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Abstract 

Oncolytic viruses have been seriously considered for glioma therapy over the last 20 years. The 
oncolytic activity of several oncolytic strains has been demonstrated against human glioma cell 
lines and in in vivo xenotransplant models. So far, four of these stains have additionally completed 
the first phase I/II trials in relapsed glioma patients. Though safety and feasibility have been 
demonstrated, therapeutic efficacy in these initial trials, when described, was only minor. The role 
of the immune system in oncolytic virotherapy for glioma remained much less studied until recent 
years. When investigated, the immune system, adept at controlling viral infections, is often hy-
pothesized to be a strong hurdle to successful oncolytic virotherapy. Several preclinical studies 
have therefore aimed to improve oncolytic virotherapy efficacy by combining it with immune 
suppression or evasion strategies. More recently however, a new paradigm has developed in the 
oncolytic virotherapy field stating that oncolytic virus-mediated tumor cell death can be accom-
panied by elicitation of potent activation of innate and adaptive anti-tumor immunity that greatly 
improves the efficacy of certain oncolytic strains. Therefore, it seems the three-way interaction 
between oncolytic virus, tumor and immune system is critical to the outcome of antitumor 
therapy. In this review we discuss the studies which have investigated how the immune system and 
oncolytic viruses interact in models of glioma. The novel insights generated here hold important 
implications for future research and should be incorporated into the design of novel clinical trials. 
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Introduction 
In 1904 a report was published describing com-

plete remission in a chronic leukemia patient, fol-
lowing what was thought to be an influenza infection 
(1). Interestingly, this was described some 30 years 
before it was determined that influenza is caused by a 
viral infection, not a bacterium (2). Initial case reports 
like this sparked the first interest in using viruses to 
treat human cancers and form the earliest basis of the 
now quickly evolving oncolytic virotherapy (OVT) 
field.  

In the last two decades, advances in our under-
standing of tumor biology and virology have only 
increased the interest in using oncolytic viruses (OV) 
for cancer therapy. To date, the oncolytic activity of 
over 20 viruses has been characterized, and new on-
colytic candidates continue to emerge. Within the last 
decade, large-scale and well-documented clinical ap-
plication was reached. Hundreds of cancer patients 
have been treated, in clinical trials evaluating over ten 
different oncolytic strains in malignancies such as 
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melanoma, glioma, hepatocellular carcinoma, and 
ovarian cancer (3-7). Virotherapeutics such as Herpes 
simplex virus (HSV), Newcastle disease virus (NDV), 
and vaccinia virus have demonstrated systemic safety 
and efficacy in clinical practice and OVs have been 
indicated as a safer alternative than other cytotoxic 
agents used in phase I oncology studies (8).  

In November 2005 the first OV (Oncorine; a ge-
netically modified adenovirus) was approved for 
commercialization and routine application in the 
treatment of nasopharyngeal carcinoma, by the Chi-
nese State Food and Drug Administration (FDA) (9). 
The first OV to generate positive results in a phase III 
clinical trial is the drug called talimogene la-
herparepvec (Tvec; a genetically modified HSV pro-
vided by Amgen), making it a likely first candidate for 
routine use FDA approval (in the treatment of ad-
vanced melanoma) (10). 

A tumor entity to quickly become a target for 
OVT is Glioblastoma Multiforme (GBM). GBM is 
classified as a grade IV neoplasm by the World Health 
Organization and is the most frequent primary brain 
tumor in adults (11). The interest in testing novel ap-
proaches for the treatment of this disease stems from 
the dismal prognosis of affected patients (12;13). De-
spite major improvements in the fields of conven-
tional therapies; surgery, radio- and chemotherapy, 
overall survival remains extremely low, residing at 
14.6 months with mortality rates reported to be 
around 88% within three years (12). At time of relapse 
- which remains universal - the prognosis is particu-
larly bleak, with a median survival of only nine 
months in the most successful salvage strategies (14). 
With the realization that further advances in conven-
tional therapies alone would not produce any 
long-term solutions for GBM patients, a strong need 
for more effective long-term treatments that are tu-
mor-specific and able to kill all (residual) tumor cells, 
emerged. OVT represents such an approach, which 
can match the heterogeneity of the tumor and utilize 
the same activated pathways that drive tumor cell 
growth.  

So far, 15 different OV have been tested preclin-
ically in models of GBM (Table 1) (15;16). Four onco-
lytic strains have additionally completed the first 
phase I clinical trials in GBM patients. In total, 120 
patients with GBM (occasionally anaplastic astrocy-
toma), mainly relapsed cases, were treated with OV 
via intratumoral administrations or intravenous in-
jections. As these trials were designed primarily to 
evaluate safety and feasibility, the outcome has been 
clearly positive. There was a near complete absence of 
serious adverse events and no maximally tolerated 
dose (MTD) was reached in any trial. These results 
compare favorably to phase I trials conducted with 

non-biological cytotoxic drugs, where a MTD is vir-
tually always reached and some toxicity is to be ex-
pected. Though dosing and application regimens 
were conservative, efficacy was described in the form 
of tumor shrinkage, long-term survival, and even 
complete responses. Results compare favorably to the 
multicenter studies with current gold standard Te-
mozolomide in GBM at first relapse, which describe 
complete responses to treatment in only 1 percent of 
Temozolomide-pretreated and 2 percent of Te-
mozolomide-naïve patients, respectively (17). In this 
respect, OVT warrants further investigation as a val-
uable novel approach for the treatment of GBM. At 
the same time however, the limited efficacy seen in 
initial clinical application does not nearly match the 
significant therapeutic effects that were demonstrated 
in preclinical work. This suggests that new studies are 
urgently needed to investigate the reasons behind this 
discrepancy and ways of improving clinical efficacy.  

The setup of initial clinical trials was based on 
results obtained in preclinical in vitro systems and 
xenotransplant models, where OVT was shown to be 
highly efficient. Based on these preclinical models, the 
efficacy of OVT was hypothesized to be dependent on 
the replication capacity of the virus and the extent of 
virus-mediated tumor cell death. The role of the im-
mune system as mode of action during OVT was not 
often considered in initial investigations, nor in the 
setup of initial clinical trials. However, in hindsight, 
when using a highly immunogenic therapeutic agent 
such as a virus, it seems highly unlikely that the re-
sults from immunodeficient animals could be directly 
translated into a clinical, patient setting.  

