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Yellow fever surveillance suggests zoonotic and
anthroponotic emergent potential
Alisa Aliaga-Samanez 1✉, Raimundo Real 1,2, Marina Segura 3, Carlos Marfil-Daza1 & Jesús Olivero 1,2

Yellow fever is transmitted by mosquitoes among human and non-human primates. In the

last decades, infections are occurring in areas that had been free from yellow fever for

decades, probably as a consequence of the rapid spread of mosquito vectors, and of the virus

evolutionary dynamic in which non-human primates are involved. This research is a patho-

geographic assessment of where enzootic cycles, based on primate assemblages, could be

amplifying the risk of yellow fever infections, in the context of spatial changes shown by the

disease since the late 20th century. In South America, the most relevant spread of disease

cases affects parts of the Amazon basin and a wide area of southern Brazil, where forest

fragmentation could be activating enzootic cycles next to urban areas. In Africa, yellow fever

transmission is apparently spreading from the west of the continent, and primates could be

contributing to this in savannas around rainforests. Our results are useful for identifying new

areas that should be prioritised for vaccination, and suggest the need of deep yellow fever

surveillance in primates of South America and Africa.
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Yellow fever, an acute viral haemorrhagic disease, was the
first human pathology to be attributed to a virus, and the
first demonstrated to be transmitted by arthropods1,2. This

disease is caused by an arbovirus of the family Flaviviridae. This
pathogen can be transmitted by mosquitoes of genus Aedes in
America and Africa, and of genera Aedes, Sabethes and Haema-
gogus in America, through three transmission cycle types: the
sylvatic cycle (between primates), the urban epidemic cycle
(between humans), and the intermediate or savannah cycle in
Africa (between humans that live near the jungle)3. The yellow
fever mosquito (Aedes aegypti) and the Asian tiger mosquito (A.
albopictus) represent a major risk for the spread of yellow fever,
the former being the main vector in urban areas and the latter a
bridge vector between the forest and the urban area4. The virus is
principally maintained by the sylvatic cycle where it evolves5, and
where primate-human zoonotic transmissions through different
mosquito species are also possible6.

The disease has undergone many changes over the past few
centuries. The yellow fever virus is native to Africa where it may
have emerged around 3000 years ago7. The virus was transported
by slave-trade ships in the 15th and the 16th centuries from
Africa to the Americas1. The later geographical expansion during
the 17th and the 18th centuries was closely linked to the spread of
A. aegypti through the shipping industry and commerce8. The
number of yellow fever cases decreased in the mid-1900s in
Francophone Africa (e.g., most of north-west and central Africa)
by vaccination9, and in the Americas by effective controls on the
principal urban vector, A. aegypti10. Since the late 20th century,
however, there has been a resurgence of yellow fever in Africa and
America6. At least 200,000 cases and 30,000 deaths were reported
in 1990 worldwide11. In Africa, virulent outbreaks affected urban
areas of Angola and the Democratic Republic of the Congo
(DRC) between December 2015 and July 201612. Shortly after, at
the end of 2016, outbreaks started to occur in South Brazil, in
areas that had been free from yellow fever cases for decades,
probably following a southward path from Trinidad and
Tobago13. Since then, new cases have been reported in Surinam,
Nigeria, and French Guyana, where the last cases dated back to
1971, 1996, and 1998, respectively14–16. Consequently, despite the
fact that control policies were able to virtually eliminate yellow
fever in wide areas of the globe, the WHO insists in stating that
prevention efforts should not be abandoned17. Instead, in order to
prevent and respond efficiently to the occurrence of new out-
breaks, risk areas should be delineated according to geographic
and environmental factors related to yellow fever6,18.

A suitable methodological and conceptual framework for
achieving the comprehension and prediction of zoonotic out-
breaks is “pathogeography”19, from which the geographic dis-
tribution of zoonotic diseases is analyzed on the basis of a multi-
level factor approach that considers ecological and human dri-
vers, as well as the biogeography of animal species involving
vectors, reservoirs and other roles in the zoonotic cycles20,21. The
most recent model predicting the risk of infection by the yellow
fever virus6 contemplates all these factors, producing risk maps
based on records of infection in humans from 1970 to 2016. The
study suggests that the presence of A. aegypti, combined with the
zoonotic potential for infections (given the presence of potential
primate hosts), contributes the receptivity of yellow fever trans-
mission in new regions such as Asia through the spread of the
virus or through importation. So, if the current situation points to
a yellow fever geographic spread, the forecasting of future trends
will need pathogeographical analyses based on the spatio-
temporal context.

Sylvatic cycles favour the existence of evolutionary dynamics
that have recently led to new yellow fever virus lineages in South
America13. These cycles, involving primates and a range of vector

species22, not only are the scenario of the virus diversification, but
can also contribute to amplifying the risk of transmission to
humans23–25. The globalization of transports, and the expansion
of vectors that are themselves evolving, help new virus lineages
spread and increase the risk of transmission to humans5,26. Once
the new lineage has arrived in an area, it can enter in the local
enzootic cycles and be exposed to selective pressures potentially
leading to new viral variants18. There are precedents in the
analysis of primate influence on infection rates. Hamrick et al.18,
in 2017, considering eight nonhuman primate genera in South
America, calculated that the probability of yellow fever occur-
rence at the county level doubled with each additional genus. In
2018, Shearer et al.6 carried out a study of the local speed at which
human individuals are expected to be infected with the yellow
fever virus, for which they included non-human primate dis-
tributions as variables in their models. That study was, thus,
focused on the virus infection efficiency, whose geographic var-
iation was analized within the area that is already suitable for the
occurrence of yellow fever according to risk zones (47 countries of
America and Africa) estimated by Jentes et al. in 201027. Gay-
thorpe et al. in 202128, examined the impact of vaccination at the
provincial level, taking into account the distribution of three non-
human primate families as predictors in their models. Further
studies are needed, however, to understand the extent and geo-
graphy of the nonhuman primate’s influence on the yellow fever
transmission to humans18.

