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Intrinsic temperature-dependent 
evolutions in the electron-boson 
spectral density obtained from 
optical data
Jungseek Hwang

We investigate temperature smearing effects on the electron-boson spectral density function (I2χ(ω)) 
obtained from optical data using a maximum entropy inversion method. We start with two simple 
model input I2χ(ω), calculate the optical scattering rates at selected temperatures using the model 
input spectral density functions and a generalized Allen’s formula, then extract back I2χ(ω) at each 
temperature from the calculated optical scattering rate using the maximum entropy method (MEM) 
which has been used for analysis of optical data of high-temperature superconductors including 
cuprates, and finally compare the resulting I2χ(ω) with the input ones. From this approach we find 
that the inversion process can recover the input I2χ(ω) almost perfectly when the quality of fits is good 
enough and also temperature smearing (or thermal broadening) effects appear in the I2χ(ω) when the 
quality of fits is not good enough. We found that the coupling constant and the logarithmically averaged 
frequency are robust to the temperature smearing effects and/or the quality of fits. We use these 
robust properties of the two quantities as criterions to check whether experimental data have intrinsic 
temperature-dependent evolutions or not. We carefully apply the MEM to two material systems (one 
optimally doped and the other underdoped cuprates) and conclude that the I2χ(ω) extracted from the 
optical data contain intrinsic temperature-dependent evolutions.

In strongly correlated materials including high-temperature superconductors the information of correlation 
between charge carriers appears in their inelastic scattering spectra. The interaction between charge carriers can 
be described by the electron-boson spectral density function, which can be described by a model of exchanging 
the force-mediating bosons between electrons. Here we denote the electron-boson spectral density function as 
I2χ(ω), where I is the coupling constant between the boson and an electron and χ(ω) is the energy spectrum of 
the boson. In superconducting materials the electron-boson spectral density function can play an important role 
for forming electron-electron Cooper pairs for the superconductivity. Therefore this electron-boson function 
has been known as the glue (spectral) function. I2χ(ω) and/or χ(ω) can be exposed experimentally by various 
spectroscopic experimental techniques1. The glue function is also called the Eliashberg function2. In cuprate 
systems this electron-boson density function shows universal temperature and doping dependent properties1. 
Particularly, optical spectroscopic technique plays a crucial role to expose the temperature and doping dependent 
properties of the glue function since this technique can be used to study all cuprate systems. Usually one extracts 
the electron-boson spectral density function from the optical scattering rate (or the imaginary part of the opti-
cal self-energy) which can be defined by an extended Drude model3,4 using generalized Allen’s fomulas5–10. The 
extracting processes can be categorized into two groups: model-dependent and model-independent8,10,11 pro-
cesses. Particularly, one of the model-independent processes incorporated with a maximum entropy method10 has 
been used widely since its introduction and, in principle, allows us to obtain the most probable electron-boson 
spectral density functions from the optical data. The model-independent process does not impose any restrictions 
on the shape of I2χ(ω) except for one that the quantity is positive. Using this process a lot of important temper-
ature and doping dependent properties of I2χ(ω) have been exposed from optical data12–15; in these studies the 
authors have used approximate Shulga et al.7 or Sharapov and Carbotte9 formulas. There also have been some 
other optical studies16–18 which show less temperature and doping evolutions in the extracted glue (or I2χ(ω)) 
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functions; in these studies the authors have obtained a histogram representation of the glue function using a 
least-squares process and the full expression7,19 for the optical conductivity.

In this paper we investigated the temperature smearing effects which might be caused by the maxi-
mum entropy inversion process. This issue will be an important problem to tell whether the temperature 
dependent-evolutions in I2χ(ω) extracted using the maximum entropy inversion process are intrinsic or extrinsic. 
We started with two model I2χ(ω) (one consists of a single Gaussian peak and the other two identical (or double) 
Gaussian peaks), calculated the optical scattering rates at selected temperatures using Shulga et al. formula7 which 
is an integral equation relating the electron-boson spectral density to the optical scattering rate, then applied the 
maximum entropy inversion process10 to extract I2χ(ω) from the calculated optical scattering rates, and finally 
compared the resulting I2χ(ω) at the selected temperatures with the input I2χ(ω) to check whether there are any 
temperature-dependent properties other than the temperature smearing. From this approach we confirmed that 
the temperature smearing (or thermal broadening) effects on the extracted I2χ(ω) is dependent of the quality 
of fits and found that two physical quantities (the coupling constant and the averaged frequency of I2χ(ω)) are 
robust to the quality of fits. We also carefully reanalyze optical data of two (optimally and underdoped) Bi-based 
cuprates with different fitting qualities (optimally doped) and a different approach (underdoped) to see whether 
the temperature-dependent properties in the experimental spectra are intrinsic or come from merely the temper-
ature smearing. From these studies we get to a conclusion that the temperature-dependent trends of the extracted 
I2χ(ω) from optical data using the maximum entropy method are clearly intrinsic even though there are some 
unavoidable temperature smearing effects.