In this review we will investigate the complex 
relationship between the immune system and OVT 
for glioma. Due to the highly immunogenic nature of 
viruses, many groups initially hypothesized the im-
mune system to be a strong hurdle for successful OVT 
and several have aimed to improve therapeutic out-
come by suppressing or circumventing innate im-
munity. Several remarks concerning a unilateral view 
point on this matter can be raised, however, and we 
will discuss data obtained in immunocompetent an-
imals which now change the OVT paradigm. Finally, 
we will discuss ways in which OV can induce both 
innate and adaptive antitumor immunity, and which 
are only recently being investigated in models of 
GBM. From this overview, we will highlight areas for 
future research in this field and we aim to answer the 
question raised in the title of this work. Should we 
keep/put GBM patients on immunosuppressive 
regimens to allow for successful OVT? Or might the 
co-administration of immunosuppressive agents ra-
ther interfere with the therapeutic benefit of OV? 
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Table 1. Oncolytic virus candidates for glioma therapy 

 
Data last verified on October 20, 2014 (www.clinicaltrials.gov) 

 

Early preclinical studies  
 Some 20 years ago, oncolytic HSV was demon-

strated to directly replicate in and kill a whole range 
of both murine and human glioma cells (18). When 
tested in immunodeficient SCID mice bearing human 
glioma xenotransplants, HSV therapy significantly 

prolonged survival of treated animals as compared to 
untreated controls (18). Following this initial report, 
several HSV mutants were developed, demonstrating 
cytopathic effects on human glioma cells in vitro and 
in vivo; in subcutaneous and intracranial xenotrans-
plant models (19;20). Around the same time, a second 
group of genetically engineered viruses was devel-
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oped for study in glioma therapy; adenoviruses. A 
tumor-selective adenovirus, Delta24, was shown to 
replicate in and lyse human glioma cells with great 
efficiency (21). In vivo, multiple intratumoral injec-
tions of Delta24 induced inhibition of tumor growth 
of subcutaneously injected human glioma cells. 
Amongst the first naturally occurring oncolytic strains 
to be investigated in the treatment of preclinical gli-
oma was reovirus (22). Reovirus was demonstrated to 
kill both established malignant glioma cell lines and 
primary patient cultures and to cause dramatic (often 
complete) tumor regression in both subcutaneous and 
intracerebral human malignant glioma mouse mod-
els. More recently, the strong cytotoxic potential of 
NDV towards human glioma cells has also been 
demonstrated in vitro and in vivo (23). 

Translation into clinical trials 
The initial preclinical findings indicating direct 

human glioma cell killing by OV, together with ex-
tensive safety assessments in rodents and non-human 
primates, resulted in the initiation of the first clinical 
trials in relapsed glioma patients. To date, HSV, ade-
novirus, reovirus and NDV have completed the first 
round of clinical application (Table 2).  

The possibility that the immune status of the pa-
tient might influence the therapeutic potential of OVT 
was not taken into consideration in the setup of these 
initial trials. Immunological endpoints were limited to 
measuring cytokine concentrations and antiviral neu-
tralizing antibody titers over time following treat-
ment. Immune status and antiviral immunity of pa-
tients were often reported. The immunological aspects 
investigated in these trials are outlined in Table 2. 

 
 

Table 2. Immunological aspects of oncolytic virotherapy in glioma patients 

 
 
 
In trials employing HSV mutant 1716, patients 

were reported to remain on highly immunosuppres-
sive dexamethasone regimens during and following 
intracranial OVT (24-26). In cases where dexame-
thasone dosing was aimed to be reduced gradually, 
complete withdrawal was only achieved several 
weeks after the start of OVT (26). Other patients re-
ceived valproic acid (VPA) to manage seizures or 
concomitant and/or subsequent chemo- and/or ra-
diotherapy (25;26). When looking at the immune sta-
tus of these patients at the time of HSV injection, 
lymphopenia and low T cell counts were detected in 
all patients, while total white cell counts remained 
normal (24-26). Cellular proliferative responses were 
also reduced in most patients, when compared with 
normal healthy controls. In line with what is generally 

accepted, these data indicated a reduced degree of 
immunocompetence in GBM patients. Despite the 
immunosuppressive effects of malignant glioma and 
of dexamethasone treatment, changes in IgG and IgM 
serum levels in treated patients demonstrated the 
induction of an immunological response to HSV1716 
following the intratumoral administration of the virus 
(25). The presence of anti-HSV antibodies did, how-
ever, not block successful HSV1716 replication at the 
tumor site in these seropositive patients (25). High, 
continued administration of immunosuppressive 
dexamethasone was linked to lack of generating an-
ti-HSV immune responses in these cases (26).  

In clinical studies with the HSV G207 strain, pa-
tients seronegative for HSV-1 antibody prior to OV 
inoculation showed seroconversion, despite chronic 
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dexamethasone treatment, if the administered virus 
dose was high enough (27). All previously seronega-
tive patients seroconverted following HSV therapy 
and some patients had increasing antibody titers over 
time during the course of study (3). Patients included 
in these trials demonstrated a similar reduction in 
immunocompetence, marked by low CD4+ and CD8+ 
T cell counts, both pre- and post-G207 (3). However, 
though only minimal immune cell infiltrates could be 
detected in tumor tissue sections before G207 inocu-
lation, significant positive staining with anti-CD3 and 
anti-CD8 was seen in some patients, post-OV admin-
istration. Simultaneously, infiltrating monocytes, 
macrophages and microglia were also detected in 
these sections.  

The adenovirus mutant ONYX-015 has also been 
investigated in a phase I trial using the intratumoral 
injection approach (28). Out of 22 seronegative pa-
tients treated with ONYX-015, only 2 seroconverted 
from negative to positive for adenovirus antibodies 
(28). These patients received the highest OV dosages 
(109 – 1010) in a dose-escalating trial. This low number 
was attributed to the relatively immunocompromised 
state of the patients, who were on steroid medication 
and had previously been treated with chemotherapy 
and radiation.  

Wild type reovirus has been investigated in a 
phase I trial for relapsed glioma patients, though 
immunological aspects were not discussed (29).  

NDV remains the only viral agent which has 
been tested in glioma patients following intravenous 
administration. So far, one formal phase I study using 
the lentogenic HUJ strain and three case re-
ports/series using the mesogenic MTH-68/H strain 
have been published (30-33). All enrolled patients 
were negative for anti-NDV antibodies at baseline 
(30). All patients however seroconverted during the 
course of the trial, though antibody titers remained 
low throughout repetitive dosing. In patients receiv-
ing long-term therapy, antibodies either plateaued or 
started to decrease after several weeks.  