The main objective of this research is to assess where the risk of
yellow fever infections in humans could be being amplified by the
contribution of enzootic cycles based on primate assemblages and
a pool of sylvatic mosquito vectors. Given the current context of
yellow fever geographic spread, we address this challenge through
a temporal stratification of disease cases (Fig. 1), thus assuming
that the current risk is a combination of past trends and the
arrival of new factors.

Results
Zoogeographic Factor. A total of 27 significant primate chor-
otypes were detected: 13 in Africa and 14 in South America
(Supplementary Figs. 1 and 2). The distribution of yellow fever
cases during the late 20th century was significantly related to three
American chorotypes located in Brazil and Peru and two African
chorotypes mostly located south of the Sahara desert and north of
the Equator (Fig. 2a). In the case of the early 21st century, the
distribution of yellow fever cases was significantly related with
chorotypes distributed throughout most of the tropical area of
South America and Africa (Fig. 2a and Supplementary Table 1).

Baseline disease models. All the baseline disease favourability
models fitted the observed distribution of yellow fever cases,
according to Hosmer & Lemeshow’s test of goodness of fit
(Supplementary Table 2). Trend-surface variables (i.e., the spatial
autocorrelation caused by the historical patterns of the disease)
characterized to the highest extent the distribution of yellow fever
cases in Africa and America between 1970 and 2000, and also
between 2001 and 2017 (Supplementary Table 2). The closeness
to population centres was the second most important factor in
explaining the distribution of cases in the late 20th century and
their spread during the early 21st century. In the late 20th cen-
tury, the presence of yellow fever cases was also favoured by
higher slopes and annual precipitations, whereas high maximum
temperatures in the warmest month became significantly relevant
during the early 21st century. Among the chorotypes that were
significantly related to the distribution of yellow fever cases, three
chorotypes from South America were included in the late 20th-
century disease model: SA7, SA8, and SA14. Four more
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Fig. 1 Methodological steps of the approach used for yellow fever transmission risk modelling. a Vector models result from combining, through the
fuzzy union (∪), favourable areas for the presence of urban (Ae. aegypti and Ae. albopictus) and sylvatic vectors. b Baseline disease models describe the
areas favourable to the occurrence of yellow fever cases. c Transmission risk models quantify the level of yellow fever transmission risk, according to the
fuzzy inteserccion (∩) between vector and baseline disease models. d Model fit assessment and validation of model predictive capacity. Methodological
details are given in Supplementary Methods, which includes very detailed methodological explanations for all elements with a code in parentheses: A, B, C,
D1, D2, D3, D4.1, D4.2, E, E.1, E.2, F, F.1, F.2.
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chorotypes helped to build the early 21st-century disease model:
SA1, SA6, and SA12 from South America, and AF9 from Africa.

Spatial, environmental and zoogeographically favourable areas
for the presence of yellow fever cases have spread southward in
South America, reaching southern Paraguay, the Misiones
province in Argentina, and the Atlantic forests of southern
Brazil, locally called “Mata Atlantica”; and south and eastward in
Africa, reaching Namibia, Zambia, Tanzania, Kenya and Somalia
(Fig. 3).

Relative importance of the zoogeographical factor. The pure
contribution of primate chorotypes to explaining the distribution
of yellow fever cases in the late 20th century is 0.4%. Nevertheless,
chorotypes could explain up to 11.5%, because 11.1% of the
variation in favourability can be as much attributed to the pre-
sence of primate chorotypes as to the spatial/environmental factor
(Fig. 2b). These percentages are higher in the early 21st-century
model: 1.8% for the pure contribution of primate chorotypes, and
38.1% for the intersection between chorotypes and the spatial/
environmental factor (Fig. 2b).

In the late 20th century, primates might have had a relevant
role in explaining the occurrence of yellow fever cases in humans
in easthern Brazil, northern Peru, and western Sahel (Fig. 2b).
The area of influence of primates seems to have spread during the
early 21st century, expanding northward, eastward and south-
ward in Peru, Colombia, Venezuela, Ecuador and very promi-
nently in Brazil, where it reached the “Mata Atlantica”. In Africa,
the spread of the primate contribution might have affected most
of the tropical regions, only excluding the rainforest domain

(Fig. 2b). These areas include countries of West Africa, Angola,
south of the DRC, and some zones in Tanzania and Kenia.

Vector models. Although the distribution of yellow fever cases is
restricted to Africa and South America, there are favourable areas
for the presence of vector species in all continents except Ant-
arctica, as outlined by the fuzzy union of all the single-mosquito-
species models performed (Fig. 3). During the last two decades,
spatial and environmentally favourable conditions seem to have
spread northward in Europe, USA, and China; eastward in
Central Africa; and south and westward in South America. In
contrast, favourability has decreased in Oceania and Japan.

Yellow fever transmission-risk model. In the early 21st century,
the risk of yellow fever transmission in South America could have
increased in Paraguay, in some provinces of northern Argentina
(e.g., Misiones and Corrientes), and in the “Mata Atlantica” in the
south-east of Brazil (Fig. 3). The spread of Aedes mosquitoes in
central Brazil might have also increased the level of risk in the
region between Mato Grosso and Bahia states. Similarly, the
increase of the transmission-risk in Africa resembles the south
and westward spread of favourable areas for the presence of
yellow fever cases (Fig. 3).