Model Calculations and Results
For our model calculations we used two model input electron-boson spectral density functions: one consists of a 
single Gaussian peak, i.e. χ ω =
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the width of 10 mev, and ωp is the center frequency of 60 meV and the other consists of two identical Gaussian 
peaks, i.e. χ ω =
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 where Ap,1 and Ap,2 are the areas 

of the two Gaussian peaks with the same value of 31 meV, d1 and d2 are the widths of the two peaks with the same 
value of 10 mev, and ωp,1 and ωp,2 are the center frequencies with 60 meV and 120 meV, respectively, as shown in 
lower frames of Figs 1 and 3. We calculated the optical scattering rates (1/τop(ω, T)) at selected temperatures from 
5 K to 300 K for the two input I2χ(ω) using Eq. (3) in the Method section and taking 1/τimp =  0. The calculated 
optical scattering rates are displayed in the upper frames of Figs 1 and 3 for the single and double Gaussian I2χ(ω), 
respectively.

Then we extracted the electron-boson spectral density functions (I2χ(ω)) from the calculated optical scat-
tering rates (1/τop(ω)) using the maximum entropy method (MEM) in order to see any temperature smearing 

Figure 1.  The calculated optical scattering rates using the Shulga’s formula, Eq. (3) in the Method section and 
fits (frames (a,b)) at selected temperatures for the input single sharp Gaussian I2χ(ω) as shown in frames (c,d). 
In frames (c,d) we also show the extracted I2χ(ω) for loose and tight fits, respectively, using the maximum 
entropy method.
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effects. We controlled the quality of fits with the misfit parameter σ as an adjustable parameter (refer to Eq. (11) 
in the Method section). In Fig. 1(a,c) we display, respectively, fits and extracted I2χ(ω) by using the same misfit 
parameter σ =  0.10 for all selected temperatures. Even though the quality of fits is quite good for all temperatures 
the resulting I2χ(ω) show some temperature-dependencies; as the temperature increases the extracted I2χ(ω) 
becomes broader compared with the input I2χ(ω). We call this temperature-dependent trend as temperature 
smearing or thermal broadening. We note that the extracted I2χ(ω) at 5 K is almost the same as the input I2χ(ω). 
For temperature 300 K case we also fit the data with larger misfit parameters (σ =  0.30, 0.50, and 1.00) to see the 
misfit-dependent behavior and observe that the broadening becomes larger as the misfit parameter increases. In 
Fig. 1(b,d) we also display, respectively, fits with smaller misfit parameters (σ =  0.10, 0.05, 0.02, and 0.007 from 
low to high temperatures) and the extracted I2χ(ω) for the same selected temperatures. In order to recover the 
input I2χ(ω) completely from the calculated (or theoretical) optical scattering rates we have to use the smaller 
value of the misfit parameter (σ) for the higher temperature as shown in Fig. 1(d).

Now we added random noises to the calculated optical scattering rate at 300 K and analyzed the new optical 
scattering rates using the MEM in order to investigate noise effects on the extracted I2χ(ω). We added two differ-
ent amplitudes of random noises: one is 1 meV and the other 5 meV. We display the new optical scattering rates 
included the random noises of amplitudes of 1 meV and 5 meV, respectively, in Fig. 2(a,b). We fitted the new opti-
cal scattering rates using the MEM with various misfit parameters, which are displayed in the figure. Fits are quite 
good for all misfit parameters. For each case of the random noise the misfit parameter seems to approach a limit-
ing value; σ ~ 0.53323 for the amplitude of 1 meV and σ ~ 2.66647 for the amplitude of 5 meV. The limiting value 
seems to be related to the amplitude of the random noise; the higher noise amplitude gives the larger limiting 
misfit value. We note that for the case of no noise the limiting value seems to be zero (refer to Fig. 1). In Fig. 2(c,d) 
we display the extracted I2χ(ω) for the two different noise cases, respectively and the input I2χ(ω). For the both 
cases we obtained much sharper I2χ(ω) than the input I2χ(ω) with the misfit parameters near the limiting value, 
which seems to be absent for the case of no noise.