Though immunosuppressive mechanisms are at 
play at the tumor site and their immunity is often 
compromised, treated GBM patients were able to 
mount antiviral immune responses to the adminis-
tered OV, as measured by neutralizing antibody titers. 
Additionally, two studies have shown the potential of 
OV to kill glioma cells in vitro and in xenotransplant 
models, but failing to do so in immunocompetent 
tumor-bearing animals (34;35). Based on this under-
standing the view emerged that the immune system 
might be heavily inhibitory to OVT and that direct 
translation of results obtained in immunodeficient 
animals to a relatively immunocompetent patient 
might prove problematic. Therefore, in more recent 

studies, several groups have started to investigate the 
hypothesis that, besides improving the potency of the 
oncolytic agent employed, the maintenance or induc-
tion of immunosuppression might also be critical to 
improving the efficacy of OVT in clinical applications. 
Immunosuppressive co-treatments could avoid rapid 
immune-mediated viral clearance and thus prolong 
viral persistence in the tumor environment. 

Suppression of antiviral immunity using 
immunosuppressive agents 
Cyclophosphamide 

A first immunosuppressive agent investigated in 
combination with OVT is cyclophosphamide (CPM). 
CPM is an alkylating agent used in chemotherapeutic 
strategies for the treatment of several types of malig-
nancies (e.g. breast carcinoma, (non-)Hodgkin’s 
lymphoma, certain types of leukemia). It has been 
described to reduce vascular permeabilisation and, 
given its immunosuppressive actions at high dosages, 
it is also used in the treatment of severe autoimmune 
disease.  

In an immunocompetent rat glioma model using 
intratumoral treatment with HSV, CPM pretreatment 
increased the replication of the virus in the injected 
tumors by suppressing immune activity (36). Here, 
increased survival of HSV within the infected tumor 
microenvironment led to increased propagation in the 
tumor cells. It was demonstrated that this was not due 
to a direct enhancement of viral replication in tumor 
cells, but coincided with an impaired mRNA produc-
tion of antiviral cytokines in peripheral blood mono-
nuclear cells. Further work demonstrated a marked 
increase in intratumoral natural killer (NK) cells and 
phagocytes early after viral infection, as well as in-
creased macrophage influx at later time points (37). 
CPM pretreatment was able to inhibit the intra-
tumoral infiltration of phagocytes, as well as the in-
terferon (IFN-)γ production by NK cells. The same 
increase in OV titers in the tumor microenvironment 
of treated animals could also be obtained by direct 
depletion of macrophages and microglia via clodro-
nate liposomes (35). The effect of CPM pretreatment 
on the recruitment of CD4+ and CD8+ T cells at later 
time points in this model was not shown (37). CPM 
likewise prolonged viral-mediated gene expression in 
the brain of glioma-bearing mice treated with onco-
lytic adenovirus (38).  

Rapamycin 
More recently, Rapamycin (Sirolimus) was also 

combined with OVT as a means of improving viral 
spreading in vivo. Rapamycin is used in the preven-
tion of (kidney) transplant rejection and is a potent 
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immunosuppressant that inhibits the development 
and/or activation of both innate and adaptive im-
mune responses. It has been demonstrated to have 
direct activity against glioma (39;40) and was thought 
to be a safer clinical alternative than CPM, which, at 
the high dosages required for the immunosuppressive 
function, is often toxic.  

Whereas Myxoma virus was initially demon-
strated to prolong survival of immunocompromised 
hosts carrying human gliomas, it failed to do so in an 
immunocompetent syngeneic racine glioma model 
(34). Co-administration of Rapamycin in this model 
however significantly improved the survival of glio-
ma-bearing rats. This finding strongly supports the 
concept that the antiviral immune response is a major 
barrier to effective OVT. The mechanism behind this 
was shown to be the inhibition of intratumoral infil-
tration of microglia and peripheral macrophages after 
viral treatment. This coincided with higher viral titers 
in the tumor microenvironment in the days following 
OV administration. Furthermore, Rapamycin sup-
pressed the production of type I IFN, as well as in-
hibiting the ability of glioma cells to respond to 
IFN-α/β.  

Valproic acid 
The histone deacetylase inhibitor VPA has also 

been investigated in this respect, albeit in an immun-
ocompromised setting using nude mice (41). Similar 
to CPM and Rapamycin, VPA was shown to decrease 
the recruitment of macrophages and NK cells into the 
tumor microenvironment at early time points after 
viral infection. At later time points however, strong 
recruitment of both cell populations was noted 
demonstrating the transient nature of the immuno-
suppressive environment following administration of 
a single dose of VPA. Like Rapamycine, VPA was 
demonstrated to directly inhibit type I IFN, by pre-
venting the transcription of IFN-stimulated genes. It’s 
important to note that any approach which induces 
direct type I IFN inhibition is potentially dangerous, 
as it could cause severe toxicity towards healthy cells 
and thereby risk compromising the tumor-specificity 
of OVT. In vitro, VPA impaired NK cell function 
through the inhibition of granzyme B and perforin 
expression.  

Evading antiviral immunity using carrier 
cells 

In order to tackle not only the hurdle of the host 
antiviral immune response but also the issue of inef-
ficient viral distribution within the tumor and to dis-
tant tumor sites, a new approach using carrier cells 
was investigated. This approach comprises the use of 
cells with natural tropism for tumor sites as OV car-

riers, thereby hiding the virus from immune detec-
tion. It was hypothesized that this type of approach 
would enable systemic application, resulting in im-
proved viral spreading throughout the tumor and to 
multiple tumor sites. Additionally, these vi-
rus-infected cells have the potential to act as in situ 
virus-producing factories, which generate OV prog-
eny at the tumor beds. The ideal carrier therefore 
should be easily infected with the therapeutic virus, 
produce high levels of progeny that can infect target 
tumor cells and be relatively resistant to OV-mediated 
toxicity. Stem cells possess an additional desirable 
characteristic, as their immunosuppressive properties 
have been well documented in literature (42;43). 
These qualities would not only allow therapeutic vi-
ruses to be hidden from host immunosurveillance, but 
may also suppress local inflammation during viro-
therapy, thus allowing the virus to replicate and kill 
tumor cells without immune restriction. 

