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COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to
critical. To study and control its effects, a large number of researchers are focused on two
substantial aims. On the one hand, the discovery of diverse biomarkers to classify and
potentially anticipate the disease severity of patients. These biomarkers could serve as a
medical criterion to prioritize attention to those patients with higher prone to severe
responses. On the other hand, understanding how the immune system orchestrates its
responses in this spectrum of disease severities is a fundamental issue required to design
new and optimized therapeutic strategies. In this work, using single-cell RNAseq of
bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we
contribute to both aspects. First, we presented computational supervised machine-
learning models with high accuracy in classifying the disease severity (moderate and
severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar
lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell
populations in the lungs microenvironment that correlated with different clinical responses.
Given the results, patients with moderate COVID-19 symptoms showed an activation/
inactivation profile for their analyzed cells leading to a sequential and innocuous immune
response. In comparison, severe patients might be promoting cytotoxic and pro-
inflammatory responses in a systemic fashion involving epithelial and immune cells
without the possibility to develop viral clearance and immune memory. Consequently,
we present an in-depth landscape analysis of how transcriptional factors and pathways
from these heterogeneous populations can regulate their expression to promote or
restrain an effective immune response directly linked to the patients prognosis.
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1 INTRODUCTION

COVID-19 derives from SARS-CoV-2 infection, having diverse
clinical symptoms according to the infection severity. There are
still many unresolved questions regarding the disease
pathogenesis and the reasons underlying the high variations on
clinical courses, ranging from asymptomatic forms to severe
manifestations. So far, illness severity is cataloged according to
the clinical manifestations. However, physiological symptoms do
not always reflect the capability of patients to overcome the
disease. A molecular characterization based on signatures and
alterations at the cellular level according to illness severity can
streamline the clinical management and treatment. Interestingly,
the responses of immune and non-immune cells recruited during
the infection determine the clinical outcome of the disease.
Recent single-cell studies show the differences of these cells,
characterizing the immune landscape during infection (1–5).
Through various cytokines and chemokines, the interaction
between these cells is essential to determine the clinical
outcome. Clinical symptoms associated with SARS-CoV-2
comprise several dominant processes linked to tissue
inflammation, usually given by the cytokine storm (6–9). The
cytokine storm is an uncontrolled over-production of soluble
inflammation markers that sustain an aberrant systemic
inflammatory response (10, 11). During COVID-19, pro-
inflammatory cytokines such as interferon, interleukins (IL-6,
IL-12, IL-7), and chemokines (CXCL10 and CCL2) are essential
to rule clinical complications (1, 10, 12–14). Neutrophils, T cells,
B cells, and macrophages participate actively in the massive
production of pro-inflammatory molecules (1, 12, 15). Despite
these findings, the underlying mechanisms regulating this
cytokine storm are unknown. The characterization of the
molecular regulation of cell responses during the infection
serves to understand fundamental mechanisms and potentially
restructure the therapeutic schemes and treatments against
COVID-19.

Recent single-cell data from bronchoalveolar lavage fluid
(BALF) of 3 healthy controls and 9 COVID-19 patients
described the cellular composition of immune cells and the
expression of some cytokine/chemokine and chemokine
receptors in each clinical response (1). Using this dataset, we
identified possible biomarkers and scrutinized the potential
mechanisms that characterize different disease severities. In
this work, through a supervised machine-learning technique
applied over the single-cell RNAseq data, we propose a
computational model capable of classifying and distinguishing
with high accuracy cells coming from COVID-19 patients with a
moderate or severe response according to their genetic profiles.
Besides, we suggest a potential genetic signature to classify
moderate or severe response in patients with COVID-19.
Furthermore, the output of this classifier can prioritize the
level of attention of new patients based on their gene
expression profiles using a BALF sample. Finally, to identify
some molecular mechanisms underlying immune response on
COVID-19 infection, we analyzed the diversity of cellular
composition of some cells in the immunological system.
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Thus, we described the undergoing changes for every cell and
how these changes promote COVID-19 severity altogether
among patients. We suggest that severe patients had the innate
and adaptive impaired immune response; innate cells activated
the IL-6 pathway in a positive loop affecting antigen presentation
that impacts adaptive response and immune cells maturation.
Although this group seems to activate IFNs pathways, their
activation might not be in the correct order to be effective.
Overall, our study contributes to identifying potential disease
severity biomarkers from BALF samples and dissecting the
regulatory mechanisms and pathways potentially responsible
for triggering an inadequate immunological response in
patients with COVID-19.
2 METHODS

2.1 Data
Raw scRNA-seq data of Covid-19 patients were obtained from
GEO (GSE145926). To sum up, bronchoalveolar lavage fluid
(BALF) cells were collected from 3 healthy controls and 9
patients grouped according to their symptoms as moderate,
and severe. Samples were sequenced using 10x Genomics
technology (1). Originally, there was one patient with critical
symptoms. However, it was considered among the severe group
due to the poor representation of the critical symptomatology.

2.2 Data Processing
The count matrix was filtered to exclude cells with <200 genes
and mitochondrial gene percentage <0.05, we got 90696 cells
within 25627 genes each one. Using the “seurat” v3.1.5 R package
(16), data were log-normalized using the function
‘LogNormalize’ with the default parameters. To assess cell
heterogeneity, we considered the 2000 genes with the highest
variability using the ‘FindVariableFeatures’ function with the
‘vst’ method. Data were integrated into one object for all
conditions (healthy, moderate, and severe). We applied a linear
transformation to the data prior to the PCA computation.
Dimensionality reduction was performed in the uMAP space
using the top 20 principal components of the PCA. To perform
data clustering, we used the Seurat graph-based approach with a
resolution of 0.5.

2.3 Machine-Learning Analysis
As part of contributing to markers in moderate and severe stages of
COVID-19 disease, we performed a machine-learning analysis on
the scRNAseq data. To identify the set of genes that serve as
biomarkers to differentiate the outcome of moderate and severe
COVID-19 patients, we applied the Extreme Gradient Boosting
(XGBoost) algorithm. This is a supervised algorithm to accomplish
tree classification widely used in machine-learning (17, 18).
All calculations were done in python (version 3.7.9) through
the open source software library XGBoost (17). To this end,
we proceeded as follows. Cells from data count matrices
comprising moderate and severe patients were labelled as
September 2021 | Volume 12 | Article 705646
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0 and 1 respectively. Then, we randomly selected 75% of the
entire samples to define the train set of the model, the rest of the
data was used to integrate the test data. The XGBoost model was
built with the train data set and evaluated its performance with
the test data set. We applied a K-fold (n_split =5) cross-
validation method to ensure the independence of results onto
the way to split the training and test data. This step essentially
consisted in dividing the entire data into five equal proportions.
Then, we trained the model by selecting four proportions as
training set and the rest as test dataset. To evaluate the
performance of the model, we calculated the confusion matrix
over the test datasets. We repeated this procedure five times, in
each realization we selected a different proportion as the test
data, and the rest as the training data set such that all possible
combinations were taken into account. We evaluated in each
realization the performance of the model and its dependence on
the split of the data through the area under the curve (AUC) of
ROC curves, see supplementary material. A graphical description
of the entire pipeline is shown in Figure S1. XGBoost classifiers
that sustain the Figures 2A, 2D in main text are reported in the
machine learning section at https://github.com/resendislab/
Covid-19_scRNAseq. It was accomplished by selecting the
following parameters: maxima depth 4, eta = 0.2, metric to
evaluate AUC, and objective to evaluate binary:hinge. Iteration
of the method was done through 1000 steps. We evaluated the
relevance assessment of characterized genes through the shap-
values (SHapley Additive exPlanations) for the XGBoost
algorithm. Shap values utilizes a game-theoretical approach to
proceed with the best interpretation and explanation of the
output of our machine-learning model. To visually identify the
most relevant genes that contribute to the classification, we
plotted the aggregate explanation plot, which comprises the
SHAP values for each gene and their average expression levels
(19). The model without quality associated genes was obtained in
the same way as described before, see Figure S1. Assessment of
both models (with and without quality associated genes) was
accomplished by utilizing recent and entirely independent
scRNAseq data of BALF samples for 3 moderate and 6 severe
patients (19).

2.4 Cell Type Annotation
To identify the cell type in each cluster, differentially expressed
genes were gathered using the FindMarkers function and
compared to marker genes for each cell type. We got the
marker genes from two sources: 1) The LM22 compilation
containing 22 functionally defined human immune subsets
profiled by microarrays (20); 2) based on a study of the
changes in gene expression in cell types involved in idiopathic
pulmonary fibrosis (20). Cell types and their marker genes are
described in Table S1. Therefore, we identified the differentially
expressed genes using the Wilcoxon Rank Sum test using a p-
value <0.01 threshold. Then, we computed cell proportions
quantifying the number of cells in each cell type divided by the
total cells for the respective healthy control or patient. We split
the T & NK group into T cells, NK, and Neutrophils by data
Frontiers in Immunology | www.frontiersin.org 3
reintegration. Then, taking only this group, we normalized it,
found the 2000 most variable genes, computed the first 30
principal components to run the uMAP, and the top 20
principal components to perform the clustering with a
resolution parameter of 0.6.