In Fig. 3 we display fits and extracted I2χ(ω) for the input double Gaussian I2χ(ω). In Fig. 3(a) we show the 
calculated optical scattering rates at selected temperatures using Eq. (3) in the Method section and fits to the cal-
culated scattering rates using the maximum entropy method (MEM) with the same misfit parameter (σ) of 0.1 for 
the all selected temperatures. All fits are quite good. In Fig. 3(c) we display the corresponding extracted I2χ(ω) at 
all selected temperatures which show strong temperature-dependencies; at 300 K the two peaks are merged into a 
broad single peak and at 200 K the two peaks are resolved but their positions are red- (the lower frequency peak) 
and blue- (the higher frequency peak) shifted. At 5 K the extracted I2χ(ω) is almost the same as the input I2χ(ω). 
We note that while only peak broadening occurs for the single Gaussian case both peak broadening and shifting 
occur for the double Gaussian case. But for the double Gaussian case the broadening seems to cause the shifting; 
the peak shifting is a secondary effect. As we can see in Fig. 3(b,d) when we make fits tighter (or with smaller 
misfit parameters: σ =  0.10, 0.05, 0.02, 0.01, and 0.001 from low to high temperatures) to the data at high temper-
atures we are able to recover almost completely the input double (or two-peak) Gaussian I2χ(ω). It is worth noting 

Figure 2.  The calculated optical scattering rates included random noises of amplitudes of 1 meV and 5 meV 
at 300 K are displayed, respectively, in frames (a,b) along with their fits obtained using the maximum entropy 
method with various misfit parameters, σ. Frames (c,d) display, respectively, the corresponding extracted I2χ(ω) 
for the two different amplitudes of the random noises with 1 meV and 5 meV, respectively.
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that since the calculated (or theoretical) optical scattering rates do not contain any errors (or any noises) we can 
recover the input I2χ(ω) perfectly. However, in general, experimentally measured optical scattering rates always 
contain some background uncertainties and because of these uncertainties as we could see previously (refer to the 
discussion with Fig. 2) one still may be able to fit to the data and extract the correct I2χ(ω) but it does not seem to 
be easy to find the right misfit parameter to obtain the correct I2χ(ω).

Interestingly, we find that some physical quantities are quite robust to the temperature smearing and/or the 
quality of fits. Those quantities are the coupling constant (λ) and the logarithmically averaged frequency (ωln) 
which can be calculated from the electron-boson spectral density function (I2χ(ω)). The two quantities can be 
defined as follows:
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where ωc is the cutoff frequency; for this study we take the frequency as 300 meV. We calculated these two quantities 
with the all extracted I2χ(ω) so far. In Fig. 4(a) we display the obtained coupling constants (λ) as functions of tem-
perature for the two input I2χ(ω) and both loose and tight fits; the coupling constants for all four cases show almost 
no temperature-dependencies. In Fig. 4(b) we display the obtained averaged frequency (ωln) of I2χ(ω) as func-
tions of temperature also for the two input I2χ(ω) and both loose and tight fits. This quantity shows a quite small 
temperature-dependence for the loose fit; for the worst case the averaged frequency at 300 K is reduced around 3% 
compared with the value at 5 K for the double Gaussian and loose fit case (the red triangle). In Fig. 4(c) we display 
the coupling constant as a function of the quality of fits for the optical scattering rate obtained from the single 
Gaussian I2χ(ω) at 300 K (refer to Fig. 1(c,d)); the coupling constant shows almost no temperature-dependence. 
Therefore we conclude that the coupling constant is a quite robust quantity to both the temperature smearing and 
the quality of fits. In Fig. 4(d) we display the averaged frequency as a function of the quality of fits for the same 
case of Fig. 4(c); this quantity shows more dependence of the quality of fits than the coupling constant but still the 
dependence is quite small. We note that the averaged frequency increases with decreasing the misfit parameter. 
In Fig. 4(e,g) we display the coupling constants as functions of the quality of fits for the optical scattering rates 
included the random noises with amplitudes of 1 meV and 5 meV before performing the MEM inversion process 
(refer to Fig. 2). In Fig. 4(f,h) we display the corresponding averaged frequencies as functions of the quality of 
fits. The both quantities show similar fitting-quality-dependencies regardless of the amplitudes of random noises. 
From these results we learned that these two quantities are quite robust to both the temperature smearing (or 
thermal broadening) and the quality of fits and can be important measures for checking whether there are intrinsic 
temperature-dependent evolutions in experimental optical data at various temperatures.