Mesenchymal stem cells 
Hai et al. investigated the possibility of using 

mesenchymal stem cells (MSC) as carriers for adeno-
virus delivery in an immunocompetent orthotopic 
glioma model (44). MSC are derived from the bone 
marrow, are multipotent cells and can differentiate 
into a variety of mesenchymal tissue cells; osteoblasts, 
chondrocytes, and adipocytes.  

MSC had previously been shown to possess in-
herent tumor tropism in this model, as well as in 
glioma xenotransplant models, where they could ef-
fectively deliver Delta24-RGD to the glioma site 
(45;46). The mechanism behind this tumor tropism is 
still largely unknown, but was linked decades ago to 
the inflammatory signaling within tumors, which 
resembles that of unresolved wounds (47). In glioma, 
this has been shown to be specifically associated with 
chemotaxis induced by platelet-derived growth factor 
(PDGF), epidermal growth factor (EGF) and stro-
mal-derived factor-1 (SDF-1) in the tumor tissue (48). 
PDGF for example, was shown to increase the attrac-
tion of human MSC in vitro and in vivo and this tro-
pism is mediated via PDGF-beta receptors on human 
MSC (48). It has also been suggested that neovascu-
larization might be critical for MSC to localize to and 
gain entry into gliomas following intravascular de-
livery (45). Indeed, the hypoxia-induced 
pro-angiogenic molecule vascular endothelial cell 
growth factor (VEGF) has been shown to induce the 
homing of MSC to tumor sites in murine glioma (49).  

Following intra-arterial injection in glio-
ma-bearing mice, MSC were detected throughout the 
tumors, but not in non-tumoral areas of the brain (44). 
In immunocompetent animals, MSC had the capacity 
of migrating to the glioma site after having been im-
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planted into the contralateral hemisphere. When MSC 
were infected with adenovirus (MSC-Ad35), they 
successfully replicated the virus without the process 
negatively affecting their own viability. In vivo it was 
shown that treatment with MSC-Ad35 was able to 
significantly reduce tumor growth and prolong sur-
vival of glioma-bearing mice, where Ad-35 alone 
could not. In these studies the addition of MSC as 
virus carriers was crucial to the antiglioma activity of 
adenovirus, both in immunocompetent and immu-
nodeficient animals. Free adenovirus particles were 
not able to reach the glioma site or induce therapeutic 
activity following intra-arterial or intracerebral injec-
tion. This implied that MSC likely played a role in 
improving the tumor homing and spread of the virus, 
additionally to the capacity to shield the virus from 
the host immune system. 

Neural stem cells 
Another cell type investigated in models of gli-

oma as a potential virus carrier is the neural stem cell 
(NSC) (50). NSC are derived from fetal, neonatal or 
postnatal tissues and are multipotent, capable of dif-
ferentiating into three major types of central nervous 
system cells: neurons, astrocytes, and oligodendro-
cytes.  

The NSC tropism for gliomas is well-known and 
seems closely linked to hypoxia within the tumor (51). 
In NSC, hypoxia induces up-regulation of CXCR4, 
urokinase-type plasminogen activator receptor 
(uPAR), VEGF receptor 2 and c-Met receptors. Inhib-
iting the function of these receptors inhibits NSC mi-
gration, as does knockdown of hypoxia-inducible 
factor-1alpha (HIF1α) in the glioma cells, which de-
creases the expression of receptor ligands SDF-1, 
uPAR and VEGF.  

Acting as virus-producing cellular factories, NSC 
could successfully replicate and release adenovirus 
progeny to glioma cells (50). The migratory capacity 
of NSC was not diminished following loading with 
adenovirus, rather the OV infection up-regulated 
chemoattractant receptors and significantly enhanced 
migration of NSC, both in vitro and in vivo (52). At the 
same time, delivery via NSC carriers decreased the 
amount of non-specific distributing within the brain. 
Of note, when free virus particles were injected in-
tratumorally, migration into the contralateral hemi-
sphere was seen in all animals treated. This contra-
dicts other reports demonstrating the incapability of 
injected OV to migrate from the injection site (44;53). 
In an earlier report, neural precursor cells were also 
found capable of delivering an HSV-1 mutant to es-
tablished intracerebral gliomas in nude mice, allow-
ing for extensive spread throughout the tumor and 
into the surrounding parenchyma (54). However, in 

this instance the HSV-1 mutant rRp450 was demon-
strated to kill the carrier cells, requiring replication 
block in the precursors by G1 growth arrest induction. 
This indicates the importance of optimal OV – carrier 
matching.  

Based on these reports and others, all demon-
strating the potential of NSC to carry a therapeutic 
payload to glioma sites for antitumoral activity, the 
FDA has recently approved the HB1.F3-CD immor-
talized NSC line for clinical trial (50). 

Limits to clinical application 
In a preclinical study directly comparing the two 

cell lines for their ability to deliver oncolytic adeno-
virus to intracranial human glioma xenotransplants, 
both carrier systems supported intracellular adeno-
viral replication and increased virus distribution to 
the tumor site (55). However, the amount of virus 
released from NSC was a log higher than that released 
by MSC in this system. The molecular mechanism 
behind this enhanced ability of NSC to support ade-
noviral replication has not been investigated. It might 
be related to the immortalized nature of the NSC line 
used, which provides for a greater rate of doubling 
and improved cellular stability. Moreover, only ade-
novirus-loaded NSC significantly prolonged the sur-
vival of tumor-bearing mice in this orthotopic human 
glioma model, despite the comparable migratory ca-
pacity of NSC and MSC (55). 

NSC might therefore be more suitable as thera-
peutic delivery vehicles for brain tumors. Due to their 
developmental origin they have the inherent capacity 
to migrate into the host brain without disrupting the 
normal functions of the target organ. However, the 
therapeutic potential of OV-loaded NSC so far has not 
been investigated in immunocompetent glioma mod-
els. Furthermore, the clinical application of NSC is 
limited due issues associated with their potential 
immunogenicity and the risk of secondary malignan-
cies associated with the use of an immortalized cell 
line. As a potential benefit to the use of MSC, it has 
been demonstrated in both immunocompetent and 
immunodeficient tumor-bearing mice that MSC via-
bility declines over time (46). This may be an ad-
vantage of MSC as a delivery vehicle because they 
may deliver a therapeutic agent and then gradually 
disappear, independent of the immune status of the 
host. The feasibility of using autologous MSC as cell 
carriers for OVT is very attractive, in contrast to NSC. 
However, it is harder to predict MSC behavior as the 
cell type is much more heterogeneous. Simultane-
ously, for some patients suffering from brain tumors it 
might be unlikely to be able to obtain sufficient 
healthy bone marrow to allow for effective therapy.  
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Adipose-derived stem cells 
Given the logistic and/or ethical issues associ-

ated with the expansion, propagation, and manipula-
tion of functional adult NSC and MSC, adi-
pose-derived stem cells (ADSC) have also been inves-
tigated as a potential OV carrier for the treatment of 
GBM (53). Adipose tissue is ubiquitous and uniquely 
expandable and most patients possess excess fat that 
can be harvested.  