The enhancement of the early 21th-century transmission-risk
model, through the use of variables only available for this period,
provided little but meaningful changes compared to the original
transmission-risk model (Figs. 3 and 4). In America, the
enhanced model pointed to a moderate level of risk in the
north-eastern states of Brazil. In Africa, the highest levels of

Fig. 2 Contribution of the zoogeographic factor. aModel of favourability for the occurrence of yellow fever cases according to the presence of non-human
primate chorotypes (i.e., zoogeographic model) [the scale for favourability values is: high (F > 0.8); high-intermediate (0.5≤ F≤ 0.8); low-intermediate
(0.2≤ F < 0.5)]. b Partial contribution of primates on the presence of yellow fever cases in humans [the numbers are percentages of contribution to the
distribution of favourability in the disease models (Z: zoogeographic factor, S/E: spatial/environmental factor)]. The maps in a represent the areas where
the primate presence could favour the occurrence of disease cases in humans, although correlations with other factors influencing the primate
biogeography (such as climate, topography or land cover) might be involved in this relation. Instead, the maps in b highlight the areas where the presence
of primates could favour the occurrence of yellow fever regardless of correlations with other factors.
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Fig. 3 Global baseline disease, vector and transmission-risk model. a maps for the late 20th century. b maps for the early 21st century. The risk of
transmission is estimated as the fuzzy intersection (∩) between favourable conditions for the occurrence of yellow fever cases, and favourable conditions
for the presence of vector species. The Favourability values were considered on the following scale: High (F > 0.8); High-Intermediate (0.5≤ F≤ 0.8); Low-
Intermediate (0.2≤ F < 0.5); and Low (F < 0.2). The spatial resolution is based on 7,774-km2 hexagons. Recorded occurrences of yellow fever cases and of
vector presences are also mapped (see “Yellow fever datasets” and “Vector dataset” in the Methods section for details). Mosquito and humans clip art
source: http://www.freepik.com.
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transmission risk were mostly concentrated in countries of the
Atlantic coast extending from the Sahel to the Equator. Here, in
contrast to the not-enhanced model, intermediate-risk levels
hardly reach the Horn of Africa, which coincides with the record
of yellow fever cases and vector presences.

Model fit assessment. Discrimination and classification index
values are shown in Table 1. All the models showed an out-
standing discrimination capacity according to Hosmer and
Lemeshow (2000) (i.e., the area under the receiver operator
characteristic curve, AUC, was always >0.91). In all models, true
skill statistic (TSS) values were positive and >0.582. In the disease
and transmission-risk models, correct classification rate (CCR)
values were between 0.83 and 0.91 depending on the favourability
threshold considered, and it was between 0.61 and 0.78 in the
vector models. Sensitivity values indicate that >85% (and except
in two cases, >90%) of hexagons with vector presences and yellow
fever cases reported were correctly classified by the models,
regardless of the favourability threshold; and underprediction
values were never >0.004. So, the occurrence of vectors and yel-
low fever cases reported, and finally the risk of yellow fever
transmission, were rarely underestimated. Specificity values were
between 0.82 and 0.91 in the disease and transmission-risk

models, and between 0.57 and 0.76 in the vector models. Finally,
overprediction values were in the range 0.70‒0.92, i.e., a high
proportion of hexagons considered favourable for the presence of
disease cases or vectors have not been reported to have them. This
means that the scattered appearance of presence data did not
generate geographically scattered favourability models (see Figs. 3
and 4), and so that these models were far from overfitting.

Validation of model predictive capacity. Model’s discrimination
and classification capacities remained quite similar or increased,
compared to those in Table 1, when disease cases regarded to
“future information” (i.e., data corresponding to time periods
later than those considered for model training) were included in
the assessment (see Table 2). In the late 20th-century
transmission-risk models, the use of yellow fever cases from 2001-
2020 led to sensitivity values decreased from 0.922–0.982
(Table 1) to 0.791–0.864 (Table 2) and specificity values increased
from 0.876–0.909 (Table 1) to 0.885–0.917 (Table 2).

Using yellow fever cases from 2018 to 2020 for the assessment
of the early 21st-century transmission-risk models, sensitivity
values increased from 0.876–0.992 (Table 1) to 0.904–1 (Table 2)
and specificity values decreased from 0.833–0.894 (Table 1) to
0.815–0.877 (Table 2). The fact that sensitivity of the

Fig. 4 Enhanced global baseline disease, vector and transmission-risk models for the early 21st century. The risk of transmission is estimated as the
fuzzy intersection (∩) between favourable conditions for the occurrence of yellow fever cases, and favourable conditions for the presence of vector species.
Compared to the models in Fig. 3, additional predictor variables only available for the 21st century were considered. Recorded occurrences of yellow fever
cases and of vector presences are also mapped. The Favourability values were considered on the following scale: High (F > 0.8); high-intermediate
(0.5≤ F≤ 0.8); Low-Intermediate (0.2≤ F < 0.5); and Low (F < 0.2). The spatial resolution is based on 7774- km2 hexagons. Recorded occurrences of
yellow fever cases and of vector presences are also mapped (see “Yellow fever datasets” and “Vector dataset” in the Methods section for details).
Mosquito and humans clip art source: http://www.freepik.com.
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transmission-risk model increases, only with these “future”
values, means that 90–100% of cases recorded after the model-
training period were reported in areas predicted to be at risk of
yellow fever transmission to humans.

Discussion
The most relevant contribution of our results is the mapping of
the areas where zoonotic cycles (involving primates and sylvatic
mosquitoes) could be currently favouring the occurrence of yel-
low fever virus transmission to humans, based on the most
updated data-base of humans cases. In South America, these areas
include wide regions within the western, eastern and central
Amazon basin, and also great part of the “Mata Atlantica”, that is
the Atlantic forests of Brazil. In Africa, they largely overlap with
the open and forested savannas to the north and south of the
Central African rainforests. This might be, however, a con-
servative view of the geographic relevance of the yellow fever
zoonotic cycle, as only the areas where the primate contribution
to risk was not correlated with environmental factors were

mapped. During the late 20th century, the influence of zoonotic
cycles on yellow fever outbreaks could have been restricted to the
Peruvian and the easternmost Brazilian Amazon in America, and
to the southern limits of the Sahel in Africa. So, the under-
standing of this dynamic relationship between primates and
yellow fever needs to be put in the context of recent changes in
the global distribution of reported infection in humans.