Figure 3.  The calculated optical scattering rates using the Shulga’s formula, Eq. (3) in the Method section and 
fits (frames (a,b)) at selected temperatures for the input two sharp Gaussian I2χ(ω) as shown in frames (c,d). In 
frames (c,d) we also show the extracted I2χ(ω) for loose and tight fits, respectively, using the maximum entropy 
method.
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Application to Real Material Systems and Discussion
Now we look up two Bi-based cuprate systems: one is an optimally doped Bi2Sr2CaCu2O8+δ (Bi2212) with 
Tc =  96 K and the other an underdoped Bi2212 with Tc =  69 K. We denoted them as, respectively, Bi2212-OPT96A 
and Bi2212-UD69. These two systems have been analyzed using a similar approach and the studies have been 
published already12,20. However here we focus on the issue whether these material systems contain intrinsic 
temperature-dependent evolutions or their temperature-dependent properties are byproducts of the inversion 
process. To resolve the issue explicitly we reanalyzed Bi2212-OPT96A data with two different qualities of fits 
using the maximum entropy method and analyze Bi2212-UD69 data, for the first time, using the maximum 
entropy inversion process.

We applied the maximum entropy method to Bi2212-OPT96A at various temperatures with two different 
sets of the misfit parameters which are described below. We note that the larger set of the misfit parameters 
(σ) is similar to the one used in the published literature12. We compared the resulting I2χ(ω) obtained from the 
MEM applications each other to see any intrinsic temperature-dependent evolutions in the experimental data. 
We display the optical scattering rate data at normal states and fits in Fig. 5(a) and the corresponding extracted 
I2χ(ω) in Fig. 5(b). In the inset of Fig. 5(b) we show the peak positions as functions of temperature for the loose 
(or larger misfit parameters) and tight (or smaller misfit ones) fit cases; both sets of data show similar values of 
the peak positions and a similar temperature-dependent trend. The larger set of the misfit parameters (σ) are 3.5 
at 102 K, 2.3 at 200 K, and 2.7 at 300 K for the loose fits and the corresponding smaller set of the parameters for 
the tight fits are 1.8, 1.28, and 1.55, respectively. We note that the extracted I2χ(ω) for the tight fits seem to be 
non-physical since for the three temperatures there are spectral gaps (or no spectral weights) in low frequency 
region below ~40 meV for 102 K and ~60 meV for 200 K and 300 K, which have not been observed. We also note 
that the sharper peaks of I2χ(ω) extracted with the smaller misfit parameters may be obtained because of exper-
imental uncertainties (refer to Fig. 2(c,d)). We also display the two robust quantities discussed previously (refer 
to Fig. 4): the coupling constant in Fig. 5(c) and the logarithmically averaged frequency in Fig. 5(d). Both sets 
of the coupling constant obtained by different qualities of fits show similar temperature-dependencies and the 
set from the tight fits has slightly lower values. We emphasize that two sets of the coupling constants show clear 
strong temperature-dependencies regardless of the qualities of fits. These temperature-dependencies are too large 
(~23% decrease in λ from 101 K to 300 K) to be caused by the temperature smearing or the quality of fits if we 
consider less than 1% decrease in λ from 5 K to 300 K for single Gaussian case (refer to Fig. 4(a)). The two sets 
of the averaged frequencies obtained using different qualities of fits are quite different. The set obtained by the 
tight fits shows smaller values than those by the loose fits; this is opposite to the fitting-quality-dependent trend 
of the averaged frequency (refer to Fig. 4(d)). However the temperature-dependent trends of the two sets of the 
averaged frequencies are similar to each other. We expect that the large difference and the opposite trend may 

Figure 4.  Frames (a,b) show, respectively, the coupling constant (λ(T)) and the logarithmically averaged 
frequency (ωln(T)) of the extracted I2χ(ω) from the loose and tight fits for the input single and double Gaussian 
peaks. Frames (c,d) show, respectively, the coupling constant (λ(σ)) and the averaged frequency (ωln(σ)) of the 
extracted I2χ(ω) using five different qualities (σ) of fits for the input single Gaussian peak at 300 K. Frames (e,f) 
display, respectively, the coupling constant (λ) and the averaged frequency (ωln) of the extracted I2χ(ω) with 
seven misfit parameters (σ) from the optical scattering rate included the random noises of amplitude of 1 meV 
for the input single Gaussian peak at 300 K. Frames (g,h) display the same quantities as in frames (e,f) except for 
a larger amplitude of random noise with 5 meV.
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come from unknown experimental uncertainties which every experimental data may have. Our results indicate 
that the optical data of Bi2212-OPT96A sample contain intrinsic temperature-dependent evolutions even though 
they show some dependencies on the quality of fits.