ADSC were first described in 2001 and have 
since become one of the most popular adult stem cell 
populations in the field of regenerative medicine, 
where they are investigated for their potential to me-
diate inflammation and vascularization during tissue 
regeneration (56). Given their mesodermal, ectoder-
mal, and endodermal differentiation potential, they 
are also explored with regards to reprogramming into 
induced pluripotent cells.  

ADSC were found to be permissive for myxoma 
virus (vMyxgfp) replication, supporting multiple 
rounds of replication leading to productive infection 
(53). The viral infection had no negative impact on 
ADSC viability. In vitro, co-culture of human GBM 
cells and myxoma virus-infected ADSC showed cross 
infection and concomitant cell death exclusively in 
GBM cells. In vivo, intracranial injection with myxoma 
virus-infected ADSC led to successful delivery of the 
OV to the tumor, resulting in a significant survival 
increase in a human GBM xenotransplant model in 
nude mice.  

Issues regarding immunosuppression 
While the data described above support the hy-

pothesis that innate immunosuppression will benefit 
OVT, it is important to keep alternative and/or addi-
tional interpretations in mind as well.  

CPM has been used as an anticancer therapy 
since 1959 and it is well understood that pleiotropic 
immunomodulatory effects can be obtained by CPM 
treatment, depending on the dosing schedule applied. 
As high doses of CPM result in potent cytotoxicity 
and lymphoablation, the routine use of CPM in glio-
ma patients is limited to the administration of con-
tinuous low (metronomic) doses. Metronomic CPM 
has been shown to have immunostimulatory effects 
that include expansion of antigen-specific tu-
mor-reactive T cells, transient depletion of regulatory 
T cells (Treg), restoration of dendritic cell (DC) ho-
meostasis and induction of several cytokines (57-59). 
By stimulating the effector arm of the immune re-
sponse, while simultaneously inhibiting immuno-
suppression, low dosages of CPM are able to result in 
antitumor immune responses and enhance im-
mune-based tumor rejection regimens (57;58). In ad-
dition to these immunostimulatory properties, low 

doses of CPM have further been shown to possess 
antiangiogenic effects as well (60). Irrelevant to the 
dosage, CPM is known to exert intrinsic 
pro-immunogenic activities on tumor cells and has 
been shown to induce hallmarks of immunogenic cell 
death (ICD) on a variety of tumor types (60). Treating 
lymphoma cells with CPM for example, induced sur-
face exposure of Calreticulin (ectoCRT) and extracel-
lular release of high-mobility group protein 1 
(HMGB1) by the dying tumor cells (61).  

Although most studies evaluating CPM as an 
immunosuppressive agent to combine with OVT use 
higher doses of the drug, it becomes interesting to 
speculate that at least some of the reported activities 
of CPM in combination with OV in glioma and other 
cancer models might be attributable to these im-
munostimulatory properties. It has indeed been 
shown that using low dosages of CPM, which have no 
effect on the antiviral immunity or on the neutralizing 
antibody titers, has a beneficial effect on adenovirus 
therapy due to the depletion of Treg, thus taking ad-
vantage of the immunostimulatory actions of CPM 
(62). Furthermore, a recent paper employing the U251 
glioma xenotransplant model has demonstrated that 
both metronomic doses of CPM, as well as MTD dos-
es, can activate antitumor immunity, associated with 
brain tumor recruitment of NK cells, macrophages, 
and DC. In this report, low doses induced potent 
immune activation while the MTD rather induced a 
transient, weak innate immune response (63).  

The described benefits of using immunomodu-
lating agents (i.e. CPM, Rapamycin, VPA) were 
largely attributed to the decreased brain influx 
and/or function of macrophages and NK cells, which 
these drugs can induce. The role of these cell popula-
tions in OVT for (brain) tumors remains controversial, 
however. IFN type I-mediated activation of NK cells 
renders them highly capable of killing virus-infected 
cells and of priming the adaptive antiviral immune 
response. Therefore, the role of NK cells in OVT has 
often been viewed as detrimental to successful ther-
apy. However, NK cells have also been described to 
possess strong antitumoral activities and the NK 
cell-mediated lysis of glioma cells could in fact be 
further improved by oncolytic Myxoma virus infec-
tion (64). The mechanism behind this was related to 
Myxoma virus-induced down-regulation of class I 
Major Histocompatibility Complex surface expression 
on infected target cells, which favors NK cell activa-
tion. Several other OV strains (i.e. influenza A virus, 
parvovirus) have also been demonstrated to promote 
NK cell activity against tumor targets by 
up-regulating or down-regulating NK cell activating 
or inhibitory ligands, respectively, on the surface of 
infected tumor cells (64).  
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Both reovirus and measles virus have been 
shown to stimulate innate antitumor immunity 
(65;66). Following OV infection, innate immune cells 
exerted cytotoxicity towards several tumor cell lines. 
NK cells became activated and functional following 
OV treatment, as demonstrated by increased expres-
sion of the activation marker CD69 and active 
degranulation. In a subcutaneous model of non-small 
cell lung carcinoma, intratumoral coxsackievirus B3 
administration recruited significantly greater num-
bers of NK cells, granulocytes, macrophages, and DC 
into the tumor bed (67). Degranulation experiments 
demonstrated significantly more NK cell and granu-
locyte activation in treated animals as compared to 
controls. Depletion of either cell fraction significantly 
abrogated the therapeutic effect of the coxsackie vi-
rotherapy, illustrating their substantial contribution to 
virus-induced antitumor immunity. In this setting, 
even without successful viral replication, the OV in-
fection of gliomas would improve NK cell-mediated 
clearance of infected tumor cells. Furthermore, these 
immunostimulatory properties of OV on innate im-
munity may subsequently prime effective generation 
of adaptive immunity.  