Many yellow fever cases have been recorded in the early 21st
century in areas that were free from the disease during the late
20th century. For example, disease cases are currently reported in
south and southeastern Brazil (Fig. 3), where no cases seem to
have occurred for decades before 200513. According to our
baseline disease models, favourability for yellow fever transmis-
sion in southeastern Brazil was intermediate (0.2 ≤ F ≤ 0.8) in the
late 20th century, and high (F > 0.8) in the early 21st century
(Fig. 3). This increase in favourability could be a consequence of a
modern-virus-lineage arrival from the north of South America13,
that has caused all major yellow fever outbreaks in the sub-
continent since 2000, including those in Brazil in 2008 and 2016
(details are discussed below).

Table 1 Model fit assessment based on discrimination and classification capacities respect to vector and disease records of the
same period.

Model AUC FCT Sens. Spec. CCR TSS Underp. Overp.

Late 20th century Disease 0.971 0.5 0.959 0.905 0.905 0.864 0.001 0.895
0.2 0.982 0.873 0.875 0.855 0.000 0.917

Vectors 0.919 0.5 0.946 0.705 0.717 0.651 0.004 0.849
0.2 0.991 0.591 0.612 0.582 0.001 0.881

Transmission risk 0.962 0.5 0.922 0.909 0.909 0.831 0.001 0.895
0.2 0.982 0.876 0.877 0.858 0.000 0.915

Early 21st century Disease 0.963 0.5 0.961 0.872 0.874 0.833 0.001 0.832
0.2 0.988 0.826 0.830 0.814 0.000 0.868

Vectors 0.928 0.5 0.947 0.740 0.761 0.687 0.008 0.715
0.2 0.994 0.576 0.618 0.570 0.001 0.796

Transmission risk 0.951 0.5 0.876 0.889 0.889 0.765 0.004 0.825
0.2 0.980 0.833 0.837 0.813 0.001 0.864

Early 21st century
(enhanced model)

Disease 0.964 0.5 0.968 0.872 0.875 0.840 0.001 0.831
0.2 0.994 0.833 0.837 0.827 0.000 0.863

Vectors 0.932 0.5 0.958 0.752 0.772 0.710 0.006 0.704
0.2 0.991 0.616 0.653 0.607 0.002 0.780

Transmission risk 0.954 0.5 0.878 0.894 0.894 0.772 0.004 0.818
0.2 0.992 0.843 0.847 0.835 0.000 0.855

AUC area under the receiver operator characteristic curve, FCT favourability classification threshold, Sens. sensitivity, Spec. specificity, CCR correct classification rate, TSS true skill statistic, Underp.
underprediction rate, Overp. overprediction rate.

Table 2 Validation of model predictive capacity based on discrimination and classification performance respect to yellow fever
records of a later period.

Records of
reference

Model AUC FCT Sens. Spec. CCR TSS Underp. Overp.

Late 20th century 2001 to 2020 Disease 0.936 0.5 0.805 0.913 0.911 0.718 0.006 0.800
0.2 0.864 0.883 0.883 0.747 0.004 0.834

Transmission risk 0.933 0.5 0.791 0.917 0.914 0.708 0.006 0.795
0.2 0.864 0.885 0.885 0.749 0.004 0.832

Early 21st century 2018 to 2020 Disease 0.939 0.5 0.932 0.853 0.854 0.785 0.000 0.976
0.2 1.000 0.808 0.809 0.808 0.000 0.980

Transmission risk 0.938 0.5 0.932 0.873 0.873 0.805 0.000 0.972
0.2 1.000 0.815 0.816 0.815 0.000 0.979

Early 21st century
(enhanced model)

2018 to 2020 Disease 0.937 0.5 0.904 0.853 0.853 0.757 0.000 0.977
0.2 0.986 0.814 0.815 0.800 0.000 0.980

Transmission risk 0.936 0.5 0.904 0.877 0.877 0.781 0.000 0.972
0.2 0.986 0.825 0.825 0.811 0.000 0.979

AUC area under the receiver operator characteristic curve, FCT favourability classification threshold, Sens. sensitivity, Spec. specificity, CCR correct classification rate, TSS true skill statistic, Underp.
underprediction rate, Overp. overprediction rate.
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In Africa, the areas favourable to yellow fever transmission are
currently spreading from the west of the continent to the south
and east, reaching countries such as the DRC, Angola, Namibia,
Zambia, Tanzania, and Somalia (Fig. 3). In 2015 and 2016, the
most widespread outbreaks reported in Africa in more than 20
years took place in Angola and the DRC29. Several factors might
be responsible for the lower yellow fever activity in East and
Central Africa before 2000. According to Mutebi et al.30, genetic
differences between yellow fever genotypes may play an impor-
tant role in the distribution pattern of yellow fever outbreaks in
Africa, the West African genotypes being associated to more
frequent outbreaks. In addition, the ecological diversity and
behaviour of vector mosquito species may also influence on the
African yellow fever biogeography. In West Africa, Ae. Aegypti
populations are responsible for urban outbreaks, whereas no
yellow fever cases have been attributed to this species in East
Africa30. This applies, for example, to the 1992–1993 outbreak
happened in Kenya30. What is interesting is that Ae. aegypti
occurs in both East and West Africa, but there are two subspecies:
Ae. ae. aegypti and Ae. ae. formosus. Crawford et al31. mentioned
that Ae. ae. aegypti is a demonstrated vector of yellow fever,
whereas the extent to which Ae. ae. formosus lives alongside and
feeds on humans is unclear31. These authors suggest that the
distribution of Ae. ae. aegypti is likely limited to West Africa,
eastern populations of the species probably belonging to Ae. ae.
formosus. So, it is worth investigating whether the distribution of
viral and vector genetic variants is currently changing together
with the distribution of yellow fever reports, or whether the
apparent geographic spread of virus infections is a result of
increased reporting efforts.