Accordingly with the T & NK separation and using the same
parameters, we analyzed the heterogeneity within epithelial cells.
We used 14 marker genes to identify five epithelial subtypes:
alveolar type I (AT1), alveolar type II (AT2), secretory,
squamous, and ciliated (21, 22) (Table S2).

2.5 Data Re-Integration
Data from every cell type for groups control, moderate, and
severe were reintegrated and re-clustered (as described above)
using the top 20 principal components of the PCA and a
resolution of 0.5. Data subsets representing each cell type were
used to study their regulatory network inferences.

2.6 Responsive Genes and Regulatory
Network Inference
Functional pathway analysis was performed with PROGENy by
the computation of top 500 pathways activity scores (23, 24)
implemented in the “progeny” v1.12.0 R package. To infer the
transcription factors (TFs) based on single cell expression data
we used DoRothEA (24, 25) implemented in the R packages
“dorothea” v1.2.0 and “viper” v1.24.0. Dorothea is a
comprehensive resource containing a curated collection of
transcriptional factors that compute their activity from the
variations of the mRNA levels of their transcriptional targets.
The activity is calculated via Viper which obtains a p-value and a
normal enrichment score when it compares the regulon
enrichments score with a null model which is randomly
generated by permuting the samples. We took the top TFs
value for each population: 50 for macrophages, monocytes and
epithelial cells, 30 for T/NK cells and 100 for dendritic and B
cells. A differentially expressed analysis and clustering were
performed based on the TF activity, the used parameters were:
the top 50 principal components of the PCA, a resolution equal
to 0.8, uwot method, and the cosine metric. We used the
framework provided by Seurat.

2.7 Pathway Enrichment Analysis
Pathway enrichment analysis was done using the Gene Set
Enrichment Analysis (GSEA) (26). Gene sets were obtained
from the MsigDB database, we used the hallmarks (27) and
curated (C2) datasets. Statistical significance was assigned with
an FDR < 0.05 and p-value < 0.01. In the specific case of dendritic
cells, we performed a GSEA using the “webgestalt” R package
v.0.4.4 and the TFs activity values from DoRothEA as input, and
for the enrichment analysis we utilized KEGG, Gene Ontology-
Biological Process (GO-BP), Wikipathway, Panther, and
Reactome databases. Statistical significance was assigned with
an FDR < 0.05. The parameters sigMethod, minNum,
reportNum and perNum were changed from the default values
to top, 5, 30 and 10000, respectively.
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3 RESULTS

3.1 Different Cell Populations Among
COVID-19 Patients
Recently single-cell RNA studies on patients with COVID 19
suggest that specific immune and non-immune cells determine
the disease severity (1, 3, 9, 28). We used data from
bronchoalveolar lavage fluid (BALF) cells from 9 patients and
3 healthy controls. Patients were grouped according to the
severity of the COVID-19 infection as moderate, and severe (1,
3). We mapped single-cell expression data on a Uniform
Manifold Approximation and Projection (uMAP) to identify
cell subpopulations correlated with the infection severity.
Clustering analysis over the samples showed 22 clusters with
different gene expression profiles (Figure S2). To ensure a proper
cell type identification across data, we used expression profiles
described in the LM22 immune compilation and idiopathic
pulmonary fibrosis (23, 24). A total of 43 genes classified the
data into 10 subpopulations: epithelial, monocytes, macrophages,
dendritic, T, natural killer (NK), B, neutrophils, and “other”
(Figures 1A, B, and Table S1). We identify T and NK cells in two
steps: First, we separate both groups of cells as one named T &
NK (Figure 1A). Second, taking the cells of the T & NK group,
Frontiers in Immunology | www.frontiersin.org 4
we reanalyzed data to separate subpopulation, under this
reanalysis we identified T cells, NK, neutrophils and others
(Figure 1A: inset). Group named as “other” gathered cells that
we were unable to associate with a specific phenotype. These cell-
types correspond to cells typically found in BALF (1, 3, 9, 29).
We found differences in cell-types proportions compared to
other reports using the same database (1, 15). These differences
emerged because we used more gene markers to increase the
selectivity of cell subpopulations and changes in some pipeline
parameters. Besides, we determined the proportion of each cell
type among healthy controls and patients (Figure 1C). Box-plots
represent absolute percentage data distribution within patients
and healthy controls for every cell type. At a glance, moderate
patients showed an increased proportion of Epithelial, NK, T and
B cells than healthy controls. Additionally, severe patients
showed a higher dispersion of all cells-types. Although the
proportion of macrophages does not change for patients and
healthy controls, different studies have confirmed the change in
the proportions for the other cell-types (3, 5, 10, 12). These
findings are remarkable to find associations with clinical disease
responses. However, we should be cautious on the interpretation
as cell-types populations change dramatically over the course of
active viral infections, given that these proportions are affected
A B

C

FIGURE 1 | Differences in cell types among patients with diverse infection severity. (A) Umap projection of single cell data showing diverse cell types identified based on
biomarkers (Table S1). The inset shows the uMAP projection and separation for the T & NK group. (B) Heatmap showing differentially expressed genes of clusters
(columns) used to identify the cell types (rows): EPI, Epithelial cells; MON, monocytes; MP, macrophages; NK, natural killers cells; DC, dendritic cells; T, T cells; B, B cells;
NEU, neutrophils. Rows dividers are related to each cell type, and the column groups set the cluster associated to each cell type. Colorbar shows the genes normalized
expression values. (C) Boxplot for every cell-type identified, proportions of each cell type among healthy controls, moderate and severe patients.
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by clinical and genetic factors, sampling dates, and the number of
days since the onset of symptoms (1, 3, 9, 29). Heterogeneity in
cell composition supplies valuable information to survey cellular
differences among patients with distinct responses to infection.
As a consequence, we wondered if we could find a set of genes
useful to classify the disease severity among patients using
this dataset.

3.2 Cells From COVID-19 Patients Are
Accurately Classified Through a Specific
Gene Signature
Severity classification is crucial to apply a treatment tailored for
every patient and reduce overall mortality. This challenge
summons the need for a severeness biomarker to classify
COVID-19 patients efficiently and improve their prognosis.
Although we have shown that the samples have a
heterogeneous composition in their cell-type population, in
this section we survey possible genetic biomarkers of the
Frontiers in Immunology | www.frontiersin.org 5
disease severity. To this aim, we applied a machine-learning
algorithm to construct a classifier of the clinical output from
scRNASeq and identify a set of genes with relevance to classify
the single-cell RNAseq samples in severe and moderate data. We
followed four main steps: selecting the data for training and
testing the model, building the classification model (Extreme
Gradient Boosting, XGBoost), assessing the model performance,
and identifying variables that contribute to the classification. As a
result, our machine-learning model correctly classified cells from
moderate and severe patients with an accuracy of 0.98 for testing
data (Figure 2A). To verify the reproducibility of this finding, we
assessed its robustness by constructing an ensemble of machine-
learning models with different sets of training and testing
datasets. Specifically, we used a k-fold cross-validation method,
consisting of a resampling procedure for dividing the entire data
into distinct groups of train and test data sets. First, we split the
whole data into five random equivalent proportions. Afterward,
we iteratively resample the data by selecting one proportion as
A B

D

C

FIGURE 2 | Gene signature able to classify single-cell data from moderate and severe patients. Gene signature able to classify single-cell data from moderate and
severe patients. (A) Confusion matrix of a realization. Each section shows the number of cells classified in each category. Dark blue sections indicate the number of
cells correctly categorized. (B) Venn diagram of the relevant genes found on the five realizations in the resampling process, numbers stand for genes shared across
realizations. Eight genes were found in cross-validation analysis. (C) SHAP plot of one realization. In the figure, we depicted the first twenty genes with higher
contribution to the classification of moderate and severe patients. We have ordered the genes from high to low relevance from top to bottom. Blue and red colors
represent low and higher gene expression, respectively. Larger positive values in the SHAP axis set the gene relevance to classify severe patients, whereas negative
values set the gene relevance for moderate patients. (D) Validation confusion matrix. Each section shows the number of cells classified in each category. Dark blue
sections indicate the number of cells correctly categorized.
September 2021 | Volume 12 | Article 705646
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the testing data and the rest as training data. We repeated the
resampling process five times, each one selecting a different set of
data for training and testing. We built an XGBoost model in each
realization and evaluated its performance through the area under
the ROC curve (AUC). The average AUC over the ensemble was
0.97, showing that the model was robust in selecting the training
and testing datasets (Figures S3, 4). Besides, by comparing the
results obtained from the cross-validation method, we identified
a signature of eight genes that always appeared in the set of
relevant genes to classify moderate and severe patients,
independently of the data resampling (Figure 2B). These genes
were RPS26, MT-ATP8, CCL2, MT-ND4, MALAT1, APOC1,
CXCL8, and NUPR1. To explore the relevance of these genes in
the classification process, we selected one of the XGBoost models
(see Methods) and calculated the SHAP value for each gene, a
numeric value that ranges from positive to negative values and
quantify the level of contribution of the gene into the
classification (19). In our case, a gene contributes to classify
moderate patients when its SHAP value is negative. In contrast,
the gene contributes to classify severe patients when its SHAP
value is positive. It is important to note that one gene can have
different SHAP values accordingly its gene expression changes
from low to high (Figure 2C). For instance, MT-ND4
contributes to classify severe patients when it has high
expression levels (positive region in the SHAP values)
(Figure 2C). However, MT-ND4 contributes to classify
moderate patients when it has low expression (negative SHAP
values). Overall, there is an insight into each gene over and
subexpression tendency associated with classifying moderate and
severe patients. The set of genes with a high average expression
level in severe patients were RPS26, CCL2, MT-ND4, and
CXCL8. Otherwise, MT-ATP8, MALAT1, APOC1, and
NUPR1 belong to the set of genes with a low average
expression level in severe patients (Figure 2C). Thus, we
postulate that this set of genes and their expression levels can
classify patients with severe and moderate severity from their
single-cell gene expression profiles.