Successful oncolytic virotherapy in im-
mune competent animals 

The hypothesis that immune interactions are 
detrimental to OVT is mostly challenged by recent 
studies that have demonstrated successful OVT in 
immunocompetent glioma models without immuno-
suppressive co-treatments. 

Parvovirus H-1 (H-1PV)-based virotherapy was 
tested for rat and human gliomas, in parallel, using 
immunocompetent and immunodeficient rat models, 
respectively (68). Both the rat RG-2 as the human U87 
glioma cell lines employed in this study were 
demonstrated to be highly susceptible to cytotoxic 
killing by H-1PV in vitro. In both models, large or-
thotopic tumors were treated with a single stereotactic 
injection and/or multiple intravenous H-1PV injec-
tions. Systemic application was attempted based on 
initial findings indicating the H-1PV is able to cross 
the blood-brain barrier in healthy animals. To increase 
the viral load to the tumor area following intravenous 
therapy, the virus dose was 50-fold higher than for 
stereotactic treatment. In a follow up study, efficient 
glioma regression, resulting in significant prolonga-
tion of glioma-bearing rat survival was demonstrated 
after a single intranasal instillation of H-1PV as well 
(69). Successful delivery to the brain via intranasal 
route represents an interesting approach with regards 
to clinical translation as it is practical, painless, non-
invasive and it bypasses the blood-brain barrier. Sev-
eral types of therapeutic agents, including growth 

factors, proteins, and anticancer agents have been 
delivered successfully to the brain of animals and 
humans through this route (70-74). H-1PV therapy 
resulted in significantly improved survival in both 
glioma models, however; only in immunocompetent 
glioma-bearing rats could single stereotactic treat-
ment or multiple systemic application of the virus also 
induce full remission of advanced and even sympto-
matic intracranial gliomas (68). Successful viral repli-
cation was measured specifically in the tumors and 
indicated the contribution of secondary infection by 
progeny virus to the efficiency of oncolysis. No ther-
apy-related damage to the surrounding healthy brain 
tissue, or to other organs, was found and therapy in-
duced only minor inflammation. Of note, both intra-
venous and intracranial injection resulted in the ap-
pearance of H-1PV-neutralizing serum antibodies five 
to seven days after the start of therapy. No obvious 
infiltration of tumors with immune cells following 
OVT was noticed and the number of CD3+ cells in the 
tumor area did not increased. However, tumor 
re-induction in cured animals, one year after suc-
cessful H-1PV therapy, failed to result in the devel-
opment of RG-2 gliomas, even when cells were in-
jected in 30-fold higher numbers into the contralateral 
hemisphere. This strongly indicates the induction of 
immunological antitumor memory by H-1PV therapy. 
Based on these data it was hypothesized that H-1PV, 
and possibly other OV, might serve, at least in part, as 
an adjuvant to promote anticancer vaccination 
through the release of tumor-associated antigens and 
additional immunostimulatory activities. 

Likewise, repeated intratumoral administration 
of a recombinant, murine granulocyte macrophage 
colony-stimulating factor (GM-CSF) expressing vac-
cinia virus (JX-594m) was able to significantly im-
prove median survival in both the rat RG-2 and the 
mouse GL261 immunocompetent, orthotopic glioma 
models (75). In vitro, JX-594m killed all five malignant 
glioma cell lines tested, as well as ex vivo grown brain 
tumor-initiating cells (BTIC) from patient samples. 
The ability of OV to infect and kill BTIC indicates their 
potential to overcome treatment resistance to chemo- 
and radiotherapy, given that resistance is based on the 
persistence of these cell types. The therapeutic re-
sponses measured in vivo were similar in both glioma 
models, despite the RG-2 cell line being much more 
sensitive to JX-594m-induced cytotoxicity in vitro, as 
compared to the GL261 cells. This finding indicates a 
discrepancy between the direct cytopathic effects of 
an oncolytic agent, as measured in vitro, and the 
therapeutic potential - a discrepancy that has recently 
been discussed by many groups (76;77). Further safe-
ty/toxicity studies in none-tumor-bearing rodents 
treated with supratherapeutic doses of JX-594m 
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demonstrated predictable GM-CSF-dependent in-
flammation and necrosis. Experiments in tu-
mor-bearing animals demonstrated that the addition 
of the cytokine is however not necessary for the sur-
vival benefit of vaccinia virus-based virotherapy in 
this model and the intracranial administration of 
JX-594 (expressing human GM-CSF) was well toler-
ated. 

The replication-competent HSV mutant 
R-LM113, fully retargeted to the human epidermal 
growth factor receptor 2 (HER2), significantly pro-
longed survival of glioma-bearing BALB/c mice car-
rying HER2-expressing high-grade gliomas, both 
when administered at time of tumor inoculation, as 
well as at time of established tumor (78).  

The studies indicate that the host immune de-
fenses do not curtail the oncolytic antitumor effect of 
replication competent OV. Several reasonable expla-
nations might be offered for this finding. The antiviral 
activities of recruited NK cells and macrophages 
might be inefficient in the context of the glioma mi-
croenvironment, thereby allowing viral replication. 
Indeed, macrophage/microglia function might be 
suppressed when infiltrating into the GBM microen-
vironment. Glioma cancer stem cells have been shown 
to produce soluble colony-stimulating factor (sCSF), 
transforming growth factor (TGF)-β1 and macro-
phage inhibitory cytokine-1 (MIC-1), which inhibited 
the phagocytic function of the macrophag-
es/microglia present (79). Alternatively, viral replica-
tion might simply proceed faster than im-
mune-mediated clearance of virus particles.  

In the last two to three years a third option; the 
idea that virotherapy is - at least partly - immuno-
therapy has been uncovered. In the initial OVT con-
cept extensive propagation of the OV inside infected 
tumor cells was deemed crucial to successful therapy. 
The productive generation of progeny OV could 
spread the infection to nearby tumor cells that es-
caped the initial round of oncolysis. Therefore, highly 
cytotoxic agents and a maximum potential for intra-
tumoral spread were essential. In recent times how-
ever, an extensive body of evidence is emerging that 
supports the notion that, rather than utilizing OV 
solely for tumor eradication, OVT can generate strong 
innate and adaptive antitumor immunity (16). The 
immune effects might increase the benefit of OVT and 
form an integrated part of the therapy (80). Evidence 
from several cancer models has indicated that OV 
might even trigger this antitumor immunity relative 
independent of viral replication or killing. In this new 
paradigm, increasing therapeutic efficacy does not 
have to equal enhancing viral replication and spread, 
but rather enhancing antitumor immunity. In this 
case, immunosuppression might actually reduce tu-

mor therapy. 