The interpretation of models based on incomplete information
must be made with caution. Sampling bias could lead to inter-
pretation mistakes if the model output maximized the geographic
fit between recorded disease cases and the resulting predictions.
The combination of logistic regressions and the favourability
function, used to get the outputs of our models, do not usually
tend to overfitting32, hence these models showed high over-
prediction rates (Table 1), that is, a high proportion of favourable
areas that are not recorded to have had cases. Part of this over-
prediction might be explained by transmission risks forecasted in
areas prone to be endemic in the short term, as shown by the fact
that the overprediction rate of the 20th-century model was around
0.9 (Table 1), but it decreased until about 0.8 when this model’s
prediction capacity was tested according to the 21st-century cases
(Table 2). However, our model outputs are also consistent with
the belief that the reporting of yellow fever cases could under-
estimate the actual number of cases, this being up to 500 times
higher than reported in Africa, and around 10 times higher in
South America6,33. Anyway, there are limits for any kind of
model trying to analyse the geography of infection patterns for a
virus showing high spatio-temporal dynamism, that is affected by
the emergence of new lineages, by the changing distribution of
Aedes mosquitoes34, as much as by revisions of vaccination
strategies. So, our models have to be interpreted in the current
historical context, as they were designed for this specific spatio-
temporal window.

As expected, our 21st-century model outputs resemble the
results of recent studies focused on the distribution of yellow
fever risk areas. Gaythorpe et al.28 evaluated the vaccine effec-
tiveness in South America and Africa with a province-level model
of the probability of yellow fever case reporting. Compared to this
model, our outputs show a similar geographic pattern of yellow
fever transmission risk; however, we point to higher risk in South
and West Brazil and other South American countries such as
Venezuela. Our 21st-century model also outlines the presence of
high transmission risk in African countries not highlighted by

Gaythorpe et al.28, such as Zambia and Tanzania. In Tanzania,
while no yellow fever cases have been reported for decades35, a
study published by Rugarabamu et al.36 provides evidence of
yellow fever exposure, suggesting the need to strengthen the
surveillance system. A later research by Shearer et al.6 assessed the
pattern of the speed at which human individuals are expected to
acquire yellow fever virus infection in a given location. In prin-
ciple, Shearer et al.’s results are not comparable to our risk maps
because these authors used the estimated area at risk of yellow
fever infections27 as geographic extent for their analyses. Never-
theless, their map of “individual apparent infectious risk” points
to areas partially related to those in which non-human primates
seem to increase the risk of yellow fever transmission to humans
(Fig. 2b). This happens, for example, in regions of the Amazon
Basin in Peru, Ecuador, Colombia, Venezuela, and North and
East Brazil; and of Africa in the southern limits of the Sahel. The
overlap could be even higher because, as mentioned above, we
present a conservative view of the zoonotic-cycle influence area.
Taking into account that Shearer et al. considered the distribution
of primates as predictor variables in their model (together with
other environmental factors), we wonder whether, in large
regions of South America and Africa, the risk of human indivi-
dual infection6 could be linked to the increased risk of trans-
mission favoured by non-human primates (Fig. 2). The most
relevant difference between Shearer et al.’s maps and ours is
located in Southeastern Brazil, probably because they did not
considered reports of the most recent yellow fever outbreaks in
the area (which happened after 2015).

Deep surveillances should be encouraged in primates of
southern Brazil given the active evolutionary dynamism experi-
enced by the yellow fever virus in South America. In this con-
tinent, a yellow fever virus “modern lineage” has spread since
1989 out of the endemic areas13. From 1980 to the middle of
2015, 792 sylvatic yellow-fever cases in humans and 421 deaths
were reported in Brazil37. The modern lineage has diversified into
several sub-lineages, one of which seems to be responsible of the
disease re-emergence in 2016‒2019 in the “Mata Atlantica” of the
southern states of Brazil, causing one of the largest epizootic
outbreaks recorded in the country13. The enzootic maintenance
in primates is believed to be the background of the yellow-fever
virus evolution in America13. However, the modern yellow fever
lineage seems to have evolved in Trinidad and Tobago38, and the
“modified” modern lineage, introduced in 2016 in Southern
Brazil, was probably a result of human translocations from
Venezuela13. Nevertheless, the involvement of primates on
transmission to humans in the Mata Atlantica, and the high
evolutiounary rate recently shown by the yellow fever virus, might
derive in new variants that could reach human populations,
taking into account that the zoonotic cycles in Southeastern Brazil
are closely connected with urban areas3.

Forest loss and fragmentation could be increasing the proxi-
mity of humans to other primates, enhancing the zoonotic
transmission of yellow fever. In fact, our 21st century disease
model included forest loss after 2001 as a significant predictor
variable (Supplementary Table 2). Habitat destruction affects
significantly the ecology of emerging infectious diseases in wildlife
and humans39,40. In undisturbed ecosystems, pathogens are
diluted in the animal community, whereas some reservoir species
and their pathogens may begin to dominate in fragmented
forests40 (for example, Olivero et al. 201741 demonstrated that
Ebola outbreaks located along the limits of the African rainforest
biome were significantly associated with forest losses that took
place within the previous 2 years). A study published by Cunha
et al.3 has proposed a new scenario for the 2016‒2019 yellow fever
outbreak in São Paulo, indicating that yellow fever sylvatic
transmission among primates probably occurs in the city. The
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virus has been recorded in urban titis (Callithrix sp.) and in
mosquito species normally inhabiting the forest (e.g., in Aedes
scapularis). Consequently, the yellow fever pathogeography could
be providing a new example of how forest fragmentation could
amplify the risk of disease transmission by increasing the proxi-
mity of human populations to wildlife, in this case through the
occupancy of urban areas by primates and sylvatic mosquitoes.