Now we applied the maximum entropy method (MEM) to optical data of the underdoped Bi2212-UD69 sam-
ple. The electron-boson spectral density functions (I2χ(ω)) of this material have been extracted20. But in the 
previous study the author modeled the shape of I2χ(ω) with two (sharp and broad) components and fitted the 
data with a least-squares process. Here we do not give any constraints on the shape of I2χ(ω) except for a require-
ment that the quantity is positive. We need to use the generalized kernel Eq. (4)9 in the Method section for the 
Allen’s formula to analyze this underdoped cuprate since we have to take care of the pseudogap21 of the under-
doped Bi2212-UD69 sample. We adopted the same shape of the pseudogap which has been used previously20,22; 
in this pseudogap model the density of states loss in the pseudogap is recovered just above the pseudogap. The 
symmetrized and normalized density of states, ωÑ( ) (or the pseudogap), can be described as follows:
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where ΔPG is the size of the pseudogap and Ñ T(0, ) is the density of states at the Fermi energy (or zero frequency). 
We note that − Ñ T1 (0, ) is a measure of the strength (or depth) of the pseudogap. We used the 
temperature-dependent model Ñ T(0, ) observed by Kanigel et al.23,24, i.e. .Ñ T T T(0, ) 0 67 / * for T ≤  T* and 
1.0 for T >  T*, where T* is the pseudogap (onset) temperature. For this analysis we take T* =  300 K and 
ΔPG =  43.3 meV. In Fig. 6(a) we display the optical scattering rate data and fits using the maximum entropy 
method at various temperatures of normal states. The misfit parameters (σ) for these fits are, respectively, 4.2, 3.1, 
3.8, 3.3, 3.4, 3.4, 3.5, and 3.7 from low to high temperatures. We needed to have the impurity scattering rates to 
remove non-physical upturns in low frequency region14. The impurity scattering rates (1/τimp) are 10, 10, 0, 0, 0, 
30, 80, and 80 meV, respectively, from low to high temperatures. In Fig. 6(b) we display the extracted I2χ(ω) at 
various temperatures which have a dominant single peak and show strong temperature-dependencies; the ther-
mal broadening may exist in the extracted I2χ(ω) and the peak position clearly shifts to higher frequency with 
increasing temperature. But if we consider only the temperature smearing this peak-shift is not expected (refer to 
Fig. 1 and related discussion). These results look similar to the reported I2χ(ω)20 but as we pointed out previously 
in this new work the shape of I2χ(ω) is not modeled. In the inset we show the temperature-dependent evolution 

Figure 5.  Frame (a) shows optical scattering rate data of an optimally doped Bi2212 (Bi2212-OPT96A) and fits 
using the maximum entropy method (MEM) at three temperatures above Tc, 96 K. Frame (b) shows extracted 
electron-boson spectral density functions (I2χ(ω)) using the MEM fits with two different misfit parameters at 
each temperature (see in the text). In the inset we compare two sets of temperature-dependent peak positions of 
the I2χ(ω) obtained with two different misfit parameters. In frames (c,d) we display, respectively, temperature-
dependent coupling constant (λ) and logarithmically averaged frequency (ωln) of extracted I2χ(ω) with the two 
different misfit parameters.
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of the peak position in the extracted I2χ(ω); this temperature-dependent trend of the peak position is slightly 
different from that in the reported literature20. This difference can be attributed to the different constraints on the 
shape of I2χ(ω) in the two different analysis methods (one is the MEM and the other a least-squared method). The 
peak position shows an anomaly (a kink) near 150 K; above the temperature the peak position decreases almost 
linearly with decreasing temperature and below the temperature the position seems to be fixed at around 26 meV. 
This characteristic temperature might be related to the onset temperature of the magnetic resonance mode which 
was observed by inelastic neutron scattering experiments25,26. In Fig. 6(c,d) we display, respectively, the coupling 
constant (λ) and the averaged frequency (ωln) as functions of temperature. Both quantities show strong 
temperature-dependencies; while the coupling constant increases, as lowering temperature, almost linearly from 
1.8 at 295 K to 5.7 at 70 K the average frequency decreases with reducing temperature and shows a kink near 
200 K. These strong temperature-dependencies (~68% decrease in λ from 70 K to 295 K) cannot be explained with 
the temperature smearing effect (less than 1% decrease in λ from 5 K to 300 K for the single Gaussian case) which 
can be caused by the maximum entropy inversion process; if we consider the results of our previous model calcu-
lations the temperature-dependencies observed in the experimental data are too large to be caused by the temper-
ature smearing effect. These results also indicate that the experimental data of Bi2212-UD69 sample clearly 
contain intrinsic temperature-dependent evolutions. We note that similar strong temperature-dependent results 
have been obtained by Hwang20 using a least-squares fit analysis of the same material system.