To verify the performance of the XGBoost model in
classifying cells in another dataset, we evaluated the
performance of the XGBoost model over an entirely new and
recently published dataset of scRNAseq for BALF samples of 9
patients with moderate and severe responses (21). This dataset
represents a total of 41573 cells obtained from 6 severe and 3
moderate patients. The model classified these cells with high
accuracy from their gene expression profile (Figure 2D). Besides,
among the genes that are part of the gene signature, there are
included quality-associated genes (MTR, RPS, and RPL), non-
coding genes (MALAT1), and interferon-stimulated genes (ISG).
Reports indicate that the expression of ISG has an inherent
dynamic (30). In order to evaluate the robustness of our
computational pipeline, we reconstructed and assessed the
performance of a new classifier that excluded MALAT1, ISG,
MTR, RPS, and RPL. Two criteria mainly selected this set of
genes, first, by literature research. Second, genes obtained from
the interferome database including type I, II, and III interferons
(IFN) regulated genes manually curated from publicly available
Frontiers in Immunology | www.frontiersin.org 6
microarray datasets (31). Having defined the set of genes to be
excluded in the analysis (32 in total, Table S3), we trained a new
machine-learning model and evaluated its performance as
previously described. We concluded that our reduced model
presents high accuracy to classify severe and moderate cells from
BALF samples (Figure S5). Notably, when assessing its
performance with the new set of scRNAseq BALF samples, the
model classified severe and moderate cells in an accurate way
(Figure S5).

In summary, our machine-learning approach allowed us to
construct a computational model helpful for classifying severe or
moderate responses in BALF samples from COVID-19 patients,
which in the clinical setting would help make a series of decisions
to act more efficiently and quickly. In this section, we have built a
machine-learning model that differentiates severe frommoderate
patients from a bulk population without considering the detailed
description of the population heterogeneity in the samples. In the
following sections, we explore how COVID-19 infection affects
transcriptional profiles of different subpopulations in different
patients. Using these results, we examined the association
between the expression profile in cells with the disease severity
among patients and described their landscape of molecular
mechanisms underlying COVID-19 infection.

3.3 Epithelial Cells
Epithelial cells have a crucial role during COVID-19 infection,
contributing to the disease severity through a dysfunctional
response to viral infection (3, 4, 28, 33–35). SARS-CoV-2
induces transcriptional signatures in human lung epithelial
cells that promote different symptoms (29). However, the
pathways and transcriptional factors regulating these
expression patterns are unknown, limiting the understanding
of the effects of the infection on these cells. Therefore, we used
single-cell RNAseq data to infer pathway activity using an
algorithm called PROGENy (24). We found differences among
patients within disease severities in essential pathways for many
cellular processes (Figure 3A). For instance, we discovered that
JAK-STAT, NFKb, TGFb, TNFa, and Hypoxia pathways are
central players underlying and differentiating the COVID-19
pathophysiology, as their tendency is opposite between moderate
and severe patients. Their dysregulation affects the alveolar cells
that shape the innate and adaptive immune system (36). As can
be seen, estrogen signaling is overactivated for moderate patients.
Since samples on all groups were from female and male patients,
we assumed the estrogen signaling activation was not gender
derived. Moreover, this pathway has crosstalk with others that
might cause the activation.

To better comprehend the regulatory mechanisms underlying
previous pathways and their differences among patients, we
inferred the activity of the potential transcriptional factors
considering the expression of their targets. DoRothEa
algorithm helps with this aim using gene expression data and a
predefined gene set containing TF-target interactions (24). As a
result, we obtained insights into opposite processes within
patients. For instance, PPARG shows low activity for COVID-
19 patients (Figure 3B). Although, PPARG in airway epithelia is
September 2021 | Volume 12 | Article 705646
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necessary for typical structure and function (37). In addition,
it plays a role in the monocyte/macrophage-mediated
inflammatory storm (38); PPARG activation might reflect the
dysregulation caused by the SARs-CoV-2 despite the severity.

Moderate patients have BHLHE40 overactivated and SP1 and
TWIST1 inactivated; severe patients showed an inverse
activation/inactivation pattern. TWIST is negatively regulated
by BHLHE40 and positively by SP1, and the three of them are
involved in the epithelial-to-mesenchymal transition (EMT)
(39). Besides, MXI1 has the same activation fashion as
BHLHE40, and it is an antagonist of Myc. Myc and EMT have
Frontiers in Immunology | www.frontiersin.org 7
been directly associated (40). TWIST1 and HIF1A are slightly
overactivated in severe patients; both are necessary to develop
EMT and Endothelial Mesenchymal Transition (EndMT) (41).
In addition, severe patients have inactivated FOXP2, whose
inhibition induces EMT and activates TGFb signaling (42).
EMT and EndMT might be central to COVID-19 pulmonary
fibrosis, mainly developed on epithelial cells. As a part of the
EMT and EndMT, the basement membrane underlying
endothelial cells gets disrupted, facilitating the migration of
cells, causing pulmonary fibrosis, endothelial damage, and
pulmonary edema, worsening the severity of the disease (41).
A B

C

FIGURE 3 | Pathways and transcription factors dysregulated on epithelial cells among patients. (A) Changes in the pathways activation/inactivation identified by
PROGENY analysis. White boxes indicate no change of the pathways in the group of patients respectively. (B) Transcription factors inferred by DoRothEA algorithm.
Colorbar is related to activation/inactivation values. (C) Pathway Enrichment Analysis, the normalized enrichment score (NES) value represents the activity status
within the disease severity conditions. Blue and red bars relate NES values for the moderate and severe patients, respectively.
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These effects are observed in lung tissues from post mortem
patients who died from COVID-19 (43, 44). Furthermore, we
hypothesize these processes could be related to the immune
evasion processes initiated by the infection. Consequently, severe
patients might trigger EMT and immune evasion contrary to
moderate patients. Contrastingly, moderate patients
overactivated SNAI2, a crucial TF to the EMT development
(45). Thus, the EMT contributes to COVID-19 pathophysiology
(46), a condition that does not exclude moderate patients.
Moreover, the severe patients have activation of the TGFb
pathway suggesting an instauration of the ETM (Figure 3A).
TGFb pathway is triggered once the EMT is set (46).

As for the STAT1, STAT2, and STAT3 showed lower activity
in moderate than severe COVID-9 patients (Figure 3B). STATs
belong to the JAK-STAT signaling pathway that also led to a
lower activity on COVID-19 patients. IFN-induced STAT1/
STAT2 nuclear translocation is the essential step for antiviral
signal transduction. During COVID-19, SARS-CoV-2
nucleocapsid (N) protein binds to STAT1/STAT2 with the
downstream kinases and inhibits their phosphorylation (47).
Besides, this virus also promotes STAT1 proteolysis and retains
the import factors of STAT1 at the ER/Golgi membrane,
blocking the expression of STAT1-activated genes that
establish an antiviral state (33, 48, 49). Which seems
counterintuitive because moderate patients inactivate STAT1/
2/3. Also, SARS-CoV-2 disrupts IFN induction by preventing the
transport of IRF3 and STAT1 into the nucleus. Moreover,
deficiency of STAT1 demonstrated a markedly worsening
pulmonary disease with inflammation of small airways and
alveoli (50). Several convergent findings suggest STAT1 as a
putative cause of the cytokine storm observed in the most severe
cases of COVID-19 (34). Although inhibition of STATs is
necessary to enhance the disease pathophysiology disrupting
IFN signaling, it is contrary to our findings. Moreover, to
clarify the differences within severe and moderate patients, we
employed a gene-set enrichment analysis (GSEA) over the TFs
list from Dorothea to systematically explore the potential
phenotype of the epithelial cells (Figure 3C). Under the
enrichment analysis, moderate and severe patients have
opposite phenotypes in the same pathways, inactivation/
activation for the moderate/severe patients according to their
normalized enrichment score (NES). Severe patients have
activation of the TLR pathway; activation of TLR leads to the
secretion of pro-inflammatory cytokines such as IL-1, IL-6,
TNFa, as well as IFNI (51). SARS-CoV-2 spike protein in
epithelial cells promotes IL-6 trans-signaling by activating the
AT1 axis to initiate coordination of a hyper-inflammatory
response (52). Consistently, interleukin pathways were
positively enriched for severe patients and negatively for the
moderate ones. Additionally, severe patients showed a positive
enrichment of TGFb, MAPK, and angiogenesis pathways. In
severe COVID-19 patients, TGFb is associated with an
uncontrolled immune reaction, in which STAT3 and SMADs
genes take part (53). Moderate patients have inactivation of
several SMADs (SMAD1, SMAD3, and SMAD4) and STAT3
(Figure 3B). Under the multiple functions of the TGFb pathway,
Frontiers in Immunology | www.frontiersin.org 8
it is associated with the ETM via ERK/MAPK pathway (54).
Therefore, severe patients showed a tendency to be affected by
cytokine hyperactivation and a possible EMT state.

