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Abstract

The latent variable “δ” (for “dementia”) appears to be uniquely responsible for the dementing

aspects of cognitive impairment. Age, depression, gender and the apolipoprotein E (APOE)

e4 allele are independently associated with δ. In this analysis, we explore serum proteins as

potential mediators of APOE’s specific association with δ in a large, ethnically diverse longi-

tudinal cohort, the Texas Alzheimer’s Research and Care Consortium (TARCC). APOE was

associated only with C-Reactive Protein (CRP), Adiponectin (APN) and Amphiregulin

(AREG), although the latter two’s associations did not survive Bonferroni correction for mul-

tiple comparisons. All three proteins were associated with δ and had weak potential media-

tion effects on APOE’s association with that construct. Our findings suggest that APOE’s

association with cognitive performance is specific to δ and partially mediated by serum

inflammatory proteins. The majority of APOE’s significant unadjusted effect on δ is unex-

plained. It may instead arise from direct central nervous system effects, possibly on native

intelligence. If so, then APOE may exert a life-long influence over δ and therefore all-cause

dementia risk.

Introduction

The latent variable ‘δ” is a dementia phenotype specifying “the cognitive correlates of func-

tional status”. δ appears to be chiefly, if not uniquely, responsible for observed dementia sever-

ity [1–2]. Because δ is a fraction of Spearman’s general intelligence factor “g” [3], δ’s strong

and specific association with dementia (across diagnoses) [1] constrains that syndrome to the

pathophysiology of “intelligence”, and potentially to a restricted set of biomarkers.

Age, depression, and the apolipoprotein E (APOE) e4 allele are independently associated

with δ [4]. Thus, their associations with both clinical dementia status and with dementia con-

version risk may also be constrained to biological processes that affect intelligence. Those
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processes do not necessarily involve neurodegeneration. Age’s association with δ has been

shown to be fully mediated by a paucity of neurodegenerative changes in pathologically con-

firmed AD cases [5]. Additionally, even in their aggregate, these dementia risks explain a

minority of δ’s variance. Thus, observed dementia status must be largely determined by age

and APOE independent factors.

We have found the majority of δ’s variance to be associated with a large number of pro- and

anti-inflammatory serum protein biomarkers, independently of age, depression and APOE [4,

6–8]. If those biomarkers are determinants of neurodegeneration, then age, depression, and

APOE may modulate how much neurodegeneration is required to achieve a demented state

(i.e., a dementing d-score). Such a finding might explain reports of “cognitive reserve”, and

specifically its association with native intelligence [9].

In this analysis, we combine SEM with longitudinal data from the Texas Alzheimer’s

Research and Care Consortium (TARCC) to explore more than 100 serum proteins as poten-

tial mediators of APOE’s specific association with δ. Our model is constructed such that any

significant mediator of APOE’s effect on prospective δ scores can be interpreted causally.

Thus, they may offer targets for the remediation of APOE-specific cognitive impairments.

However, we predict that APOE’s effects will not be mediated by pro-inflammatory serum

proteins. Instead, we note that APOE has been associated with childhood cognitive perfor-

mance, intelligence testing, and Spearman’s g [10]. Thus, APOE’s effects on cognitive perfor-

mance may be incurred early in life. If so, then APOE may simply alter the baseline from

which subsequent neurodegeneration plays out its effects.

Materials and methods

Subjects

Subjects included n = 3385 TARCC participants, including 1240 cases of Alzheimer’s Disease

(AD), 688 “Mild Cognitive Impairment “(MCI) cases, and 1384 normal controls (NC). Each

underwent serial annual standardized clinical examinations, culminating in a consensus clini-

cal diagnosis of NC, MCI or AD. Institutional Review Board approval was obtained at each site

and written informed consent was obtained from all participants.

δ’s Indicators included Logical Memory II (LMII) [11], Visual Reproduction I (VRI) [11],

the Controlled Oral Word Association (COWA) [12], Digit Span Test (DST) [11] and Instru-

mental Activities of Daily Living (IADL) [13]. All tests were available in Spanish translation.

The latent variables’ indicators were not adjusted for this analysis. The resulting δ homolog

was validated by its association with dementia severity, as measured by the Clinical Dementia

Rating Scale sum of boxes (CDR) [14] and by Receiver Operating Curve (ROC) analysis.