Comparison of the Approximate and Full Expressions for the Optical Conductivity
So far we have used the approximate formulas7,9 (Eq. (3) and Eq. (4)) to produce the theoretical data and to 
analyze both the theoretical and experimental data using the maximum entropy inversion process. Therefore 
one question which one may ask would be that if the full expression (Eq. (5)) for the conductivity7,19 (refer to 
the Method section) instead of the approximate formulas7,9 is applied, are the results and conclusion obtained 
previously still maintained? To answer this question we performed the following study. First we compare the 
optical scattering rates obtained using both approximate and full expressions at various temperatures for the two 
model input (single and double Gaussian) I2χ(ω) cases. The resulting optical scattering rates for the two single 
and double Gaussian I2χ(ω) cases are displayed in Fig. 7(a,b), respectively. At low temperatures below 100 K the 
two optical scattering rates obtained using two different formulas (Eqs (3 and 5)) agree each other quite well 
in a wide spectral range. At 100 K these results are similar to those of Shulga et al.7. As higher temperatures the 
two scattering rates show significant discrepancies in low frequency region below 100 meV and the discrepancy 
becomes larger as temperature increases.

Now we extract the electron-boson spectral density function (I2χ(ω)) from the optical scattering rates 
obtained with the full expression using the approximate formula and the maximum entropy inversion process 
to see any serious differences in the temperature-dependent properties between two optical scattering rates 

Figure 6.  Frame (a) shows the optical scattering rates of underdoped Bi2212 (Bi2212-UD69) and fits using 
the maximum entropy method (MEM) at eight different temperatures above Tc, 69 K. Frame (b) shows the 
extracted electron-boson spectral density functions (I2χ(ω)) using the MEM inversion process. In the inset we 
display temperature-dependent peak position of the extracted I2χ(ω). In frames (c,d) we display, respectively, 
temperature-dependent coupling constant (λ) and logarithmically averaged frequency (ωln) of the extracted 
I2χ(ω).
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obtained with the two different formulas. The resulting fits, the data, and extracted I2χ(ω) are displayed in 
Fig. 8(a–d) for both single and double input Gaussian I2χ(ω) cases. For the single Gaussian case the fitting 
quality become worse as the temperature increases and extracted I2χ(ω) shows a single peak located at a simi-
lar peak frequency of the input I2χ(ω). We also calculated the coupling constant (λ) and the logarithmically 
averaged frequency (ωln) (refer to Eq. (1)) from the extracted I2χ(ω) and displayed them as functions of tem-
perature in the insets of Fig.  8(b,d), respectively. Interestingly, both quantities show small 
temperature-dependencies: ± 0.3% of the average 1.02 for λ and ± 0.7% of the average 62.48 meV for ωln. The 
absolute values (λ  1.02 and ωln  62.48 meV) are similar to those (λ  1.05 and ωln  59.25 meV) in Fig. 4(a,b); 
while the coupling constants show ~3% lower than those in Fig. 4(a) the averaged frequencies show ~5% 
higher than those in Fig. 4(b). For the double Gaussian case the fitting qualities for all temperatures are quite 
good. But the extracted I2χ(ω) functions show some discrepancies compared with the input I2χ(ω), particu-
larly for 300 K; at this temperature the two peaks are not resolved well. Interestingly the coupling constant and 
averaged frequency still show small temperature dependencies (± 0.2% of the average 1.51 for λ and ± 2.6% of 
the average 78.18 for ωln) even though the absolute values (λ  1.51 and ωln  78.18 meV) are slight different 
from those (λ  1.68 and ωln  76.40 meV) in Fig. 4(a,b). While the coupling constants show ~10% lower than 
those in Fig. 4(a) the averaged frequencies show ~2% higher than those in Fig. 4(b). This study allows us to get 
a conclusion that the two robust quantities obtained using the maximum entropy inversion process with either 
approximate or full formula show small temperature-dependencies even though their absolute values may be 
slightly different from the real ones. In other word, we expect that application of either formula to measured 
experimental data will lead to the same conclusion as long as we consider the temperature-dependent intrinsic 
properties.