Oncolytic virus-induced antitumor im-
munity  

One way in which an OV may fulfill this new 
‘oncolytic paradigm’ is by inducing ICD (81;82). Most 
anticancer therapies induce non-immunogenic cell 
death, which induces tolerance towards tumor cells 
(83). However, in recent times it has emerged that 
certain therapies can induce a cancer cell death sub 
mechanism that is actively immunostimulatory be-
cause it is associated with the emission of potent 
danger signals, thereby leading to effective activation 
of antitumor immunity (82). The concept of ICD has 
been expertly reviewed by Kroemer and Krysko in 
recent years (81;82). 

Several viral strains have been demonstrated to 
induce immunogenic signals in cancer cells (Table 3). 
Oncolytic H-1PV infection was shown to induce the 
release of heat-shock protein (HSP)72 during vi-
rus-induced apoptosis in susceptible human mela-
noma cells (84). The HSP72 release was even higher 
and of a longer duration than following conventional 
heat-shock treatments. Until this point, as a 
standalone therapy, three naturally occurring OV (i.e. 
measles virus, coxsackievirus B3, NDV) have been 
shown to induce the molecular signatures of ICD in 
vitro and to cause stimulation of immune cells 
(66;67;85).  

Besides inducing the release of type I and type III 
IFN, inflammatory cytokines IL-6 and IL-8 and 
chemokine RANTES, measles virus provoked passive 
release of HMGB1 in human melanoma cells after 
infection (66). HMGB1 is known to act upon DC 
through toll-like receptor 4 (86) and indeed the con-
ditioned media from measles-infected melanoma cells 
up-regulated CD80/CD86 expression on DC, pheno-
typically activating the cells for potential support of 
priming of adaptive antitumor immunity. In an in 
vitro system, measles virus-mediated melanoma cell 
death was capable of stimulating a melanoma-specific 
adaptive immune response. CD8+ cytotoxic T lym-
phocytes (CTL) co-cultured with measles vi-
rus-loaded DC infected melanoma cells degranulated 
specifically on recognition of melanomal targets. The 
same population was also IFN-γ+, indicating a Th1 
cytokine response. In a functional killing assay, CTL 
primed by DC loaded with virus-infected tumor cells 
had more activity against uninfected melanoma tar-
gets than those primed by DC loaded with uninfected 
tumor cells. These data collectively indicated that vi-
rus-infected melanoma cells are more effective than 
uninfected cells as an antigen source for loading of 
DC for priming of a specific anti-melanoma immune 
response. 
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Likewise, coxsackievirus B3 infection in human 
non-small cell lung cancer led to abundant ectoCRT 
expression, ATP secretion, and HMGB1 release (67). 
Moreover, intratumoral administration markedly re-
cruited NK cells, granulocytes, macrophages, and 
mature DC into tumor tissues. Recruited NK cells 

were shown to contribute to the antitumor effect of 
OVT, as discussed above. Tumor-infiltrating DC ex-
pressed significantly higher levels of co-stimulatory 
molecules CD80 and CD86, as well as maturation 
marker CCR7.  

 

Table 3. Immunogenic cell death features induced by oncolytic viruses 

 
 
 
In glioma research, recent work by our group has 

demonstrated the induction of ICD following NDV 
therapy in an orthotopic, syngeneic murine GBM 
model (85). Without treatment, immunocompetent 
animals survive significantly longer in this model 
than their immunodeficient counterparts, demon-
strating that the GL261 tumor is immunogenic and 
capable of eliciting a limited endogenous antitumor 
immune response, which prolongs survival of glio-
ma-bearing mice but is insufficient to induce cure (87). 
NDV treatment cured 50% of immunocompetent 
animals of established glioma (85). On the contrary, in 
immunodeficient animals no long-term survival was 
induced, although NDV treatment significantly pro-
longed overall survival. In vitro, NDV-treated GL261 
glioma cells underwent necroptotic cell death ac-
companied by ectoCRT and passive release of 
HMGB1. NDV treatment also induced up-regulation 
of glioma-associated antigen expression on the sur-
face of infected cells. Elevated infiltration of IFN-γ+ 

CD4+ and CD8+ T cell populations along with reduced 
accumulation of immunosuppressive myeloid de-
rived suppressor cells in the brain of NDV-treated 

glioma-bearing mice indicated significant modifica-
tion of the immunological tumor microenvironment 
after therapy. Ex vivo T cell restimulation experiments 
demonstrated the presence of an activated T cell 
population specifically recognizing GL261 tumors, 
which was not present in untreated tumor-bearing 
animals. In vivo depletion of CD8+ T cells abolished 
the therapeutic effect almost completely, indicating 
these cells as the principle mediators of antitumor 
activity in this model. We could further show the in-
duction of a long-term, tumor-specific immunological 
memory response following NDV therapy in this 
model. The induction of tumor-rejecting anticancer 
immunity in an immunocompetent syngeneic animal 
model is an absolute prerequisite for characterizing 
the existence of bone fide ICD (82). In our model 
long-term surviving mice, cured of their initial glio-
mas through NDV therapy, resisted secondary glioma 
induction, but not secondary growth of a different 
tumor type (85). It was therefore clear that in this 
model, though GL261 cells were sensitive to 
NDV-induced cytotoxicity in vitro, the therapeutic 
effect of the therapy indeed relied mainly on the in-
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duction of ICD in the tumor cells, which primed 
adaptive antitumor immunity. 