TARCC’s methodology has been described elsewhere [15]. Serum samples were sent frozen

to Rules-Based Medicine (RBM) in Austin, TX. There they were assayed without additional

freeze-thaw cycles. RBM conducted multiplexed immunoassay via their human multi-analyte

profile (human MAP). A complete listing of the biomarker panel we employed is available at

http://www.rulesbasedmedicine.com.

We ran all RBM analyses in duplicate and discarded data when the duplicate values differed

by> 5%. All values recorded by RBM as “LOW” were recorded and analyzed. If more than

50% of the samples for a given analyte were recorded as “LOW”, all readings for that analyte

were dropped. If less than 50% of the analytes were recorded as “LOW”, the LOW values were

recorded as the least detectable dose (LDD) divided by two. Raw biomarker data were

inspected to ascertain their normality. Data points beyond 3.0 standard deviations (SD) about

the mean were labeled as “outliers” and deleted. Logarithmic transformation was used to
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normalize highly skewed distributions. The data were then standardized to a mean of zero and

unit variance.

Covariates

All observed measures in the structural models were adjusted for age, education, ethnicity,

gender, homocysteine (HCY), and hemoglobin A1c (HgbA1c). Measurements of HCY,

HgbA1c and APOE ε4 genotyping were performed in the Ballantyne laboratory at the Baylor

College of Medicine. HgbA1c was measured in whole blood by the turbidimetric inhibition

immunoassay (TINIA). HCY was measured in serum using the recombinant enzymatic

cycling assay (i.e., Roche Hitachi 911).

APOE genotyping

APOE genotyping was conducted using standard polymerase chain reaction (PCR) methods

[16]. APOEε4 status was coded dichotomously based on the presence or absence of an ε4

allele. TARCC’s RBM biomarkers exhibit significant batch effects. Therefore, each biomarker

was additionally adjusted for dichotomous dummy variables coding batch.

Statistical analyses

Analysis sequence. This analysis was performed using Analysis of Moment Structures

(AMOS) software [17]. The maximum likelihood estimator was chosen. All observed indica-

tors were adjusted for age, education, ethnicity and gender. Co-variances between the residuals

were estimated if they were significant and improved fit.

We used the ethnicity equivalent δ homolog (“dEQ”) as previously described [4]. That

homolog has been reported to 1) have excellent fit (i.e., χ2/df = 181/24, p< 0.001; CFI = 0.97;

RMSEA = 0.05), 2) have acceptable factor determinacy by Grice’s Method [18], 3) exhibit fac-

tor equivalence across ethnicity, 4) to be strongly correlated with dementia severity as mea-

sured by the CDR (r = 0.99, p<0.001) and 5) to exhibit an AUC of 0.97 (CI: 0.97–0.98) for the

discrimination between AD cases and controls (in Wave 2 TARCC data). For the purposes of

this analysis, dEQ was again constructed in Wave 2 data, but without any covariates, specifi-

cally age, ethnicity, GDS, gender, HCY, HGbA1c and APOE ε4 burden.

dEQ and g’ factor weights were applied to Wave 2 observed data to generate Wave 2 dEQ

and g’ composite scores (i.e., dEQ w2 and g’ w2, respectively). g’ is dEQ’s residual in Spear-

man’s g. The composite scores were used as observed outcomes in models of a baseline APOE

ε4 allele’s direct association with covariate adjusted Wave 2 dEQ.

Next, we constructed a longitudinal mediation model in SEM (Fig 1). Such models can

arguably be interpreted causally [19]. Path “a” represents the APOE ε4 allele’s direct associa-

tion with Wave 2 dEQ scores. Path “b” represents the biomarker’s independent effect on dEQ,

measured at Wave 1. When both were significant, we considered path “c”. Bonferroni correc-

tion to p<0.001 was used to offset the potential for Type 2 error after multiple comparisons.

The biomarker’s mediation effect on the APOE ε4 allele’s direct association can then be calcu-

lated by MaKinnon’s method [20].