In case yellow fever surveillances in non-human primates were
addressed, we propose to focus on the list of species belonging to
chorotypes significantly related to the disease distribution (Sup-
plementary Figs. 1 and 2). These chorotypes have represented the
diversity of primates reportedly infected by the yellow fever virus
so in South America as in Africa. In Brazil, during the period
1996 to 2016, 2221 deaths in non-human primates caused by
yellow fever virus were reported, whereas only in the 2016–2019
outbreak the number of recorded deaths was 356937. In this
lastest outbreak, yellow fever virus infections were detected in
specimens of genera Alouatta, Brachyteles, Callicebus, Callithrix,
Leontopithecus and Sapajus, all of them inhabiting the Mata
Atlantica37,42,43. All these genera include species whose biogeo-
graphic patterns characterize significantly the distribution of
humans yellow fever cases in southern Brazil (i.e., species
belonging to chorotypes SA4 and SA11, see Supplementary
Fig. 1). Overall in South America, according to the available
literature6,37,42,43, the yellow fever virus has been detected in 13
nonhuman primate genera, all of which include species whose
biogeography is related to the American distribution of humans
cases (see Supplementary Fig. 1). The same applies in Africa,
where the yellow fever virus has been detected in 11 non-human-
primate genera (mostly in Cercocebus, Cercopithecus, Colobus,
Erythrocebus, Galago, Otolemur, Papio, Perodicticus and
Pilocolobus)6,37,42,43. All these genera include species belonging to
the chorotypes that are significantly related to the yellow fever
distribution (see Supplementary Fig. 2).

Our analyses can contribute to identify new areas that should
be prioritised for vaccination, for which we propose to take three
yellow fever transmission geographic scenarios into account: (1)
areas with very favourable conditions (F ≥ 0.5) for both the pre-
sence of the virus and mosquito vectors, in which case the risk of
transmission is very high; (2) areas with low but not negligible
risk of yellow fever transmission (0.2 ≤ F ≤ 0.5); and (3) areas
environmentally favourable to the presence of mosquito vectors,
but not to the virus occurrence. In South America, the first and
most severe scenario occurs in southern Brazil. Following the
2016‒2019 outbreak, the WHO has programmed vaccination in
this area44. Our models provide support for the additional vac-
cination programme planned by the Brazilian Health Ministry in
201944 in eastern Brazil (involving states such as Pernambuco,
Alagoas, Paraíba, Sergipe, and Ceará, see Fig. 4), despite vacci-
nation in this area is not yet considered by the WHO44 and the
CDC45 to be a priority. The African areas included in the most
severe scenario are located in west and central countries of the
continent, where the WHO already suggests prescriptive
vaccination46,47. A set of African areas fits the scenario with low
but not negligible risk of yellow fever transmission, but are not yet
considered for vaccination by the WHO47 and the CDC45: the
north of Namibia, the west of Zambia, the east of Ethiopia, and
some areas in Somalia (Fig. 4). We propose that active yellow
fever surveillance strategies be considered for these areas in order
to be alert for outbreaks in the near future. Finally, mosquito
vectors already occur or find favourable conditions in many areas
in North America, southern Europe, Asia and Oceania that are
outside the yellow fever endemic area. The most suitable policies
in these cases may involve preventing virus introduction by
international travelling. For this reason, there are countries that
require the yellow fever vaccination certificate for travellers48,

although this certificate is not required in some countries with
high-risk zones according to our models that also coincide with
areas in which vaccination is recommended by the WHO48. A
global strategy could be designed for granting, with no exceptions,
vaccination of third-country citicens entering in countries at high
or medium risk of yellow fever transmission48. In addition, vac-
cination should be also considered an option in areas with stable
vector-mosquito populations that are close to the endemic areas,
as is the case of Uruguay, northern Argentina and the eastern
coast of Africa. Vaccination campaings recommended by the
WHO in the provinces of Misiones and Corrientes44, to the north
of Argentina, are positive examples of this kind of initiatives.

Methods
Lattice data geoprocessing and temporal extent. We latticed the data49 using a
worldwide grid composed of 18,874 hexagonal 7774 km2 units, built using Discrete
Global for R (https://github.com/r-barnes/dggridR)50. All the information we
processed on yellow fever cases, on urban and sylvatic vectors presences, and on
zoogeographic, spatial and environmental variables (see details on this information
below) was aggregated at this spatial resolution. We used zonal statistics to cal-
culate average variable values using ArcMAP 10.7.

The temporal extent for our analysis was divided into three periods: the late
20th century (1970–2000), the early 21st century (2001–2017), and the period
2018–2020. Predictions estimated by the late 20th century models were validated
using cases reported in the early 21st century, and predictions from the early 21st
century models were validated with records from 2018‒2020. Although the limit
between periods at the turn of the century is arbitrary, it reflects: 1) Distributional
changes in the ranges of the Ae. aegypti and Ae. albopictus vectors51; 2) after 1999,
the yellow fever genotype I has spread outside the endemic regions, and the
genotype I modern-lineage has caused all major yellow fever outbreaks detected in
non-endemic regions of South America since 200013; 3) the maximum potential of
globalization was realised at the beginning of the 21st century with the opening of
international borders, the widespread access to the Internet and to cell phones, and
the generalization of online travel booking and of low-cost flights34. The end of the
second period, 2017, was chosen in order to include three years with occurrence of
yellow fever cases in south-western Brazil (and two since its occurrence in Angola
and the DRC), while retaining three later years for predictive testing purposes
(details on this testing are given below).

Yellow fever datasets. We used georeferenced cases of yellow fever in humans for
a period of 51 years (from 1970 to 2020). This study period starts immediately after
the suspension of the use of DDT due to to the appearance of resistance of Ae.
aegypti in the late 1960s in several countries, after 50 years of eradication efforts10.
We took from Shearer et al.6 the distribution of yellow fever cases for the period
1970–2016. We extracted additional cases for the period 1970–2020 from various
sources (Supplementary data 1), including ProMED-mail: Program of International
society for infectious diseases; World Health Organization (WHO): Yellow fever
outbreak weekly situation reports, Rapport de situation fievre jaune en RD Congo
and Weekly epidemiological record; Health Ministry of different countries: Epi-
demiological Bulletins of yellow fever in Brazil, Peru, Colombia, and Paraguay; Pan
American Health Organization (PAHO): Epidemiological Update Yellow Fever;
European Centre for Disease Prevention and Control (ECDC): Communicable
disease threats report and Rapid risk assessment report; Nigeria Centre for Disease
Control (NCDC): Situation report, yellow fever outbreak in Nigeria and Global
Infectious Disease and Epidemiology Online Network (GIDEON). The reported
cases were complemented with publications available since 2016 with geo-
referenced information on case location (Supplementary data 1). In addition,
information was also sought on cases reported in French and Portuguese from local
news reports in Africa.