The previous analysis considered epithelial cells as a whole,
describing the general behavior according to the disease severity.
Moreover, the lungs have diversity in their epithelium
composition related to the tracheobronchial tree. To evaluate
the role of the different epithelial cells in the COVID-19
progression, we reclustered the data of these cells. We
identified five epithelial subtypes projected in 12 clusters in the
uMAP space (Figures 4A and S6A). We typified the epithelial
subtypes using 14 marker genes (Table S2) comprising ciliated,
secretory, squamous, alveolar type I (AT1), and alveolar type II
(AT2) cells. Additionally, we identified one cluster that expressed
AT2 and secretory markers. Experimental evidence showed that
secretory cells expressed SFTPB and SFTPC (AT2 markers) (55,
56). Moreover, we named this group MIX due to the possible
implication in their functionality. Overall, severe patients have
more percentage of secretory and AT2 cells (Figure 4B). Reports
indicate that AT2 cells exhibit a high proliferation rate at early-
phase pneumonia marked by the expression of MKI67 (57).
Pneumonia is a complication of COVID-19. Therefore, to
understand the higher proportion of epithelial cells from severe
patients, we evaluated the proliferation marker MKI67
expression (Figure S6B). We cannot know the pneumonia
phase among severe patients. Only some severe epithelial cells
expressed MKI67 suggesting a possible prior proliferation stage
that explains the epithelial proportions among controls and
patients. Moreover, as the epithelial cells are the primary
entrance of SARS-COV-2 to the human body, we observe an
alteration in their balance related to the disease severity, possibly
affecting their role. To evaluate the triggered processes, we
inferred the pathway activity using PROGENy. Comparing the
activity of the pathways between the whole-epithelial analysis
(Figure 3A) and the separated-epithelial analysis (Figure S6C),
we observed that the tendency in moderate patients is related to
the ciliated and mix cells, as for the severe patients, their
pathways activity is correlated to AT1, AT2, and secretory
cells. Then, we evaluated if the activation of the pathways is
related to the severity of the patients (Figure 4C). We found
AT1, AT2, and secretory cells from severe patients overactivated
JAK-STAT, NFKb, TGFb, TNFa, and Hypoxia pathways.
Congruently with these results, dysregulation of these
pathways affects the alveolar cells that shape the innate and
adaptive immune system (36) that might be worse for severe
patients. Subsequently, taking the TFs highlighted in the whole-
epithelial analysis (Figure 3B), we evaluated their activity for the
epithelial cells subtypes (Figure S6D). Interestingly, we observed
the activation of TFs associated with EMT all over the lung cells,
suggesting that different lung compartments support the EMT
and not only the alveolar. To illustrate, PPARG is activated only
in AT1 cells, promoting a pro-inflammatory state leading to
alveolar fibrosis. As for AT1, AT2, and secretory cells,
overactivated SMADs, HIF1A, and STATs genes. We evaluated
the same TFs for the different epithelial cells split by healthy
controls and patients (Figure 4D). Complementary, these results
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denote that AT1 cells from moderate and severe patients along
with AT2, and secretory cells from severe patients overactivated
SP1, SMADs, STATs, TWIST, HIF1A, and IRF genes. As already
discussed, these genes are fundamental to EMT initiation and
progression. Moderate patients seem to have the condition for
the EMT as well, but with only AT1 cells. The TFs that inhibit the
EMT are activated mainly in all moderate cells. Ciliated and MIX
cells overactivated SNAI2 for severe patients, suggesting that
several lung structures help EMT. Considering all the above, we
hypothesize that cytokine activation and ETM could be related to
the immune evasion processes in the SARS-CoV-2 infection. In
conclusion, our study suggests that it is necessary to associate
EMT and EndMT with the cytokine storm observed in this
infectious disease to further understand the mechanisms in the
context of COVID-19 to prevent and treat pulmonary
fibrosis appropriately.
Frontiers in Immunology | www.frontiersin.org 9
3.4 Monocyte Heterogeneity in
COVID-19 Patients
Monocytes are cells of the innate immune system circulating in
the blood that extravasate to the tissue once an inflammatory
process in the lungs is activated. They engage in inflammatory
processes, antigen presentation, among other functions (58, 59).
COVID-19 severity is associated with an intense inflammatory
response of the cells caused by the cytokine storm, plus an
inadequate immune response (60, 61). Therefore, we evaluated
some genes associated with deficient immune response and
inflammation on monocytes across different disease severities
(Figure 5A). For instance, we observed a higher expression of
HLA-DRB1 in moderate than severe patients. The HLA-DRB1
gene is part of a family of genes called the human leukocyte
antigen (HLA) complex. The HLA complex helps to identify
proteins from viruses and bacteria. Together with HLA-DRA,
A B

DC

FIGURE 4 | Epithelial cells diversity analysis. (A) Umap projection of epithelial cells data showing the five cell subtypes identified based on biomarkers: ciliated,
secretory, squamous, alveolar type I (AT1), and alveolar type II (AT2) (Table S2). (B) Proportions of the epithelial subtypes among healthy controls, moderate and
severe patients. (C) Pathways activation/inactivation analysis with PROGENY for the epithelial cells subtypes considering health status. (D) Activation/inactivation
analysis considering health status for the TFs discussed on the whole-epithelial analysis (TFs denoted in purple along with Figure 3B). Colorbar is related to
activation (red) and inactivation (blue) values. Ctr, Mod, and Svr stand for healthy control, moderate and severe patients.
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HLA-DRB1 forms a functional protein complex called the HLA-
DR antigen-binding heterodimer. This complex displays foreign
peptides to the immune system to trigger the immune response.
Severe cases of COVID-19 have low expression of HLA-DR in
blood monocytes (62–64). In concordance, our results suggest
that the immune system of moderate patients led to an efficient
response to COVID-19 infection. Therefore, the lack of
expression of these HLA genes in severe patients may indicate
an inadequate immune system response. Moreover, we also
observed changes in IFI6 and ISG15 genes. IFI6 has a higher
expression in moderate respect to severe COVID-19 patients,
whereas ISG15 behaves viceversa. These genes are IFN-
stimulated genes correlated with an inflammatory response.
Frontiers in Immunology | www.frontiersin.org 10
On blood monocytes, low HLA-DR and high IFN-stimulated
genes have been associated with severe cases of COVID-19 at
later stages, indicating a prolonged activation of monocytes in
severe COVID-19 (64). In concordance, our results showed a
similar expression pattern on lung monocytes. Additionally,
MME exhibited a higher expression in moderate than severe
patients (Figure 5A). This gene is involved in the differentiation
of monocytes to the inflammatory associated M1 macrophage.
We hypothesize that some of the monocytes in moderate patients
differentiated to M1 macrophages, liberating pro-inflammatory
cytokines and other peptides to eliminate the virus (65).
Moreover, MME cut many active peptides useful in the
inflammatory process, including angiotensin II (66).
A

B

C

FIGURE 5 | Gene expression and inferred transcriptional factor activities of monocytes among patients. (A) Expression of several marker genes across patients, the
point size and colorbar are related to the percentage of cells that express a gene and the average expression, respectively. (B) Predicted pathway activity among
patients. (C) Transcriptional factor activity of monocytes inferred using single cell data. Colorbar is related to activation (red) and inactivation (blue) values.
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Angiotensin II is elevated in patients with severe COVID-19,
strongly associated with viral load and lung injury (67).
Consequently, the high expression of MME on moderate
patients could lower angiotensin II levels and inhibit severe
complications of COVID-19, thereby protecting the patients.
In conclusion, results showed a possible dysregulation into the
monocytes during the infection correlated with the severity of the
disease, indicating the response of these cells is essential to
determine the disease severity.