The mediation models were constructed in a randomly selected subset of TARCC partici-

pants, comprising approximately 50% of the subjects (i.e., Group 1: n = 1691). As a test of each

model’s generalizability to the remainder (n = 1694), each mediation path’s significant direct

association was constrained across the two groups, and model fit compared across constrained

and unconstrained conditions [21–22]. Mediation effects were calculated in the constrained

models.
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Missing data. We used the newest instance of TARCC’s dataset (circa 2016). The entire

dataset was employed. Clinical diagnoses were available on 3385 subjects, 2861 of whom had

complete data for δ’s cognitive indicators and covariates. Modern Missing Data Methods were

automatically applied by the AMOS software [23]. AMOS employs Full information Maxi-

mum Likelihood (FIML) [24–25]. Only the ROC analyses, performed in Statistical Package for

the Social Sciences (SPSS) [26], were limited to complete cases.

Fit indices. Fit was assessed using four common test statistics: chi-square, the ratio of

the chisquare to the degrees of freedom in the model (CMIN /DF), the comparative fit

index (CFI), and the root mean square error of approximation (RMSEA). A non-significant

chisquare signifies that the data are consistent with the model [27]. However, in large sam-

ples, this metric conflicts with other fit indices (insensitive to sample size) show that the

model fits the data very well. A CMIN/DF ratio < 5.0 suggests an adequate fit to the data

[28].The CFI statistic compares the specified model with a null model [29]. CFI values

range from 0 to 1.0. Values below 0.95 suggest model misspecification. Values approaching

1.0 indicate adequate to excellent fit. An RMSEA of 0.05 or less indicates a close fit to the

data, with models below 0.05 considered “good” fit, and up to 0.08 as “acceptable”[30]. All

fit statistics should be simultaneously considered when assessing the adequacy of the mod-

els to the data.

Fig 1. APOE’s direct association with future dementia severity, as measured by dEQ. APOE =

apolipoprotein ε4 status; CFI = Comparative Fit Index; GDS = Geriatric Depression Scale; HCY = serum

homocysteine; HgbA1c = serum hemoglobin A1c; IGF-BP2 = Insulin-like Growth Factor Binding Protein 2;

RMSEA = Root Mean Square Error of Association. *All observed variables except APOE are adjusted for

age, education, ethnicity, gender, GDS, HCY, and HgbA1c (paths not shown for clarity). The covariates are

densely intercorrelated.

https://doi.org/10.1371/journal.pone.0172268.g001
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Results

The demographic characteristics of TARCC’s sample are presented in Table 1. The unadjusted

wave 2 dEQ achieved a high AUC for the discrimination between AD cases and NC (AUC =

0.953; CI: 0.946–0.960). g’s AUC for the same discrimination was at a near chance level

[AUC = 0.536 (CI: 0.514–0.558)]. This is consistent with past findings, across batteries, in this

and other cohorts.

The Base Model fit well [χ2 = 84.80 (11), p<0.001; CFI = 0.977; RMSEA = 0.045]. Indepen-

dently of the covariates (i.e., age, education, ethnicity, gender, GDS scores, HCY, and Hgb

A1c), possession of an APOE ε4 allele was significantly directly associated with Wave 2 dEQ

(r = -0.25, p<0.001), but not with the Wave 2 g’ composite (r = -0.02, p = 0.21). g’ was then

dropped from consideration. The APOE ε4 allele’s significant association with Wave 2 dEQ

scores was in a negative direction suggesting an adverse effect on observed cognitive

performance.

The mediation models also fit well [e.g., Adiponectin (APN): χ2 = 168.65 (17), p< 0.001;

CFI = 0.965; RMSEA = 0.051; Amphiregulin (AREG): χ2 = 121.60 (17), p< 0.001; CFI =

0.980; RMSEA = 0.043; C-Reactive Protein (CRP): χ2 = 168.58 (17), p< 0.001; CFI = 0.964;

RMSEA = 0.051 (Fig 1)]. Regardless, only CRP achieved a statistically significant mediation

effect after Bonferroni correction for multiple comparisons (Table 2). CRP appeared to

Table 1. Descriptive statistics.