The induction of tumor-rejecting anticancer 
immunity by OVT has also been described for an on-
colytic parvovirus (Minute Virus of Mice) in a subcu-
taneous glioma model using GL261 cells ex vivo pre-
treated with virus (88). Whereas direct infection of DC 
and microglia with parvovirus - leading to successful 
viral entry, but not replication - had no significant 
impact on the activation of naïve DC or microglia, 
parvovirus-infected GL261 murine glioma cells did 
activate both populations, as demonstrated by 
up-regulation of CD80 and CD86 activation marker 
expression and increased release of tumor necrosis 
factor (TNF)-α and IL-6 (88). DC activation was lim-
ited following exposure to intact or lysed (through 
repeated freeze/thaw cycles) uninfected GL261 cells, 
indicating that parvovirus enhanced the capacity of 
glioma cells for DC maturation though a mechanism 
that is not limited to mere lysis of the cells. To inves-
tigate whether parvovirus also acted as an adjuvant 
under in vivo conditions and could endow infected 
GL261 glioma cells with an enhanced capacity for 
priming a tumor-specific adaptive immune response, 
GL261 cells were infected in vitro with parvovirus and 
injected subcutaneously into either immunocompe-
tent or B and T cell deficient Rag2-/- mice. GL261 cells 
ex vivo loaded with parvovirus did not have the ability 
to form tumors in immunocompetent mice. However, 
in immunodeficient animals, 80 percent of animals 
developed tumors. This finding indicates the im-
portance of an additional immune component to al-
low full suppression of tumor outgrowth. Parvovirus 
infection of GL261 cells could prolong the repression 
of tumor growth in  

Rag2-/- mice in a MOI-dependent manner, 
though. Tumor rechallenge experiments, in which 
long-term survivors of parvovirus-infected tumor 
implantation received a second injection with unin-
fected GL261 cells, demonstrated the induction of 
long lasting T cell memory in these animals, as all 
remained tumor free. 

Finally, the efficacy of oncolytic adenovirus 
therapy was also demonstrated to be highly depend-
ent on the function of the host immune system in or-
thotopic glioma (89), though ICD was not investigated 
in this model. Delta24-RGD treatment enhanced the 
infiltration of CD4+ and CD8+ T cells and of macro-
phages. They further demonstrated the presence of 
protective immunological memory in treated animals 
and the therapeutic effect of OVT was completely lost 
upon co-treatment with the immunosuppressive 
agent dexamethasone.  

In these models, it thus seems that OV and the 
immune system act synergistically to eliminate the 

tumor cells under conditions in which each compo-
nent alone is inefficient. This novel data is in line with 
recent reports from other cancer fields, also demon-
strating T cell activation and enhanced proliferation 
and effector function, activation of DC, and stimula-
tion of innate antitumor activity following OVT 
(90-92). The immune responses against tumor targets, 
triggered by inflammatory responses to OV, have 
been demonstrated to be a vital component of suc-
cessful treatment, capable of overcoming immuno-
suppressive tumor microenvironments and clearing 
metastatic disease (77).  

Conclusion  
OVT represents a rapidly evolving and highly 

exciting new field within cancer research. To date, the 
field has mainly concentrated on developing viruses 
that replicate robustly and extensively in tumors, but 
with only moderate effect. In retrospect, expecting 
extensive viral replication in an immunocompetent 
individual might be unlikely, despite the immuno-
suppressive mechanisms at play at the tumor site. The 
immune system was therefore expected to be a strong 
inhibitory factor in OVT for glioma, as it may limit 
viral replication and spread within the tumor. How-
ever, new evidence is mounting that OV may enhance 
both innate and adaptive antitumor immune re-
sponses and that the net effect may be a benefit to 
therapy. This new concepts has introduced a real shift 
within the OVT domain within the last two to three 
years. 

As discussed, OV-induced tumor cell death may 
of an immunogenic nature and create an appropriate 
inflammatory tumor microenvironment to allow for 
effective priming of an adaptive antitumor immune 
response. Indeed, in several preclinical models the 
bulk of the therapeutic effect of OVT was demon-
strated to be immune-mediated, rather than induced 
by direct viral oncolysis. In our own work viral pres-
ence within the glioma microenvironment induced 
influx and activation of T cells, as well as a decreased 
presence of immunosuppressive immune cells. 
Whereas direct cytotoxicity translated into only a 
minor improvement in overall survival in immuno-
deficient mice, ND virotherapy in immunocompetent 
glioma-bearing animals resulted in relevant im-
provements in median survival as well as a percent-
age of long-term surviving animals (85). 

The role of the immune system in OVT for glio-
ma patients is not straightforward and the range of 
immune interactions involved may be beneficial or 
detrimental in nature. In balancing the therapeutic 
and damaging effects some groups have suggested 
the possibility of early, transient immunosuppression 
to enhance viral replication, followed by a restoration 
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of immune activity to harness the immunotherapeutic 
potential of OVT. However, the early, innate immune 
reactivity induced by OVT has also demonstrated to 
partake in the therapeutic benefit of the therapeutic 
approach, and could be important in the priming of 
further adaptive antitumor reactivity (92;93).  

Furthermore, it should be taken into considera-
tion that employing immunomodulating agents in the 
concentrations necessary to induce immunosuppres-
sion can be highly toxic and induce severe side effects. 
Using agents such as Rapamycin and VPA, which 
directly block the function of type I IFN, introduces an 
additional risk of systemic virus toxicity.  

Factors such as the baseline immune status and 
prior antiviral immunity of the patient are likely to 
play a role as well. The use of oncolytic agents for 
which the prevalence of preexisting immunity in the 
population is low, therefore might be advantageous. 
Non-human viruses (e.g. NDV) might therefore be 
good candidates. These naturally oncolytic agents 
have several other benefits as compared to genetically 
engineered strains. They often show antitumor activ-
ity against a broad spectrum of tumor cells, and pos-
sible treatment-related toxicities are relatively easily 
predicted and addressed. Contrary to genetically en-
gineered strains, these viruses are not human patho-
gens, and safety databases concerning their use in 
humans are available (94).  

Studies are urgently needed to investigate opti-
mal schedules for combining OVT with immunosup-
pressive therapeutics such as corticosteroids, Te-
mozolomide, and radiation therapy. These modalities 
form the present standard of care for GBM patients 
and were often co-administered with oncolytic agents 
in clinical trial. Indeed, a recent preclinical study has 
indicated the loss of therapeutic efficacy upon 
co-treatment with dexamethasone (89). The effect of 
co-administration with other immmunomodulators 
during the course of OVT should therefore no longer 
be overlooked in clinical applications. Additionally, 
future clinical trials should aim to include more rele-
vant immunological end-points, besides the conven-
tional measures of safety and efficacy. The amount of 
immunological information available from clinical 
trials performed thus far is limited. Data obtained 
from treated GBM patients can however crucially di-
rect preclinical investigations and aid in optimizing 
the therapeutic approach. In line with this, preclinical 
work should focus on further unraveling the immune 
mechanisms at play and on studying combination 
therapies, as highly aggressive malignancies like GBM 
are likely to require a multimodal approach including 
several rationally combined therapies. Incorporating 
these mounting preclinical and clinical findings into 
novel strategies will be the surest way to maximizing 

the potential impact of viral agents and the benefit to 
patients. 
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