Conclusion
We investigated an issue whether there are any intrinsic temperature-dependent trends in I2χ(ω) extracted from 
measured optical scattering rates using the maximum entropy inversion process. From model calculations we 
learned that temperature smearing (or thermal broadening) in the extracted I2χ(ω) might occur when the quality 
of fits was not good enough. This temperature smearing might cause peak-shifts (or spectral weight redistribu-
tions) for the input I2χ(ω) which consists of two identical (or double) Gaussian peaks. We also found that the 
coupling constant (λ) and the logarithmically averaged frequency (ωln) are quite robust to the quality of fits and 
these quantities can be used to judge existence of intrinsic temperature-dependent properties in the extracted 
I2χ(ω). These two quantities have also important physical meanings: the coupling constant shows the intensity 
of the electron-electron interaction by exchanging the mediated bosons and the averaged frequency is closely 
related to the superconducting transition temperature which can be estimated by the generalized McMillan 
formula27,28. We revisited two Bi-based cuprate systems (Bi2212-OPT96A and Bi2212-UD69) to see intrinsic 
temperature-dependent evolutions in the extracted I2χ(ω) using the maximum entropy method. From these 

Figure 7.  The optical scattering rates obtained using two different formulas: one is the approximate 
Shulga et al. formula and the other the full expression, Eqs (3) and (5), respectively. Frames (a,b) show the 
calculated optical scattering rates at four different temperatures for the single Gaussian and double Gaussian 
cases of input I2χ(ω), respectively.
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studies we conclude that these two cuprate systems have intrinsic temperature-dependent evolutions since the 
coupling constant and the averaged frequency show strong temperature-dependencies which cannot be explained 
by the temperature smearing effect. We hope that our findings attract attentions from researchers in the field 
of superconductivity and make a step forward for figuring out the nature of the Cooper-paring glue of the 
high-temperature superconductors.

Methods
Analysis formalisms.  Allen has derived an integral equation which relates linearly the electron-boson spec-
tral density function (I2χ(ω)) to the optical scattering rate (1/τop(ω)) or the imaginary part of the optical self-en-
ergy (Σ ω Σ ω Σ ω≡ +
∼ i( ) ( ) ( )

op op op
1 2 ) for both normal and superconducting states5. The Allen’s original formulas 

can be used only for T =  0 K and a constant density of states. A generalized formula, which can be used for finite 
temperature and normal state with a constant density of states, has been derived by Shulga et al.7. The Shulga  
et al.’s formula can be written as follows:
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where 1/τop(ω, T) is the optical scattering rate which can be related to the imaginary part of the optical self-energy 
as τ ω Σ ω≡ −T T1/ ( , ) 2 ( , )op op

2 , I2χ(ω, T) is the electron-boson spectral density function, and 1/τimp is the impu-
rity scattering. We note that K(ω, Ω, T) is the Shulga et al.’s kernel which contains the temperature factor7. We 
used Eq. (3) to obtain the optical scattering rates at selected temperatures from the input electron-boson spectral 
density functions and also to extract electron-boson spectral density functions from the calculated optical scat-
tering rates using a maximum entropy method10,29,30.

Generalized kernel for the Allen’s formula.  In order to analyze underdoped cuprates, which have the 
intriguing pseudogaps21, one needs to include the pseudogap (or non-constant density of states) in the model. A 
generalized Allen’s formula, which can take care of the pseudogaps, was derived by Sharapov and Carbtte9. The 
kernel of the generalized Allen’s formula can be written as follows:

Figure 8.  The optical scattering rates obtained with the full expression (Eq. (5)) at various temperatures 
and their corresponding fits using the approximate formula (Eq. (3)) and the maximum entropy inversion 
process. Frames (a,c) show data and resulting fits for the single and double Gaussian cases of input I2χ(ω), 
respectively. Frames (b,d) display extracted corresponding I2χ(ω) using the maximum entropy process for the 
two cases of input I2χ(ω).
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where nB and nF are the Bose-Einstein and Fermi-Dirac distribution functions, respectively, which take care of the 
temperature dependencies, and ω∼N( ) is the symmetrized electronic density of states (N(ω)), i.e. 
ω ω ω≡ + −Ñ N N( ) [ ( ) ( )]/2, which takes care of any energy-dependencies in the density of states including the 

pseudogaps. For extracting I2χ(ω, T) of the underdoped cuprate from measured 1/τop(ω, T) we used the kernel of 
Eq. (4) and a maximum entropy method10,29,30.

Full expression for the optical conductivity.  The previous formulas (Eqs (3) and (4)) derived by 
Shulga’s et al. and Sharapov and Carbotte are approximate7,9; in general, they are valid at high frequencies, i.e.  
1/[ωτop(ω)] ≪  1. However, Shulga et al. show that these formulas are valid in a wider frequency range at 100 K7. 
The full (non-approximate) expression7,19 for the optical conductivity can be written as follows:
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where σ ω


( ) is the complex optical conductivity, ωp is the plasma frequency, 1/τimp is the impurity scattering rate, 
Σ∼

⁎
x( ) is a complex conjugate of Σ∼ x( ), and Σ∼ x T( , ) is the single particle self-energy, which can be written as 

follows31,32:
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where ψ(x) is the digamma function.