Variable N Mean (SD)

Age (observed) 3381 70.88 (9.48)

APOE e4 alleles (1 = e4+, n = 1223) 3154 0.39 (0.49)

CDR (Sum of Boxes) 3306 2.42 (3.35)

COWA 3381 8.41 (3.49)

DIS 3381 8.89 (3.01)

EDUC (observed) 3381 13.24 (4.25)

Ethnicity (1 = MA, n = 1189) 3381 0.36 (0.47)

GDS30 (observed) 3005 5.60 (5.25)

Gender (♂ = 1, n = 1281) 3312 0.39 (0.49)

IADL (Summed) 3381 10.48 (4.52)

MMSE 3311 25.52 (4.76)

WMS LM II 3381 8.05 (4.30)

WMS VR I 3381 7.88 (3.68)

Complete Cases 2861

CDR = Clinical Dementia Rating scale; COWA = Controlled Oral Word Association Test; DIS = Digit Span

Test; GDS = Geriatric Depression Scale; IADL = Instrumental Activities of Daily Living; MMSE = Mini-mental

State Exam; SD = standard deviation; WMS LM II = Weschler Memory Scale: Delayed Logical Memory;

WMS VR I = Weschler Memory Scale: Immediate Visual Reproduction.

https://doi.org/10.1371/journal.pone.0172268.t001

Table 2. Potential mediators of APOE e4’s-specific cognitive effects.

1. Adiponectin (APN)*

2. Amphiregulin (AREG)*

3. C Reactive Protein (CRP)

*Does not survive Bonferroni correction to <0.001.

https://doi.org/10.1371/journal.pone.0172268.t002
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mediate 8.1% of the APOE ε4 allele’s direct effect on δ (z = 3.10, p =<0.001). CRP’s effect rep-

licated across both random subsets [χ2 difference = 1.9 (3), p = 0.50].

Two additional serum proteins, APN, and AREG approached significance. Both failed to

survive Bonferroni correction, due to relatively weak associations with the APOE ε4 allele

along path c (p = 0.008 and 0.004 respectively). APN might otherwise have mediated 5.4% of

the APOE ε4 allele’s direct effect (z = -2.52, p<0.001). APN’s potential mediation effect repli-

cated across random subsets [χ2 difference = 5.6 (3), p = 0.10].

AREG might otherwise have mediated 7.2% of the APOE ε4 allele’s direct effect (z = -4.54,

p� 0.001). AREG’s potential mediation effect replicated across random subsets [χ2 differ-

ence = 3.2 (3), p = 0.25]. There were no other APOE ε4 allele-associated proteins. Table 3 pres-

ents the APOE ε4 allele-independent dEQ biomarkers. Table 4 lists biomarkers that were

related neither to the APOE ε4 allele, nor to dEQ.

Discussion

We have surveyed more than 100 potential mediators of the APOE ε4 allele’s specific and sig-

nificant association with δ. Our sample size was large, and we were powered to detect even

statistically weak effects. All our findings have been replicated in random subsets of TARCC’s

data. We also replicate all but one of our previously observed APOE independent associations

with δ [and that exception, beta2-microglobulin (b2M), shows a trend (Table 2)], even

though 1) our sample size has increased over time, 2) we are using a new δ homolog, 3) the

biomarkers are being used to predict future cognitive performance, and 4) the prior associa-

tions were obtained using raw biomarker data while these employ normalized variables. All

the other significant biomarkers in Table 2 represent newly identified δ-related serum pro-

tein biomarkers.

We have identified three classes of proteins: 1) potential mediators of the APOE ε4 allele’s

significant direct effect on δ, 2) APOE independent predictors of δ, and 3) proteins unrelated

to either the APOE ε4 allele or δ. Only three serum proteins were possibly related to the APOE

ε4 allele, and all were associated with δ.

These observations may help clarify APOE’s role in cognitive function. First, although the

APOE ε4 allele has been associated with g and g is thought to be highly heritable [10], our find-

ings suggest that the ε4 allele’s effect is limited to δ and not g’, i.e., δ’s residual in Spearman’s g.

APOE may therefore modulate a specific fraction of intelligence. δ in turn has been associated

with the DMN [31]. APOE’s effect on DMN structure and function has not been well studied,

but the ε4 allele has been associated consistently with β-amyloid (Aβ) deposition [32]. Aβ has

also been co-localized with the DMN [33]. Thus, Aβ deposition in the DMN might mediate

APOE’s association with dementia, and that association may manifest as a disruption of intelli-

gence, not domain-specific cognitive performance. This hypothesis cannot be tested in

TARCC’s data.