Specific pathways highly regulate the immune response.
Hence we evaluated pathway dysregulations correlated to
disease severity. To this end, we used PROGENy, a method
that infers pathway activity from gene expression data, in
combination with our single-cell RNAseq dataset (24). As a
result, NFKb, TNFa, and MAPK exhibited lower activity in
moderate than severe patients (Figure 5B). Notably, these
pathways are essential for immune response. This finding
suggests that monocytes are only being recruited at this stage
but do not have a pro-inflammatory function. On the other hand,
TRAIL showed almost a similar activity in moderate and severe
patients. In monocytes, the TRAIL pathway is involved in
activating pro-apoptotic regulators (68), suggesting that
monocytes are not dying in the lungs of COVID-19 patients.
Additionally, to understand the mechanisms behind monocyte
dysregulation, we explored specific transcription factors (TF)
activity using the algorithm called DoRothEa. Under the
comparison between moderate and severe patients, several TFs
involved in controlling pro-inflammatory genes showed a
decrease in moderate patients, such as STAT1/3/6, SMAD3/4,
and NFKB1 (Figure 5C). In addition, we observed a lower
activity of IRF1 and IRF9 in moderate patients. IRF genes
regulate interferon genes once the pattern recognition
receptors detect viral RNA (69). On the one hand, IRF1 is
involved in the polarization of monocytes to an M1
macrophage by enhancing the expression of inflammatory
cytokines, developing a dysregulation of macrophage behavior,
and developing hyper-inflammation (70). On the other hand,
IRF9 regulates interferon gene expression and activates a type I
interferon response (71). Hence its low activity causes a delayed
response for most COVID-19 patients. Complementary, RFX5,
ATF3, and BHLHE40 showed a higher activity in moderate than
severe patients (Figure 5C). These results suggest that among
patients, moderate patients have a higher differentiation of
monocytes-macrophages, inhibition of the secretion of IL-10
(BHLHE40), activity of MHC class II genes (RFX5) and
regulation of the immune response by controlling the
expression of metalloproteinase (ATF3) that in severe patients
(72–74).

3.5 Macrophage Heterogeneity Among
COVID-19 Patients
Macrophages are abundant in the lungs during COVID-19
infection (28). Based on their cytokine secretion, macrophages
exert an anti-inflammatory or proinflammatory activity.
Therefore, we explored the expression levels of genes typically
associated with a hyper-inflammatory microenvironment,
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impairment of interleukin secretion, and enhanced anti-
inflammatory functions associated with COVID-19 symptoms.
Macrophage subpopulations were split based on (1). We found
TREM2, APOE, MARCO, and MRC1 that showed higher
expression in moderate M1 than moderate M2 macrophages.
Interestingly, severe patients exhibited an absence or low
expression of these genes (Figure 6A). Otherwise, LGALS3
showed high expression on severe patients and low expression
on moderate patients and healthy controls. The expression of
TREM2 avoids macrophage apoptosis and enhances the
secretions of pro-inflammatory cytokines (75). TREM2-APOE-
LGALS3 is usually correlated with pro-fibrosis and heightened
inflammatory response, inducing IL-6 secretion (76, 77).
Additionally, ISG15 and MAFB exhibited a low expression in
moderate M1 macrophages and high expression in moderate M2
macrophages (Figure 6A). MAFB promotes an anti-
inflammatory function in inflamed lungs leading to M2
macrophage polarization (78, 79). Interestingly, the expression
of MAFB in macrophages is associated with an impaired type I
interferon response in chronic hepatitis virus (80). Finally, CCL2
and CXCL10 genes lacked expression in moderate patients; only
CXCL10 had higher expression in moderate M2 macrophages.
However, severe COVID-19 patients highly expressed both genes
compared to healthy controls (Figure 6A). In addition, CCL2
and CXCL10 showed a slightly higher expression in severe
patients than in moderate patients. CXCL10 and CCL2 are
important chemoattractants for monocytes and macrophage
recruitment to the inflamed tissues. Nevertheless, these
expression patterns suggest a difference between macrophages
of moderate and severe patients. The reason underlying these
differences remains unclear as many genes related to
inflammation and fibrosis have controversial behavior among
patients. Hence, to suggest the potential role of macrophages on
disease pathogenesis, we evaluated the altered pathways.

To infer pathway activity of macrophages using single-cell data,
we used PROGENy as the previous sections (24). Accordingly, we
observed the inactivation of NFkB, TNFa, and MAPK in moderate
compared with severe patients, as in monocytes of previous sections
(Figure 6B). Additionally, we noted some differences with
monocytes data. For instance, we observed activation of EGFR,
TNFa, and MAPK in severe patients. The differences in the
pathway activity between moderate and severe patients could be
responsible for the diverse symptomatology among patients.
Activation of EGFR correlates with the expression of anti-
inflammatory cytokines, enhancing the expression of TGFb
expression (81). Additionally, TNFa and MAPK promote the
secretion of IL-6, contributing to the cytokine storm in COVID-
19 patients (82, 83). Therefore, to explore the possible genetic
regulatory mechanisms underlying these altered pathways, we
infer the transcription factor activity using DoRotheA. As the
initial step, we reclustered the macrophages cells based on their
activity of TFs. Accordingly, cells from patients (moderate and
severe) clustered together, apart from cells of healthy controls
(Figure S7). Briefly, we observed three sets of transcription
factors with inverse activation (Figure 6C). On the one hand, the
first set of transcription factors exhibited low activity in moderate
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patients and mixed behavior in severe patients and healthy controls.
Forkhead transcription factor (FOXP1) has low activity in moderate
patients and no activity in severe patients. The downregulation of
FOXP1 in macrophages is associated with the secretion of IL-12 and
TNFa, cytokines implicated in eliminating pathogens (84).
Kruppel-like factor 13 (KLF13) has low activity in moderate
patients and high activity in severe patients. Low expression of
KLF13 is implicated in diminishing pro-inflammatory and
enhancing phagocytic activity in macrophages, a necessary
balance in maintaining an efficient immune response (85, 86).
BCL6 has low activity in severe and moderate COVID-19
patients; its loss implies hyper-proliferation, followed by the
expression of STAT3 to secrete IL-6, contributing to the cytokine
Frontiers in Immunology | www.frontiersin.org 12
storm in severe COVID-19 patients (87). SMAD3 has low activity
and is associated with diminishing the secretion of TGFb,
implicated in decreasing the secretion of cytokines promoting the
cytokine storm in severe patients (88). As well, SMAD3 activates
STAT6, which induces a fibrotic response in macrophages (89).
PPARA has high activity in severe patients and low in moderate
patients. It is associated with mitigating an inflammatory response
(90). The second set of transcription factors has high activity in
moderate patients and low activity in severe COVID-19 patients.
RFX5 is associated with the MHC II response, macrophage
proliferation, and effective immune response by presenting
antigen to CD4+ T cells (91, 92). IRF3 activation is implied with
a dual role. It can induce a type I interferon response (93), and it
A
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FIGURE 6 | Differential macrophage activity among patients. (A) Expression levels of inflammatory and fibrotic related genes, point size and colorbar represent the
percentage of cells that express a gene and the average expression, respectively. (B) Pathway differential analysis among patients. (C) Transcription factors altered
on macrophages among disease severity. Colorbar is related to activation/inactivation values. M1 stands for macrophage type I and M2 for macrophages type II.
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secretes pro-inflammatory cytokines contributing to the cytokine
storm (94). Meanwhile, expression of IRF4 is associated with the
secretion of IL-4 and IL-10 which are anti-inflammatory cytokines
that may be important to reduce the damage of the cytokine storm
in moderate patients and not develop in severe COVID-19
symptoms (95). Similarly, Kruppel-like factors 4, 6, and 9 (KLF4,
KLF6, and KLF9) exhibited high activity on moderate patients, in
contrast to their relatively low activity on severe patients. These
KLFs mount inflammatory and fibrotic responses in low oxygen
microenvironment enhancing cytokine secretion, contributing to
cytokine storms typical of severe patients (96, 97). Likewise, the
hypoxia pathway (Figure 6B) showed an inferred high activity on
severe patients, explained by the respiratory distress, low oxygen
saturation, and pulmonary lesions caused by the disease. FOXO1
activates IRF4 (98). Lastly, from the second set, MYC is associated
with alternative macrophage activation, secreting anti-inflammatory
cytokine in moderate patients, which may help balance the damage
held by the pro-inflammatory cytokines; this function is not present
in COVID-19 patients (99). In the last set, moderate and severe
patients Overactivated the TFs, except NFKB1 and STAT3, whose
expression is divergent between them. Many of these TFs correlate
with the secretion of interleukins involved in the induction of
inflammation. STAT1 and STAT2 have higher activity in
moderate patients than severe patients, suggesting a possible delay
in the interferon response in severe COVID-19 patients. Meanwhile,
STAT6, an anti-inflammatory TF, has higher activity in moderate
patients and might diminish the action caused by the pro-
inflammatory cytokines in the lungs. On the other hand, IRF1
and IRF2 are regulators of the interferon response belonging to the
third category. This result suggests that some macrophages may
regulate the interferon response, which can help eliminate the virus
from the lungs. Finally, the moderate patient group did not activate
NFKB1 and low activity of STAT3. In severe cases both
transcription factors are activated. NFkB activation is mainly
involved in the secretion of pro-inflammatory cytokines (100),
whereas STAT3 releases anti-inflammatory cytokines, proposing a
high abundance of pro-inflammatory cytokines. In moderate
patients the action of anti-inflammatory cytokines are balancing
the action of pro-inflammatory cytokines, meanwhile in severe
patients the balance is towards the action of pro-inflammatory
cytokines causing the cytokine storm in COVID-19 patients.
Overall, these results indicate macrophages of severe patients have
low effectiveness against the infection followed by an enhanced
inflammatory response, causing severe and critical symptoms. In
contrast, moderate patients showed macrophages with suspected
high efficiency and controlled inflammation input, diminishing the
disease severity. In conclusion, we suggest that an appropriate
macrophage response could limit the disease severity.

