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Neuroblastoma is one of the most malignant solid tumors in infants and young children. No more than 40% of neuroblastoma
patients can survive for longer than five years after it has been diagnosed. XPC protein is a pivotal factor that recognizes DNA
damage and starts up the nucleotide excision repair (NER) in mammalian cells. This makes up the first group to defend against the
cancer. Previous studies have identified that XPC gene polymorphisms were associated with various types of cancer. However, the
associations betweenXPC gene polymorphisms and neuroblastoma risk have not yet been studied.We investigated the associations
between three XPC gene polymorphisms (rs2228001 A>C, rs2228000 C>T, and rs2229090 G>C) and neuroblastoma risk with 256
neuroblastoma patients and 531 healthy controls in a Chinese Han population. Odds ratios and 95% confidence intervals were
used to access the association between these three polymorphisms and neuroblastoma risk. No significant association was detected
between these three polymorphisms and neuroblastoma risk in the overall analysis as well as in the stratification analysis. These
results suggest that none of these three polymorphisms may be associated with the risk of neuroblastoma in the Chinese Han
population.

1. Introduction

Neuroblastoma originates in primitive neural crest cells of
the adrenal medulla or sympathetic ganglia. It is one of the
most malignant solid tumors in infants and young children,
in particular, accounting for 7%−10% of childhood tumors.
The tumor is found to primarily locate in the retroperitoneal
parts (approximately 60%) and secondly in the mediastinum,
pelvis, and cervical sympathetic ganglion. The rest, about
12%, associates with other malformations [1–3]. The mor-
bidity of neuroblastoma in the live births is about 7.7 cases
per million in China [4]. Despite the application of mul-
timodality treatment including surgery, chemotherapy, and
radiotherapy, no more than 40% of neuroblastoma patients

could survive for longer than five years after diagnosis. Until
now, the etiology of neuroblastoma remains largely unclear
[5, 6].

Genome-wide association study (GWAS) has been used
as a convenient and powerful approach for examining inher-
ited genetic variations in relation to human complex disease,
such as cancer susceptibility [7, 8]. In 2008, Maris et al.
[9] used the GWAS approach to prove that three single
nucleotide polymorphisms (SNPs) in CASC15 gene at chro-
mosome 6p22 (rs6939340, rs4712653, and rs9295536) were
highly associated with neuroblastoma susceptibility in Euro-
pean descents. Since then, lots of SNPs in specific chromo-
somal regions have been identified by the GWAS approach.
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Several gene polymorphisms are significantly associated with
the risk of neuroblastoma, such as LIN28B [10], HACE1 [10],
BARD1 [11], LMO1 [12], HSD17B12 [13], DDX4 [13], IL31RA
[13], and DUSP12 [13], which have been discovered by means
of GWAS. Besides, several genes, such as FAS [14], FASL
[14], NEFL [15], and TGFBR3L [16], have been discovered by
candidate gene approach.

Nucleotide excision repair (NER) can preserve the hered-
itary integrity and stability of genomic DNA through elim-
inating DNA damage generated by exogenous agents (i.e.,
mutagenic and carcinogenic substances) and photoproducts
caused by sunlight exposure [17, 18]. In humans, hereditary
defects of genomic DNA in NER are involved in several auto-
somal recessive diseases. Xeroderma pigmentosum (XP) is
characterized by a strong predisposition to skin carcinomas.
However, it was not until 1968 that Cleaver [19] identified that
XP could result from the defects in NER. NER is a complex
biochemical process that involves hundreds of components
in human cells, including the seven XP-related genes (XPA,
XPB, XPC, XPD, XPE, XPF, and XPG). XPC protein is an
important DNA damage recognition protein and an initiator
of the NER process that defends against cancer [20–25].

Some XPC gene SNPs have been identified to be impli-
cated in melanoma [26], colorectal cancer [27, 28], prostate
cancer [29], hepatocellular cancer [30], lung cancer [31],
and gastric cancer [32]. However, the association between
XPC gene polymorphisms and neuroblastoma risk has not
been studied. In view of this, we investigated the relation-
ship between XPC gene polymorphisms (rs2228001 A>C,
rs2228000 C>T, and rs2229090 G>C) and neuroblastoma
susceptibility in a Chinese Han population making use of a
total of 787 participants (256 cases and 531 controls).

2. Materials and Methods

2.1. Study Subjects. A total of 256 newly diagnosed and
histopathologically confirmed neuroblastoma cases were
recruited from the Guangzhou Women and Children’s Med-
ical Center between February 2010 and November 2015 [33–
35]. During the same period, 531 healthy children were ran-
domly selected as the age- and gender-matched controls after
receiving routine physical examination [35–37]. Both the
cases and the controls were unassociated ethnic Chinese Han
individuals. The study was granted permission by the Insti-
tutional Review Board of GuangzhouWomen and Children’s
Medical Center. Demographic factors and medical histories
were gathered through the structured questionnaires.Written
informed consent was received from the guardians of each
child participant. Each participant donated 2mL of blood for
genomic DNA extraction.