Second, δ has been shown to be “agnostic” to dementia’s etiology [1]. APOE’s specific asso-

ciation with δ suggests it may have a role in determining all cause dementia risk, not just AD

risk. Thus, APOE ε4 burden lowers age of onset across diagnoses and has been implicated as a

cognitive determinant in multiple disorders [34].

This may be the first demonstration of any serum protein’s mediation effect on the APOE

ε4 allele’s association with either dementia, or with observed cognitive performance. Ironi-

cally, the apoE protein itself has been shown to predict future dementia, independently of

APOE genotype [35]. The fact that our model is longitudinal favors a causal role for these pro-

teins as potential mediators of APOE’s effect on δ. Only CRP was identified as an unambigu-

ous mediator of APOE’s effect. APN and AREG approached significance. None of these

Mediators of APOE’s association with dementia
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Table 3. APOE-independent dEQ biomarkers (unrelated to APOE by Path c).

1. Agouti-Related Protein (AgRP)

2. alpha1-antitrypsin (A1AT)

3. alpha2-macroglobulin (α2M)*

4. alpha-Fetoprotein (α-FP)

5. angiopoetin-2N

6. Angiotensin Converting Enzyme (ACE)

7. angiotensinogen

8. apolipoprotein A1(APOA1)

9. Apolipoprotein CIII (APOCIII)

10. AXL

11. Betacellulin

12. Bone Morphogenic Protein 6

13. Brain-Derived Neurotrophic Factor (BDNF)

14. CD40

15. Cancer Antigen 125 (CA 125)

16. Cancer Antigen 19–9 (CA 19–9)

17. Compliment 3 (C3)

18. Connective Tissue Growth Factor (CTGF)

19. Cortisol

20. Creatinine Kinase-MB (CK-MB)

21. Eotaxin-3

22. Epidermal Growth Factor (EGF)

23. Epidermal Growth Factor Receptor 1 (EGFR)

24. Epiregulin (EREG)

25. Factor VII

26. FAS

27. FAS-Ligand (FAS-L)

28. Follicle stimulating hormone (FSH)

29. Glutathione S-Transferase

30. Granulocyte Colony Stimulating Factor (GCSF)

31. Heparin-binding EGF-like growth factor (HB-EGF)

32. Hepatocyte Growth Factor (HGF)

33. Immunoglobulin A

34. Immunoglobulin M

35. Insulin

36. Insulin-like Growth Factor-1 (IGF-I)

37. Insulin-like Growth Factor-Binding Protein 2 (IGF-BP2)*

38. Interferon-gamma*

39. Interleukin 1 receptor antagonist (IL-1ra)

40. Interleukin 3 (IL-3)

41. Interleukin 5 (IL-5)

42. Interleukin 7 (IL-7)

43. Interleukin 8 (IL-8)

44. Interleukin 10 (IL-10)*

45. Interleukin 12-p40 (IL-12p40)*

46. Interleukin 13 (IL-13)*

47. Interleukin 15 (IL-15)†

48. Interleukin 16 (IL-16)

(Continued )
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proteins’ associations with δ had been recognized in our prior work, which has been adjusted

for APOE ε4 burden.

All potential mediation effects were small, and their associations with the APOE ε4 allele

were statistically weak. Our ability to detect weak effects is an expression of TARCC’s large

sample size. Regardless, their weak associations replicated across two random subsets of the

cohort, and are probably not artifacts. Plasma CRP levels have been associated with an “inflam-

mation-specific AD polygenic risk index” [36]. That finding also implicates CRP as a possible

mediator of AD genetic risk.