3.6 NK Cells
Natural Killers (NK) cells take part in the defensive frontline
against viruses. They induce self-destruction of virus-infected
cells by apoptosis. Additionally, NK cells set the maturation of
dendritic and T cells. Studies have reported that positive SARS-
CoV-2 patients have decreased circulating NK cells (101).
Moreover, given our results, this is only true for severe patients
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in the alveolar compartment. Moderate patients have a higher
NK count compared to severe patients and healthy controls
(Figure 1C). The immune role of NK cells has a balance between
activating and inhibiting germline-encoded receptors; this dual
functionality ensures protection against pathogens and prevents
auto-immune responses. To evaluate the activation state of NK
cells among healthy controls and patients, we plotted the
expression of activating receptors related to infection and
cellular distress (Figure 7A). KLRK1 (known as NKG2D),
CD244, NCR3 (known as NKp30), and NCR1 (known as
NKp46) were preferentially expressed in moderate patients and
healthy controls. Through the co-activation of these receptors,
the NK cells mount an effective response to induce pathogens
killing (102, 103). The expression of PRF1 (perforin) and
FCGR3A (CD16) might indicate that NK cells from moderate
patients undergo their activation by two mechanisms: 1) direct
lysis of target cells through cytotoxic degranulation by perforin,
and 2) the detection of antibody-coated target cells (102, 104). In
COVID-19, the expression of the inhibitory marker KLRC1 (also
known as NKG2A) leads to decreased NK cells cytotoxic activity
by affecting the IFNg and TNFa pathways (105). KLRC1 is
expressed preferentially in severe patients, which suggests a
possible non-responsive state. However, moderate patients
might undergo inactivation. Finally, both groups of patients
expressed BSG, there is evidence that BSG mediates SARS-
CoV-2 entering host cells by endocytosis (106). Previous
markers pose the role of NK cells, but more analysis is needed
to associate a function.

Functional pathways analysis with PROGENy showed the
activation of pathways among patients and controls (Figure 7B).
Furthermore, Severe patients shared an overactivation with
healthy controls of the Estrogen, EGFR, and PI3K. The
estrogen pathway has crosstalk with the NFkB signaling; NFkB
and TNFa had been related to the dreadful cytokine storm in
COVID-19 (107), and they are overactivated only for severe
patients. TNFa activates the NFkB pathway via the non-
canonical pathway associated with long-lasting pro-
inflammatory mediators production (107). In addition, the
SARS-CoV-2 triggers EGFR and PI3K pathways. Under these
activations, a profibrotic response is released (108). BSG (also
known as CD147) activates the PI3K pathway, a SARS-CoV-2
receptor mediating the virus entry and overexpressed patients
(Figure 7A). As well, once the virus binds to the ACE2, it is
internalized by endocytosis through a clathrin-mediated
pathway regulated by the PI3K/AKT signaling (109).
Therefore, NK cells from severe patients seem to be coadjuvant
in the cytokine storm progression, virus internalization, and
respiratory failure. Contrastingly, moderate patients have
inactivation of previously described pathways (Figure 7B),
setting a non-harmful response but still active according to
their markers (Figure 7A).

By the use of Dorothea, we explored regulatory mechanisms
underlying these pathways and differences among patients
(Figure 7C). Severe patients showed alterations in the cell
cycle, taking the TFs inactivated for moderate patients and
overactive for severe patients and healthy controls. They
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increased cytotoxicity, particularly within the interaction
between NK and T cells. For instance, the activation of
HNF4A and SOX2 is related to abnormal cell proliferation and
mucus hyper-secretion (110, 111). MXI1 overactivation has an
antagonist role to MYC (112, 113). FOXA2 regulates Treg cell
suppressive function and inflammation (114, 115). Finally,
NR5A1 may be related to the cytotoxicity, proliferation, and
cytokine production of E2-mediated NK cells (116). Although
previous genes are described in their effect on T cells, NK cells
influence the T cells functionality at different stages. At the early
stages of T cell activation, NK cells shape the ensuing size and
quality of the T cell responses. Additionally, they influence T
Frontiers in Immunology | www.frontiersin.org 14
cells clonal expansion, immune memory formation, and the
interaction with Treg (117).

TFs only activated for severe patients include JUN, NFKb1, and
RELA; they interact via NFKb signaling. RELA and NFKb1 form
the complex NFKb directly related to an inflammatory response of
innate cells, and specifically for NK, the complex regulates the
proliferation (118, 119). Otherwise, AP-1 is a dimeric complex that
consists of members of the JUN and Fos families. AP-1 regulates
gene expression in viral infections, and it is a target of SARS-CoV-2
affecting their response (121). JUNB is expressed mainly in patients
cells (Figure 7A). Therefore, NK cells of severe patients seem to be
altered in the NFKb pathway being overactivated by several stimuli.
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FIGURE 7 | TFs associated with the disease severity in NK cells. (A) Violin plots for several markers for the healthy controls, moderate and severe patients.
(B) Resulting Heatmap from PROGENy analysis. Colorbar sets the activation (red) and inactivation (blue) values. (C) Resulting Heatmap from DoROthEA analysis.
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Based on the activated transcription factors on moderate NK
cells, we suggest two primary immune responses. First, cells from
moderate patients elicited a controlled immune response to
promote viral clearance without a possible cytokines hyper-
activation. IRF4, TBX21, and BATF have been identified as
crucial players to mediate NK cytotoxicity and interactions
with other immune cells within inflammatory tissues (122).
However, IRF4 takes part in an impaired response signature in
HIV infection (123, 124). BATF regulates lymphoid homeostasis,
and their subexpression leads to inflammation and inadequate
innate response (125). LYL1 also is essential for T cell
homeostasis, development, and maintenance (123). ELF1
inhibits virus replication, and their antiviral response is distinct
from the interferon signature providing another innate host
response, independent from the action of type I interferons
(126, 127). NK cells lacking IKZF1 are hyper-reacting and have
impaired viral contention (128). MEF2C deficiency was
associated with profound defects in the production of B cells,
T cells, and NK cells (129). Finally, TCF7 prevents NK self-
destruction by regulating granzymes (129, 130). The second
observed response according to the activated TFs is unclear
and might be unfavorable for moderate patients. AR
suppresses IL-12A expression lowering the efficacy of NK cell
cytotoxicity (126). NR2C2 is an integrant of an axis identified to
promote abnormal T cell activity on lupus (131). Our results
suggest a complex responsive state in NK cells predominantly
orientated to an antiviral response. Nevertheless, previously
mentioned mechanisms might be off in severe patients,
indicating possible non-responsive NK cells to the virus.

3.7 Dendritic Cells Function Regulation
According to Disease Severity
Dendritic cells (DCs) are a class of bone marrow derived cells
originating from lympho-myeloid hematopoiesis that link the
innate sensing of pathogens and the activation of adaptive
immunity. DCs recognizes and responds to pathogen-
associated and danger-associated signals, molding the
inflammatory response (132). To unveil how DCs diversify
their functions according to the disease severity in COVID-19
patients, we inferred the TFs activities that guide the DCs
phenotype using DoRothEA, as in previous sections
(Figure 8A). Subsequently, to understand their functionality at
a system level, we performed two complementary, yet
independent, functional pathway analysis using PROGENy and
gene-set enrichment analysis (GSEA) (Figures 8B, 9 and
Table S4).