We only represented in the hexagonal lattice the reported cases of yellow fever
that had a precise location or that were referred to administrative unit was smaller
than or of similar size to the hexagons. This dataset was transformed into a binary
variable per study period representing the presence (n= 218 hexagons in the late
20th century; 493 hexagons in the early 21st century, see Supplementary data 2) or
absence (n= 18,656 hexagons in the late 20th century; 18,381 hexagons in the early
21st century), hereafter the distribution of reported cases of yellow fever.

Vector dataset. The georeferenced presences of vectors involved in the urban cycle
of yellow fever (i.e., the mosquitoes Ae. aegypti and Ae. albopictus) were taken from
“The global compendium of the Ae. aegypti and Ae. Albopictus occurrence”26 for the
period 1970–2014. We complemented these records with georeferenced data scien-
tifically validated for the period 2014–2017, taken from VectorBase (https://www.
vectorbase.org/) and Mosquito Alert (http://www.mosquitoalert.com/). We included
both species because, although Ae. Aegypti is the main vector of yellow fever, Ae.
albopictus can also transmit the yellow fever virus to humans4,52.

In addition, we included georeferenced occurrence data of sylvatic vectors
(Haemagogus janthinomys, H. leucocelaenus and Sabethes chloropterus in South
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America; Ae. africanus and Ae. vittatus in Africa), which were obtained from
Vectormap (vectormap.si.edu) and Gbif (https://gbif.org).

We represented in the hexagonal lattice the reported occurrence of mosquitoes
that had a precise location or were located in administrative smaller than or of
similar size to the hexagons. With this information, we built binary variables
representing the presence or absence of each mosquito species in each hexagon. For
species involved in the urban cycle, we built two binary variables per species: one
for the late 20th century, and another for the early 21st century. For species
involved in the sylvatic cycle, we merged the data of late 20th century and early
21st century in order to build a binary variable per species, due the scarcity of data
and under the assumption that their distributions have been stable during the four
last decades53–55.

Zoogeographic, spatial and environmental variables. We built zoogeographic
variables based on chorotypes, or types of distribution ranges, of all non-human
primate species, as all are potentially vulnerable to yellow fever56. A chorotype is a
distribution pattern shared by a group of species57. For obtaining these zoogeographic
variables, we proceeded in 4 steps: (1) Distribution maps of non-human primates
were obtained from the IUCN for South-America and Africa; (2) the species ranges
were classified hierarchically using the classification algorithm UPGMA according to
the Baroni-Urbani & Buser´s similarity index58; (3) we evaluated the statistical sig-
nificance of all clusters obtained as a result of the classification using RMacoqui
1.0 software (http://rmacoqui.r-forge.r-project.org/)59; (4) in each hexagon, the
number of species belonging to each chorotype was quantified. We generated a
zoogeographic model based on the non-human primates chorotypes by running a
forward-backward stepwise logistic regression using presence/absence of yellow fever
cases and the number of species of each chorotype as dependent and predictor
variables, respectively. This procedure was made for two periods: late 20th century
and early 21st century. Henceforth, only the selected chorotype variables were con-
sidered in the baseline disease favourability models explained below.

We built a yellow fever spatial variable for each continent (South-America and
Africa), which were calculated through the trend surface approach, by performing a
backward-stepwise logistic regression of the distribution of yellow fever cases on a
ensemble of variables defined for polynomial combinations of longitude (X) and
latitude (Y) up to the third degree: X, Y, XY, X2, Y2, X2Y, XY2, X3, and Y3. We
transformed probability values derived from logistic regression into spatial
favourability values by applying the Favourability Function60,61, using the following
equation:

F ¼ P
1� P

. n1
n0

þ P
1� P

� �
ð1Þ

where P is the spatial probability of occurrence of at least a case of yellow fever at
each hexagon, and n1 and n0 are the numbers of hexagons with presence and
absence of yellow fever cases, respectively. We built a different spatial variable for
each continent and time period.

We used environmental variables related to the following factors: climate,
human activity, topography, hydrography, biome, ecosystem type, and forest loss.
For details about the source and description of the environmental variables
selected, see Supplementary Table 3.

Pathogeographical approach to transmission risk modelling. Our objectives
were to construct a global yellow fever transmission risk map, and to identify areas
where primates contribute to increased risk, using the methodology previously used
to analyse the worldwide dynamic biogeography of zoonotic and anthroponotic
dengue34 (see flowchart in Fig. 1 and Supplementary Methods). We produced a
transmission model focused on the late 20th century and another for the early 21st

century.
The risk of transmission was assessed by combining a first model describing

areas favourable to the presence of yellow fever, i.e., the “baseline disease model”;
and another model describing areas favourable to the presence of mosquitoes
known to act as vectors, i.e., the “vector model”. For this combination, we used the
fuzzy intersection62, i.e., the risk of transmission at each hexagon was valued at the
minimum between favourability in the baseline disease model and favourability in
the vector model.

In this way, we considered that the vectors are a limiting factor, and that the risk
of transmission derives from the degree to which the environmental conditions are
simultaneously favourable for the presence of vectors and for disease cases to
occur63. In order to analyze the spatio-temporal dynamic of yellow fever, we made
comparable models for the late 20th century and the early 21st century, using
predictor variables that are available for both periods. Later, we made a 21st-
century enhanced model that optimized the predictive capacity of availabe
information in the search for current risk areas. For this purpose, we included, in
the variable set, predictors that are only accessible for the 21st century (e.g., high-
resolution population density, livestock, irrigation, infrastructures, intact forest,
and GlobCover land cover classes; see Supplementary Table 3).