Maximum entropy method.  We used the maximum entropy inversion process introduced by Schachinger 
et al.10 to extract the electron-boson spectral density function from the optical scattering rate. We briefly intro-
duce the maximum entropy method here. The maximum entropy method is based on the Bayes’ theorem which 
provides the only consistent bridge between indirect (or posterior) and direct (or likelihood) probabilities30. The 
theorem can be described as follows:

| ℵ =
ℵ ℵ
ℵ

P H D
P D H P H

P D
( , )

( , ) ( )
( )

,
(7)

where H stands for the hypothesis which we wish to infer, D means the data, and ℵ  is any prior knowledge (or 
available background information), which can be the theoretically modeled kernel K(ω, Ω, T) and any exper-
imental sources of uncertainty10. P(H|D, ℵ ) is the posterior probability distribution function (pdf), P(D|H, ℵ ) 
is the likelihood pdf, P(H|ℵ ) is the prior pdf, and 1/P(D|ℵ ) is a normalization factor. In the maximum entropy 
method the appropriate prior for a positive and additive distribution can be of a special form as

α α|ℵ ∝P H f m S f m( [ ] , , ) exp[ ( , )], (8)

where H[ f ] is the hypothesis functional of f, f is positive and additive in our case, and α is a dimensionless param-
eter (initially unknown). S is the generalized Shannon-Jayes entropy which can be written as follows:

∫=




 − −





S f m f x m x f x f x

m x
dx( , ) ( ) ( ) ( )ln ( )

( )
,

(9)

where f(x) needs to be estimated with the highest probability through the maximum entropy process, m(x) is a 
default model, which is usually taken to be a constant. In principle, data are independent each other and are sub-
ject to additive Gaussian noise. Then the likelihood pdf can be written as

χℵ ∝ −P D H f f( [ ], ) exp( [ ( )] /2), (10)2

where χ2 is the misfit, which measures how well a trial (or hypothesis) functional of f (or H[  f  ]) fits to the data 
(D). The [χ(  f  )]2 can be written as follows:

∑χ
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where N is the number of data and σ is an adjustable input parameter which is a measure of fitting quality. We 
call the σ as the misfit parameter. Then using Eqs (8) and (10) the posterior pdf (or Eq. (7)) for f can be written 
as follows:

α α χ
| ℵ =

−
|ℵ

.P H f D m S f m f
P D m

( [ ] , , , ) exp{ ( , ) [ ( )] /2}
( , ) (12)

2

Then the distribution which maximizes this posterior pdf (i.e. αS( f , m) −  [χ(f)]2/2) through a general algorithm 
provided by Skilling et al.33 will give best estimate of f. In our case the data is the optical scattering rate, i.e. 
Dk =  1/τop(ωk), the hypothesis is the calculated optical scattering rate using a trial function f(ωi) =  I2χ(ωi), i.e. 

τ ω ω χ= = ∑ Ω Ω ∆Ω=
∞H K I1/ ( ) ( , ) ( )k hypothesis

op
k j k j j0

2 , and m(ωi) is initially a constant, which means that we do 
not impose any particular structure (or shape) to the initial input I2χ(ω). But this initial condition may cause 
broadening in resulting I2χ(ω). In our maximum entropy process we iterated the process with an input value of 
the misfit parameter (σ) until we reach a criterion10,30, χ2 =  N, where N is the number of data, then the α param-
eter is determined automatically. Eventually, we extracted the most probable f(ω) =  I2χ(ω) and calculated the 
corresponding hypothesis (or the fit) τ ω1/ ( )hypothesis

op  under the given condition (σ) for the optical scattering rate 
data (1/τop(ω)) at each temperature.

One can obtain smoothness of trial function f(x) =  I2χ(x) by introducing a hidden image, h(x), which is 
blurred by a Gaussian as follows10:

∑
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where b is the blur-width which is a hyperparameter and can be determined simultaneously with α by maxi-
mizing P(H[f, h]|D, ℵ , α, m). Here f(x) gets into the likelihood pdf (Eq. (10)) while h(x) gets into the entropy S 
(Eq. (9)). For our maximum entropy process we do not apply a blur value i.e. b =  0, which means that all positive 
discrete f(xi) can be realized as f(xi) =  h(xi). We note that the interval between two consecutive discrete frequency 
variables is 1.0 meV.
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