Having identified the single-cells classified as DC, we applied
DoROthEA and obtained the TFs activated or inactivated within
each disease severity. At a glance, our analysis showed that there
was a clear signature dividing a set of active and inactive TFs in
moderate patients (Figure 8A). However, for the severe patients
and the healthy controls, the results indicate a more discrete
activation or inactivation of some TFs included in DoRothEA
database (Figure 8A). Through a carefully manual exploration of
these TFs, we found that FOS, JUN, RELA, and NFKb1 have an
apparent differential behavior between the disease severity
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(Figure 8A). While severe patients activate these TFs, in
moderate patients and healthy controls are inactivated.
Notably, these TFs are associated with immune system
pathways such as Th17 cell differentiation. This last pathway
has, in turn, been related to a specific type of DCs, inflammatory
DCs (infDCs) present in human inflammatory environments
(133). This finding can be correlated to the disease severity
suggesting that infDCs can be a potential driver in
pathogenesis in COVID-19, as occurs in other inflammatory
diseases (134, 135). Moreover, motivated by the marginal
differences between the TFs of severe patients and healthy
controls, we employed a gene-set enrichment analysis (GSEA)
over the TFs list to systematically explore the potential
phenotype of the DCs. Each enrichment plot represents a
disease severity condition according to the active and inactive
TFs (Figure 9). Briefly, we obtained one inactive pathway for the
moderate patients and healthy controls, and severe patients
collected active and inactive pathways. Specifically, the
enrichment for the moderate patients showed the inactivation
of the regulation of pluripotent phenotype, a result that is
expected in a differentiated cell type (Figure 9A). Also, the
enriched gene set possesses TFs such as FOXP1, NR5A1,
PRDM14, and SOX2. By exploring the function of each of
these transcription factors, we found that they include
processes associated with the maturation and differentiation of
dendritic cells (136, 137). To interpret the potential phenotype
guided by the inactivation and activation of several TFs
in the healthy controls, we identified that most inactive
pathways are related to viral infection, immune response, and
proinflammatory signaling. This condition is anticipated in cells
that lack a viral infection (Figure 9B). On the other hand, the
active pathways in healthy controls showed the cell cycle
activation and TGFß signaling that function as pathways for
maintaining DC homeostasis (138). Finally, for the severe
patients, the resulting pathways from the GSEA using the TFs
obtained by DoROthEA as input pointed that the DCs are
implicated in four biological functions: 1) Inflammatory
processes (RANKL/RANK signaling, AGE-RAGE signaling,
NOD-like receptor pathway, C-type receptor pathway,
Senescence Secretory Phenotype, and Il-17 pathway), 2)
Differentiation and maturation (PDGF pathway, IL-4, and
Th17 cell differentiation), 3) Response to viral infection
(Herpes and Hepatitis B), and 4) homeostasis (cell cycle and
TGFß pathway). The inflammatory processes, differentiation,
maturation, and response to viral infection are activated while
inactivating DC homeostasis.

In detail, the host innate immune system is the first line of
defense after viral infection. Germline-encoded pattern-
recognition receptors (PRRs) sense pathogen-associated
molecular patterns (PAMPs) related to viral infection and are
responsible for initiating the biochemical signaling cascades that
orchestrate the innate immune response. PRRs are a large group
of proteins that include either membrane-bound receptors or
cytosolic receptors. Some examples of membrane-bound
receptors include C-type lectin receptors (CLRs), and the
cytosolic receptors compromise the nucleotide-binding
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oligomerization domain (NOD)-like receptors (NLRs) (139,
140). Both types of receptors are present in DCs, and their
function is related to a particular subset of expressed receptors.
For instance, the NLRs functions in DCs vary from the probable
enhancement of T cell priming to the modification of TLR-
induced maturation (141). This work presents evidence that both
signaling pathways (NLRs and CLRs) are activated in severe
patients. However, the exact receptor involved in the pathway
cannot be pinpointed. The reason for this limitation is essentially
in the DoRothEA database that only contains TFs. However,
both pathways share a crucial activated core of TFs (IRF9, JUN,
NFKB1, RELA, STAT1, and STAT2). In general, the resulting
phenotype guided by the activation of both pathways promotes a
pro-inflammatory environment in DCs (141, 142). In addition to
Frontiers in Immunology | www.frontiersin.org 16
the pathways mentioned above, other results strengthen the pro-
inflammatory phenotype; for example, the RANK/RANKL
pathway is involved in DCs inflammatory process (143).
Additionally, the AGE-RAGE pathway induces the secretion of
pro-inflammatory cytokines and does not lead to DCs
maturation (144). Overall, the results indicate that the
moderate patients and healthy controls possess several
pathways involved in the maintenance of differentiation and
homeostasis. In contrast, the severe patients show a pro-
inflammatory program guided by several pathways and viral
response, and indirect inhibition of maturation. Indeed, the
obtained results in the severe patients match with multiple
publications associating the SARS-CoV-2 infection with a pro-
inflammatory environment. However, several questions remain
A B

FIGURE 8 | TFs associated with the disease severity in Dendritic cells. (A) Resulting Heatmap from DoROthEA analysis. (B) Resulting Heatmap from PROGENy
analysis. Colorbar sets the activation (red) and inactivation (blue) values.
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open about why and how these pro-inflammatory pathways are
not properly held to maintain the virus clearance?

Finally, the results obtained using PROGENy (Figure 8B)
established an activation in several pathways. In the moderate
patients, we observed activation in TGFß, WNT, VEGF,
Hypoxia, p53, and JAK-STAT, while in the severe patients
were activated the pathways EGFR, MAPK, Estrogen, PI3K,
JAK-STAT, NFKß, and TNFa. By comparing these activated
pathways that guide the DCs functions, we suggest a possible
protective role in moderate patients, mainly because the
activated pathways lead to a tolerogenic phenotype. In
particular, the expression of TGFß in DCs can induce
tolerogenic DCs (145). Tolerogenic DCs can mediate tolerance
Frontiers in Immunology | www.frontiersin.org 17
mainly by two events; one involves inducing anergy (inactivation
of T cells), while the other induces apoptosis of antigen-specific
autoreactive T cells (146). Also, tolerogenic DCs are
characterized by an immature or semi-mature phenotype
guided by the expression of low levels of costimulatory
molecules, high secretion of anti-inflammatory cytokines, and
decreased expression of pro-inflammatory cytokines (147, 148).
This tolerogenic phenotype agrees with the obtained results in
other activated regulons in the moderate patients, not only
TGFß. For example, the activation of VEGF can reduce the
differentiation of DCs (149), and the activation in the WNT
pathway in DCs plays a significant role in regulating tolerance
(150). In contrast, the severe patients show pathways associated
A

B

C

FIGURE 9 | Pathway Enrichment Analysis across various databases. Activity status of the TFs in a particular pathway found by DoROthEA across the disease
severity in Dendritic Cells. (A) GSEA in moderate patients. (B) GSEA in healthy controls. (C) GSEA in severe patients. The normalized enrichment score (NES) value
represents the activity status within the disease severity conditions, a positive value for active pathways (red), and a negative value for inactive pathways (blue). The
dataset for every pathway (rows) is indicated inside the colored bar.
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with a higher maturation of DCs, for instance, the activation of
NFKb, which is crucial for the maturation of DCs (151), and the
activation of TNFa, required to efficiently mature DCs during
virus-mediated stimulation (152). Overall, it is clear that the
pathways obtained by PROGENy control the homeostatic
functions in DCs, such as migration, tolerance, antigen
presentation, regulation of inflammation, immunosurveillance,
maturation, and differentiation. However, the degree and the
time of activation within the viral infection may lead to
disparities in the severity. Here, we suggest that the tolerogenic
DCs phenotype can lead to a less severe outcome, and the
ineffective immune responses may be fundamental to unveil
the severity within patients.

3.8 T Cells Role
T cells exert primary functions in viral containment and
clearance. Their role on SARS-Cov-2 infection is negatively
affected by lymphopenia, which is related to disease severity
and majorly impacts these cells (61, 153–155). Our data analysis
revealed massive recruitment of T cells in the alveolar
compartment for moderate patients (Figure 1C). T cells
promote the recruitment and activation of monocyte-derived
inflammatory macrophages leading to a positive loop of immune
overactivation and mass migration to the lungs, contributing to
tissue damage (156, 157). Moreover, their role in the disease
severity remains unknown.

Functional pathways analysis with PROGENy showed
pathway activation among patients and controls (Figure 10A).
Furthermore, healthy controls inactivate pro-inflammatory
pathways (Jak-Stat, NFkB, TNFa, VEGF, Hypoxia, and TGFb).
Thus, although results suggested that T cells from patients
promote inflammation and cytokine release, each group of
patients might do it differently. Along with the pro-
inflammatory pathways activated for COVID-19 patients, the
Jak-Stat pathway is the most activated, and it is related to
moderate patients. Additionally, for this patient group, the
VEGF and TGFb pathways are overactivated. The Jak-Stat
pathway is essential for the innate and adaptive antiviral
response by the B, T, and NK cells; however, it promotes the
cytokine storm (158). As far as the results are concerned, the Jak-
Stat pathway is activated with the strongest response in T cells for
moderate patients of all cell types, which might set one
characteristic of a proper immune response. In the case of the
overactivation of VEGF and TGFb pathways, it seems
counterintuitive in moderate patients. VEGF pathway increases
vascular permeability and aggravation of endothelial damage,
and TGBb has been settled as a therapeutic target to improve
COVID-19 prognosis (53). Severe patients have overactivated
preponderant pathways (NFKb, TNFa, and Hypoxia) to the pro-
inflammatory phenotype. In concordance with previous reports
(159), we observed that the T cells in the cytokine storm
exacerbate lung immune response.