2.2. Polymorphism Analysis. The selection criteria were
described previously, in terms of the minor allele frequency,
putative functional potentials, and low linkage disequilib-
rium [38]. Based on the criteria, three potentially functional
SNPs (rs2228001 A>C, rs2228000 C>T, and rs2229090 G>C)
were selected. s2228001 A>C (Lys939Gln) and rs2228000
C>T (Val499Arg) are nonsynonymous SNPs and they have
been widely investigated in various types of cancer. XPC

rs2229090 G>C is 3󸀠UTR polymorphism within miRNA
binding site. Genomic DNA was extracted from 2mL of
peripheral blood sample using the TIANamp Blood DNA
Kit (TianGen Biotech Co. Ltd., Beijing, China) following the
manufacturer’s instructions. Qualified DNA samples were
diluted to 10 ng/𝜇L and loaded in 96-well plates. Then, these
three SNPs were genotyped using Taqman real-time PCR
method as described previously [39, 40].

2.3. Statistical Analysis. 𝜒2 test was used to evaluate the dif-
ferences in the frequency distributions of the demographics
and genotypes between the neuroblastoma cases and the
controls. Hardy-Weinberg equilibrium (HWE) was tested in
the controls by the goodness-of-fit chi-squared test. Odds
ratios (ORs) and 95% confidence intervals (CIs) were used
to assess the correlations between the three polymorphisms
and neuroblastoma susceptibility with the unconditional
multivariate logistic regression analysis. 𝑃 value < 0.05 was
considered as statistically significant. All statistical tests were
two-sided and analyzed using SAS software (version 9.1; SAS
Institute, Cary, NC).

3. Results

3.1. Frequency Distribution of Selected Characteristics. As
displayed in Supplemental Table 1 in SupplementaryMaterial
available online at http://dx.doi.org/10.1155/2016/2932049,
the average age of the cases was 30.87 ± 26.45 months
and 29.73 ± 24.86 months for the controls. No significant
differences were observed in terms of age (𝑃 = 0.239) and
gender (𝑃 = 0.333) between the case and the control groups.
According to the INSS standard [3], 54, 65, 44, 77, and 9
patients developed clinical stages I, II, III, and IV and 4s
neuroblastoma, respectively. Among these cases, 46 lesions
occurred in adrenal gland, 87 in retroperitoneal region, and
90 in mediastinum.

3.2. XPC Gene Polymorphisms and Neuroblastoma Suscepti-
bility. In the current study, 253 cases and 531 controls were
successfully genotyped.The genotype frequencies of the three
polymorphisms are shown in Table 1. The observed genotype
frequencies of the three SNPs were in accordance with HWE
in the control subjects (𝑃 = 0.948 for rs2228001 A>C
polymorphism, 𝑃 = 0.988 for rs2228000 C>T polymor-
phism, and 𝑃 = 0.994 for rs2229090 G>C polymorphism).
There is no significant association between rs2228001 A>C
polymorphism and neuroblastoma susceptibility. Similar
results were found for rs2228000 C>T and rs2229090 G>C
polymorphisms.

3.3. Stratification Analysis of XPC Gene Polymorphisms with
Neuroblastoma Susceptibility. Stratified analyses were con-
ducted regarding age, gender, sites of origin, and clinical
stages to assess the association of the three selected polymor-
phisms with the risk of neuroblastoma (Table 2). However,
no significant association was identified for any of the three
polymorphisms.
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4. Discussion

In this hospital-based study comprising 256 cases and 531
controls, none of the three XPC gene polymorphisms was
associated with neuroblastoma risk when compared to the
reference genotypes. To the best of our knowledge, this is the
first investigation looking into the relationship between XPC
gene polymorphisms and neuroblastoma susceptibility in a
Chinese Han population.

XPC gene (http://www.ncbi.nlm.nih.gov/gene/7508) is
located on chromosome 3p25.1 with 18 exons, which encodes
a component of the NER. XPC plays a distinctively vital role
in the early stages of global genome NER. XPC and UV
excision repair protein RAD23 homolog B (HR23B) form the
XPC-HR23B complex, which recognizes DNA damage and
initiates NER in mammalian cells, thereby protecting against
cancer [20–25, 41, 42].

XPC gene polymorphisms are involved in the different
types of cancer. Among them, rs2228001 A>C and rs2228000
C>T were widely investigated. Paszkowska-Szczur et al. [26]
genotyped 714 melanoma cases and 1841 healthy controls
to evaluate the relationship between 94 SNPs within the
seven XP genes (XPA–XPG) and the melanoma risk in a
Polish population. They found that XPC rs2228000 CT and
TT genotypes were significantly associated with decreased
melanoma risk when compared with the reference genotype.
Moreover, they observed that rs2228000 CT genotype and
rs2228000 TT genotype were associated with decreased
colorectal cancer risk compared to the CC genotype in 758
colorectal cancer patients and the same number of controls
[27]. In a study conducted in Malaysia with 255 colorectal
cancer patients and 255 controls, Ahmad Aizat et al. [28]
found that XPC gene rs2228000 GG genotype was associated
with an increased colorectal cancer risk. However, there is
no previous study investigating the association between XPC
gene polymorphisms and neuroblastoma susceptibility [43].
Our study fits the niche and it found no association between
the three SNPs ofXPC gene and neuroblastoma.However, the
negative results might result from the relatively small sample
size in this study, although it was the largest study regarding
the Chinese children to date.

5. Conclusions

In summary, all the three XPC gene polymorphisms
(rs2228001 A>C, rs2228000 C>T, and rs2229090 G>C) may
not associate with neuroblastoma risk in the Chinese Han
population. However, further studies with larger sample size
and different ethnicities should be carried out to verify our
results.
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