Table 3. (Continued)

49. Lipoprotein a

50. Luteinizing Hormone (LH)

51. Macrophage Inflammatory Protein type 1 alpha (MIP-1a)

52. Macrophage Inflammatory Protein type 1 beta (MIP-1b)

53. Matrix Metalloproteinase type 3 (MMP-3)

54. Monocyte Chemotactic Protein type 1 (MCP-1)

55. Myoglobin (MyG)

56. Pancreatic Polypeptide (PP)

57. Plasminogen Activator Inhibitor type 1 (PAI-1)

58. Platelet-Derived Growth Factor (PDGF)

59. Progesterone

60. Prolactin (PRL)*

61. Prostate Specific Antigen (PSA)

62. Pulmonary and Activation-Regulated Chemokine (PARC)

63. Resistin

64. S100b

65. Serum Amyloid P (SAP)

66. Serum Glutamic Oxaloacetic Transaminase (SGOT)

67. Soluable Advanced Glycosylation End Product-Specific Receptor) (sRAGE)

68. Sortilin

69. Stem Cell Factor (SCF)*

70. Tenascin C

71. Testosterone

72. Thrombopoietin (THPO)*

73. Thrombospondin-1 (THBS1)

74. Thyroxine Binding Globulin (TBG)

75. Tissue Factor (TF)

76. Tissue Growth Factor alpha (TGF-α)

77. Tissue Inhibitor of Metalloproteinase type 1 (TIMP-1)

78. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor 3 (TRAIL-R3)

79. Tumor Necrosis Factor alpha (TNF-α)*

80. Vascular Cell Adhesion Molecule type 1 (VCAM-1)

81. Vitamin D Binding Protein (VDBP)††

82. Vascular Endothelial Growth Factor

83. von Willebrand Factor*

*Previously recognized δ biomarkers in Non-Hispanic White TARCC participants only (Royall & Palmer,

2015).

Previously recognized ethnicity adjusted δ biomarkers (†Bishnoi, Palmer & Royall, 2015a, ††2015b).

https://doi.org/10.1371/journal.pone.0172268.t003
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Moreover, CRP’s weak effect on δ is not likely to be clinically trivial. ε4 appears to more

than double 5yr prospective dementia conversion risk in TARCC, independently of multiple

covariates. That association is fully attenuated by CRP [37].

The adverse effects serum CRP levels on observed cognitive performance have been

reported to be moderated by APOE. CRP’s effect is often reported to occur in the absence of

an ε4 allele [38–39]. Our findings clarify that CRP has a positive (salutary) effect on dEQ.

However, CRP levels are lowered in the presence of an ε4 allele (by path c). This finding is also

consistent with previous studies, which show lower CRP levels in ε4 carriers across multiple

populations [40–42].

Serum CRP is lowered by the use of statins [43]. Additionally, hypercholesterolemia may

augment ε4’s adverse effect on cognition [42]. Two limitations to our analyses are that we did

not consider the effects of either statin use or serum cholesterol in these models. Regardless,

lowering CRP still further in ε4 carriers might be expected to have adverse effects on dementia

Table 4. Unrelated biomarkers.

1. Apolipoprotein H (apoH)

2. beta2-macroglobulin (b2M)*

3. B Lymphocyte Chemoattractant (BLC)

4. Carcinoembryonic antigen (CEA)

5. CD40 Ligand

6. Chromogranin A

7. ENA-78 (ENA-78)

8. EN-RAGE (EN-RAGE)

9. Eotaxin

10. Fatty Acid Binding Protein (FABP)

11. Ferritin

12. fibrinogen

13. GRO alpha (GROa)

14. Growth Hormone

15. Haptoglobin

16. Human CC Cytokine (HCC-4)

17. I-309

18. Immunoglobulin E

19. Intercellular Adhesion Molecule, type 1 (ICAM-1)

20. Interleukin 8 (IL-8)

21. Interleukin 18 (IL-18)

22. Leptin

23. Macrophage Derived Chemokine (MDC)

24. Macrophage Migration Inhibitory Factor (MMIF)

25. Prostatic Acid Phosphatase (PAP)

26. RANTES

27. Sex Hormone Binding Globulin (SHBG)

28. Thyroid Stimulating Hormone (TSH)

29. Tumor Necrosis Factor beta (TNFb)

30. Tumor Necrosis Factor receptor type II (TNF-RII)

*Previously recognized δ biomarker in Non-Hispanic TARCC participants only (Royall & Palmer, 2015) (i.e.,

unconfirmed as a biomarker of dEQ in this ethnicity adjusted analysis. Regardless, shows a trend: r = 0.08,

p = 0.02).

https://doi.org/10.1371/journal.pone.0172268.t004
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risk, given our present findings. This may explain paradoxical reports of adverse cognitive

declines associated with statin use. Post-marketing reports have led to a Food and Drug

Administration (FDA) caution against the use of statins by the elderly [44]. Although such

anecdotal reports have been difficult to confirm, most investigators approach this task through

observed cognitive measures and /or domain-specific indices. Our findings suggest that the

effects of statins should be approached from the perspective of general intelligence.

