiffer, A. M., Ahlheim, C., Wurm, M. F., and Schubotz, R. I. (2012). Surprised at
all the entropy: hippocampal, caudate and midbrain contributions to learning
from prediction errors. PLoS One 7:e36445. doi: 10.1371/journal.pone.0036445

Seo, D., Olman, C. A., Haut, K. M., Sinha, R., Macdonald, A. W. III, and Patrick,
C. J. (2014). Neural correlates of preparatory and regulatory control over
positive and negative emotion. Soc. Cogn. Affect. Neurosci. 9, 494–504. doi:
10.1093/scan/nst115

Siniatchkin, M., Kropp, P., and Gerber, W.-D. (2000). Neurofeedback—the
significance of reinforcement and the search for an appropriate strategy for the
success of self-regulation. Appl. Psychophysiol. Biofeedback 25, 167–175.

Smith, T. A., and Kimball, D. R. (2010). Learning from feedback: spacing and
the delay–retention effect. J. Exp. Psychol. Learn. Mem. Cogn. 36, 80–95. doi:
10.1037/a0017407

Sokunbi, M. O. (2017). Feedback of real-time fMRI signals: from concepts and
principles to therapeutic interventions. Magn. Reson. Imaging 35, 117–124.
doi: 10.1016/j.mri.2016.08.004

Sorger, B., Kamp, T., Weiskopf, N., Peters, J. C., and Goebel, R. (2018). When the
brain takes ‘BOLD’ steps: real-time fMRI neurofeedback can further enhance
the ability to gradually self-regulate regional brain activation. Neuroscience 378,
71–88. doi: 10.1016/j.neuroscience.2016.09.026

Stoodley, C. J., and Schmahmann, J. D. (2010). Evidence for topographic
organization in the cerebellum of motor control versus cognitive and
affective processing. Cortex 46, 831–844. doi: 10.1016/j.cortex.2009.
11.008

Stoodley, C. J., and Schmahmann, J. D. (2018). Functional topography of the
human cerebellum. Handb. Clin. Neurol. 154, 59–70. doi: 10.1016/b978-0-444-
63956-1.00004-7

Szekely, A., Silton, R. L., Heller, W., Miller, G. A., and Mohanty, A. (2017).
Differential functional connectivity of rostral anterior cingulate cortex during
emotional interference. Soc. Cogn. Affect. Neurosci. 12, 476–486. doi: 10.1093/
scan/nsw137

Walter, H., Von Kalckreuth, A., Schardt, D., Stephan, A., Goschke, T., and Erk,
S. (2009). The temporal dynamics of voluntary emotion regulation. PLoS One
4:e6726. doi: 10.1371/journal.pone.0006726

Wessa, M., Kanske, P., Neumeister, P., Bode, K., Heissler, J., and Schönfelder,
S. (2010). EmoPics: subjektive und psychophysiologische evaluation neuen
Bildmaterials für die klinisch-biopsychologische Forschung. Zeitsch. Klin.
Psychol. Psycho. Supplement, 1/11:77.

Yamashita, A., Hayasaka, S., Kawato, M., and Imamizu, H. (2017). Connectivity
neurofeedback training can differentially change functional connectivity and
cognitive performance. Cereb. Cortex 27, 4960–4970. doi: 10.1093/cercor/
bhx177

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead,
M., et al. (2011). The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/
jn.00338.2011

Zahn, R., Weingartner, J. H., Basilio, R., Bado, P., Mattos, P., Sato, J. R., et al.
(2019). Blame-rebalance fMRI neurofeedback in major depressive disorder: a
randomised proof-of-concept trial. Neuroimage Clin. 24:101992. doi: 10.1016/
j.nicl.2019.101992

Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan,
P., et al. (2011). Self-regulation of amygdala activation using real-time
FMRI neurofeedback. PLoS One 6:e24522. doi: 10.1371/journal.pone.00
24522

Conflict of Interest: RL received travel grants and/or conference speaker
honoraria within the last 3 years from Bruker BioSpin MR, Heel, and support from
Siemens Healthcare regarding clinical research using PET/MR. He is a shareholder
of BM Health GmbH since 2019. Preliminary analyses of the data were presented
at the annual meeting of the Organization for Human Brain Mapping 2020.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Klöbl, Michenthaler, Godbersen, Robinson, Hahn and
Lanzenberger. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 12 July 2020 | Volume 14 | Article 304

https://doi.org/10.3389/fnbeh.2015.00136
https://doi.org/10.1371/journal.pone.0097343
https://doi.org/10.3389/fnhum.2017.00345
https://doi.org/10.1016/j.neuroimage.2014.03.012
https://doi.org/10.1016/j.neuroimage.2014.03.012
https://doi.org/10.3389/fnagi.2016.00239
https://doi.org/10.1016/j.biopsycho.2015.03.009
https://doi.org/10.1371/journal.pone.0036445
https://doi.org/10.1093/scan/nst115
https://doi.org/10.1093/scan/nst115
https://doi.org/10.1037/a0017407
https://doi.org/10.1037/a0017407
https://doi.org/10.1016/j.mri.2016.08.004
https://doi.org/10.1016/j.neuroscience.2016.09.026
https://doi.org/10.1016/j.cortex.2009.11.008
https://doi.org/10.1016/j.cortex.2009.11.008
https://doi.org/10.1016/b978-0-444-63956-1.00004-7
https://doi.org/10.1016/b978-0-444-63956-1.00004-7
https://doi.org/10.1093/scan/nsw137
https://doi.org/10.1093/scan/nsw137
https://doi.org/10.1371/journal.pone.0006726
https://doi.org/10.1093/cercor/bhx177
https://doi.org/10.1093/cercor/bhx177
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1016/j.nicl.2019.101992
https://doi.org/10.1016/j.nicl.2019.101992
https://doi.org/10.1371/journal.pone.0024522
https://doi.org/10.1371/journal.pone.0024522
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	Reinforcement and Punishment Shape the Learning Dynamics in fMRI Neurofeedback
	Introduction
	Materials and Methods
	Subjects
	Study Design
	Functional Localizer
	Neurofeedback Presentation
	Data Acquisition
	Neuroimaging Data Processing
	Temporal Modeling
	Statistical Modeling

	Results
	Demographics
	Psychometric Scores
	Regulation
	Correlation With Psychometric Measures
	Whole-Brain Analysis
	Debriefing

	Discussion
	Psychometrics and Strategies
	The Role of Positive Punishment
	Emotion Regulation and Dynamics
	Limitations

	Conclusion
	Data Availability Statement
	ETHICS STATEMENT
	Author Contributions
	Funding
	Acknowledgments
	References