Baseline disease models. The baseline disease model in the late 20th century was
expressed in terms of favourability values, using the Eq. (1) (see above). This time,
P was calculated through a multivariable forward-backward stepwise logistic

regression of the 20th-century yellow fever presences/absences on a set of zoo-
geographic, environmental and spatial variables. This was made in two blocks: 1) a
stepwise selection of environmental and spatial variables; 2) a later stepwise
addition of chorotypes whose presence contribute to improve significantly the
likelihood of the model based only on the first block. Variables for each block were
preselected using RAO´s score tests (which estimated the significance of its asso-
ciation to the distribution of yellow fever cases), and Benjamini and Hochberg´s
(1995) false discovery rate (FDR) to control for Type I errors, which could pass due
to the number of variables analysed. We also avoided excesive multicollinearity by
preventing that variables with Spearman correlation values >0.8 were included in
the same model. In case this happened, only the variable with the most significant
RAO´s score-test value was retained, and the multivariable model was re-run. The
parameters in the models were estimated using a gradient ascent machine learning
algorithm, and the significance of these paremeters was assessed using the test of
Wald. The goodness of fit of the models was established using the test of Hosmer
and Lemeshow, which checks the significance of the difference between expected
and observed values, so that non significant differences mean that the fit is good.
We used IBM-SPSS Statistics 24 software package to perform the models and all
the associated tests.

We subsequently updated the baseline disease model to explain the distribution
of yellow fever cases in the early 21st century. Compared to the procedure described
for the 20th-century model, we included a new block before the two ones
mentioned above. Thus, the methodological sequence was as follows: (1) forcing
the input, as a predictor variable, of the logit of the late 20th century baseline
disease model (the logit being the linear combination of variables in the 20th-
century model); (2) making a later stepwise selection of spatial and environmental
variables; and (3) a stepwise addition of chorotypes that contribute to improving
the model’s likelihood. In this way, we took into account that the current spread of
yellow fever is influenced by the inertia of previous situations. This is equivalent to
assuming that there is temporal autocorrelation (i.e., disease cases in the early 21st

century are more probable to occur in areas where they already occurred in the late
20th century). In the 21st-century model, the variables entering in blocks (2) and (3)
represent the drivers potentially favouring the spread34. The preselection of
variables for blocks (2) and (3) and the control for excessive multicollinearity
between environmental variables were made as explained for the late 20th-
century model.

Vector models. We produced a favourabuility model for each vector species for
the late 20th century and for the early 21st century separately. We built multi-
variable favourability models for urban vectors using the distribution of each urban
mosquito species in the late 20th century and the spatial and environmental
variables for the late 20th century, following the same procedure used for block (1)
in the 20th-century baseline disease model. We also updated each urban vector
model for the early 21st century as in the baseline disease model, using the pro-
cedure described for blocks (1) and (2).

A single model, referred to both the late 20th and the early 21st centuries, was
made for sylvatic vectors, for the reasons explained above. Finally, we built up the
vector models for the late 20th century and for the early 21st century by joining all
individual vector models of each period using the fuzzy union64 (i.e., considering
for each hexagon the maximum value shown by any of the species models). This
criterion was taken into account because, if the pathogen were present, the
occurrence of a single vector species would involve potential for yellow fever
transmission.

Model fit assessment and validation of its predictive capacity. Favourability
models were assessed according to their classification and discrimination capacities
respect to the training data set (i.e., to the observations used for model training).
The classification capacity was based on two classification thresholds: F= 0.5,
which represents the neutral favourability, and F= 0.2, below which the risk of
transmission was considered to be low61. Six classification assessment indices were
used65: (1) sensitivity (i.e., proportion of presences correctly classified in favourable
hexagons), (2) specificity (i.e., proportion of absences correctly classified in unfa-
vourable hexagons), (3) CCR (i.e., proportion of presences and absences correctly
classified in favourable hexagons respectively), (4) TSS (that is sensitivity + spe-
cifity - 1), (5) underprediction rate (i.e., proportion of favourable areas that are
recorded to have presences), and (6) overprediction rate (i.e., proportion of
favourable areas that are not recorded to have presences). The discrimination
capacity was assessed using the area under the receiver operating characteristic
(ROC) curve (AUC)66.

The validation of the predictive capacity of the late 20th century disease and
transmission-risk models was done by evaluating, with the same indices used
above, classification and discrimination capacities with respect to the cases of the
period 2001‒2020. The predictive capacity of the models for the early 21st century
was validated with respect to the yellow fever cases reported in the period 2018‒
2020.

Relative importance of the zoogeographical factor. We estimated the pure
contribution of non-human primates to the baseline disease model, i.e., how much of
the variation in favourability for yellow fever cases was explained exclusively by the
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zoogeographical factor, by performing a variation partitioning analysis67. This implied
the use of the zoogeographic model and a spatio-environmental model constructed
with the environmental and spatial variables that entered the baseline disease model.
This approach also allowed us to calculate how much is the variation of the baseline
disease model attributable simultaneously to the zoogeographical and other factors.
We built maps identifying the zones where the non-human primates could increase
yellow fever cases in humans, that is, where the presence of primates could favour the
occurrence of yellow fever regardless of correlations with other factors. To map these
areas we identified the hexagons that fulfilled these conditions: 1) favourability values
for the baseline disease model were ≥ 0.2; and 2) the difference between the
favourability values provided by the baseline disease model and the spatio-
environmental model was positive and ≥ 0.01.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sources for all data supporting the results of this study are cited in the main text, in
Supplementary table 3, and in Supplementary data 1. The occurrence of yellow fever case
reports in the spatial units employed here can be found in Supplementary data 2.
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