To our knowledge, this is the first demonstration of a potential association between APOE

and either APN or AREG. However, APN has previously been associated with prospective cog-

nitive decline in Mild Cognitive Impairment (MCI), and that effect was fully attenuated by

APOE adjustment, suggesting an association [45].

AREG, beta-cellulin (BTC), Epidernal Growth Factor (EGF), the Epidermal Growth Factor

Receptor 1 (EGFR), Epigen (EPGN), Epiregulin (EREG), Heparin-binding EGF-like growth

factor (HB-EGF), and the Neuregulins 1–4 are members of the EGF family of serum proteins

[46]. EGF, EGFR, EREG, and HB-EGF were all predictors of δ in these data (Table 2), but

none were associated with the APOE ε4 allele. These findings implicate the EGF family of

serum proteins as potential modulators of dementia severity, independently of APOE

genotype.

However, the above findings are overshadowed by our failure to identify additional poten-

tial mediators, as we had originally predicted. That failure was unlikely to reflect statistical

power, as multiple δ-related proteins were confirmed by this analysis (Table 2). Nor is it likely

to reflect our coding of ε4 allele burden, which was significantly associated with δ. While our

findings are necessarily limited to the proteins available in TARCC’s panel, which is neither

exhaustive nor rationally selected, they suggest that APOE’s significant association with δ is

largely independent of pro-inflammatory serum proteins, as well as all of δ’s previously identi-

fied serum protein biomarkers.

Alternatively, APOE’s effects might be limited to the central nervous system (CNS), and

thus escape detection by our analysis of peripheral blood-based biomarkers. APOE’s associa-

tion with δ has been shown to be fully mediated by AD-specific neurodegenerative lesions

[47], and to contribute to Braak stage [48]. Its association with g also appears to be partially

mediated by integrity in white matter tracts [10]. AREG has been shown to be an independent

mitogen of adult neural stem cells [49], and might also contribute to CNS effects indepen-

dently of its serum protein levels.

δ’s intercept and slope (Δδ) contribute independently to future dementia severity, and

together they explain the vast majority of its variance [1–2]. Regardless, all of δ’s serum protein

biomarkers to date appear to be associated with δ’s intercept, and not its slope, in longitudinal

analyses (e.g., [8]). Similarly, the presence of an APOE ε4 allele is associated with baseline cog-

nitive performance in older persons, but not its rate of change [50–51]. If APN, AREG and

CRP are also related to future d-scores through δ’s intercept, then they may “trigger” APOE-

related dementing processes rather than prosecute them.

δ’s extraction from general intelligence and g’s “indifference” to its indicators further con-

strain APOE’s effects on δ to an association with intelligence. Native intelligence may influence

dementia risk from a very early age by fixing in advance the extent to which an acquired

dementing illness has to progress before a dementing δ score is achieved. “General cognitive

function” has recently been associated with four genes, including APOE [52]. Thus, early

insults to δ may increase the risk of dementia conversion independently of later insults, and

/or hasten its age of onset (i.e., the age at which a dementing d-score is achieved). This may

explain how the ε4 allele advances the average of age at onset of AD [53] without effecting lon-

gitudinal declines in cognitive performance [8].
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Possession of an ε4 allele is associated with altered DMN connectivity in cognitively normal

elderly [54], and young adults [55], and has even been shown to modulate responses to air pol-

lution in children [56], suggesting very early pre-clinical effects by an Aβ independent mecha-

nism(s). That APOE’s effect may occur in advance of acquired illness could also explain our

failure to associate APOE with serum biomarkers, especially since they have been measured

proximally to δ scores. If APOE’s effects on cognitive performance are incurred early in life,

they may simply alter the field on which the game of neurodegeneration is later played. This

again suggests that APOE should be a risk for all-cause dementia, and not just AD.
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