To identify relevant transcription factors orchestrating the
pathways described above, we used DoRothEA analysis among
samples (Figure 10B). We observed relevant genes in promoting
viral clearance and long-lasting immune response based on the
Frontiers in Immunology | www.frontiersin.org 18
inactivated TFs on patients T cells (Figure 10B). For instance,
BCL6 had inverse activation in healthy controls and patients.
BCL6+ T follicular helper (TFH) cells interact with B cells in the
germinal centers to produce antibodies and prompt long-lasting
immune memory. Evidence supports that as COVID-19
aggravates, germinal centers and BCL6 expression are lost
(160). ATF3 has an immunity role in Th2 and NK cells related
to the negative regulation of pro-inflammatory cytokines (IL-4,
IL-5, and IL-13) and INF-ℽ (161). MNT overactivation has an
antagonist role to MYC (112, 113). MYC depletion sets Treg cells
in quiescence, but its combination with PKC activates T and NK
cells to produce pro-inflammatory cytokines (162). The
activation of SOX2 and HNF4A also described in the NK
behavior is related to mucus hyper-secretion (110, 111). RFX5
regulates antigen-presenting cell induction (163, 164). FOXP1
and FOXA2 regulate Treg cell suppressive function and
inflammation (114, 115). Finally, BHLHE40 set a balance
between pro-inflammatory and anti-inflammatory Th1 cell fate
determination inducing INF-ℽ expression, an innate immune
response to viral infections (165, 166). However, the activation of
INF-ℽ is considered adjuvant to cytokine storm (36, 167).
Despite the results suggesting a non-responsive state for the
patients, it has to be considered the temporality of the response.
T cells from moderate patients trigger an initial solid response
that decreases over time, whereas severe patients might induce a
poor or null response (168). Besides, we found a collection of
transcriptional factors only activated by the severe group
(Figure 10B). Among them, we found subunits of the complex
NFKb: NFKB1, RELA, and REL. RELA is one of the most
important transcription factors regulating the response to
COVID-19 (169). All of them are involved in the NFkB
pathway activation controlling the inflammatory response. The
NFkB pathway has been proposed as a therapeutic target to treat
acute infection in severe patients as it regulates cytokines
liberation (107). The transduction protein SMAD4 acts as a
partner to facilitate the translocation of RSmads into the nucleus
modulating profibrotic genes (170). Another TF related to the
profibrotic response is JUN, an in silico study associates JUN as a
therapeutic target to reduce fibroblast proliferation and
inflammation (170, 171). ATF2 regulates the expression of
JUN through homo-dimerization or hetero-dimerization (172),
consequently, might control pulmonary fibrosis. Finally, FOXL2
is related to T cell activation in ovarian cancer and promoting
apoptosis (173, 174).

As for the severe patients, there are TFs only activated for the
moderate patients that set the possible mechanism differentiating
the T cells response as the disease aggravates. We considered the
slight overactivation in severe patients of some TF as non-
activated due to their values close to zero. For instance,
FOXO3 deficiency induces inadequate T cells immune
response by promoting the expression of IL-6 and NFKb
(175). STAT and IRF genes regulate the JAK-STAT pathway
involved in the inflammation process. LYL1 has a pivotal
function; overexpression of this TF induces poorly mature T
cells, and its deficiency limits the clonal expansion necessary for a
proper response (176, 177). BATF controls the production of
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Th17 cells, which in turn coordinates the pro-inflammatory
response. In COVID-19 Th17 cells have been identified as
therapeutic targets to regulate the cytokine storm (178). TCF7
is essential for T cell development and differentiation through
promoting T cells differentiating to Th2 (memory T cells)
fundamental in the immune response (179). REST is induced
under hypoxia and regulates several hypoxia-repressed genes
(180). Another regulator in the T cell differentiation is MAX.
MAX forms a heterodimer with MYC tuning cellular growth.
Our results suggest an intricate responsive state in the T cells
associated with moderate patients. Nevertheless, previously
Frontiers in Immunology | www.frontiersin.org 19
mentioned mechanisms might be off in severe patients,
indicating possible non-responsive T cells to the virus.

We evaluated the response of T cells according to the disease
severity. Moreover, the activated pathways may show a hidden
activation pattern due to the heterogeneity in the lymphocyte
specialization. To evaluate cell heterogeneity and relate a
particular function of the severe data, we mixed the T cells
data from all healthy controls and patients and repeated the
clustering and progeny analyses (Figure 10C). Given these new
clusters and their activated pathways, we classified the T and NK
data into two groups based on the expression profile and the
A B
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FIGURE 10 | Dysregulated pathways and TFs in T cells. (A) Pathways activations results (PROGENy) according to health status. (B) TF results (DoROthEA)
according to health status. Green square highlights those genes only activated on T-NK cells from severe patients. (C) Progeny analysis using mixing data of T and
NK cells, green and orange groups are related to a pro and anti-distress response, respectively. Colorbar is related to activation (red) and inactivation (blue) values.
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dendrogram: pro-distress (green clusters: 7, 9, 11, 8, 10, 4, 2, 1, 6,
3, and 5) and anti-distress (yellow clusters: 0, and 12). We
defined distress as the condition that promotes acute
respiratory syndrome in COVID-19 infection. The pro-distress
group had activated pathways that promote inflammation,
increase tissue permeability, boost fibrotic response, hypoxia,
and cytokine release (NFKb, TNFa, JAK-STAT, TGFb, EGFR,
VEGF, and Hypoxia). Cluster 9 had the highest activation of the
described pro-distress pathways, mainly conformed by severe
patient cells. Moreover, there is an opposite activation between
the pro and the anti-distress groups, showing modularity in the
disease development. Thus, despite evidence showing T cells
aggravate the disease severity, there is a subpopulation of cells
that do not promote inflammation and cytokine liberation.
Therefore, data suggested that even severe patients had T cells
potentially helpful to fight back against the disease.
3.9 B-Cells Function Regulation According
to Disease Severity
B-cells are well known for their ability to produce antibodies.
However, B-cells also perform several immunological functions,
including antigen presentation, the production of multiple
cytokines, and restrain excessive inflammatory responses (181).
Here, we explored the phenotypic capacity of B-cells according to
the disease severity in COVID-19 patients following three steps.
First, we inferred the TFs activities that guide the B-cells
phenotype using DoRothEA (Figure 11A). Second, we
implement a functional pathway analysis using PROGENy
(Figure 11B). Besides, we complemented these studies by
accomplishing GSEA with several databases over the TF list in
each disease severity condition (Figure 12 and Table S4). From
DoROthEA results, we obtained the TFs that are activated or
inactivated within the disease severity. In general, moderate
patients highly activate IRF1, IRF2, IRF4, IRF9, STAT1,
STAT2, and SPI1(Figure 11A). Intriguingly, these TFs mediate
the activation of both innate and adaptive immune responses,
growth, and differentiation of B-cells primarily by regulating
interferons (IFNs). Thus, in moderate patients, it is more likely
that B-cells contribute to antiviral functions by inducing the
transcription of ISGs (IFN-stimulated genes), which restrain
unique stages of viral replication. These findings agree with
other reports, showing a robust IFN-I response in a moderate
infection (182). Moreover,severe patients activate E2F1, E2F4,
MYC, FOXP1, CEBPB, and SP1 (Figure 11A). These TFs are
primarily associated with cell cycle control, B-cell development,
differentiation, and immune responses. In this context, previous
publications showed that viral infection of human B cells can
result in the activation of the cell cycle directly or indirectly by
promoting the related cell signaling (183, 184). However, the
precise effect in the cell cycle guided by SARS-CoV-2 is still
unknown. To give more detail in the overactivation of the cell
cycle effect in severe COVID-19 patients, we further discussed
these results by employing a complementary approach such as
GSEA. In healthy controls, most TFs are activated in moderate
and severe patients are inactivated (Figure 11A). Notably, this
Frontiers in Immunology | www.frontiersin.org 20
TFs pattern indicates the futility of activating pathways involved
in antiviral responses in a condition that lacks a viral infection.

Additionally, as we mentioned earlier, we employed a GSEA
over the list of TFs identified with DoRothEA to explore the
potential phenotype of the B-cells. Results for the moderate
patients showed activation of pathways involved in the
interferon response and the activation of cell differentiation
(Figure 12A). Besides, in healthy controls, we obtained
inactivated pathways related to viral responses (herpes, human
papillomavirus, cytomegalovirus, hepatitis B, measles, Epstein-
Barr virus; Figure 12B). In contrast, the results in severe patients
showed activation of pathways involved in the cell cycle control,
virus infection, and cellular senescence (Figure 12C). Especially
by comparing the infected conditions, the IFNs response is
activated in moderate patients and absent in severe patients,
which can be associated with the clinical outcome. As mentioned
in previous sections, the IFNs response (principally type I IFNs)
functions as immunoregulatory cytokines that play a pivotal role
in viral immunity and promote B cells survival, activation, and
differentiation (185). The fact that type I IFNs have been
reported to improve B cells survival (186) can explain in part
the higher abundances of B cells in moderate patients compared
to severe patients (Figure 1C). Also, in severe patients, the
activation of cellular senescence can be explained by
contributing to an inflammaging phenotype. These results
correlate with the age variable in the severe samples, mainly
being above 62 years old. In detail, inflammaging increases low-
grade chronic inflammation related to age; a significant driver of
this phenotype is cellular senescence (187, 188). In addition to
these findings, other reports present evidence that the senescent
B-cells subset is highly inflammatory with low proliferative
capacity (189). Overall, B-cell cytokine production guided by
IFNs response contributes to virus clearance in moderate
patients. In contrast, in severe patients the B-cell senescence
activation is partially responsible for inflammatory state. Hence,
we can conclude that B-cells can orchestrate the restrain of the
viral infection by activating the type I IFN response in moderate
patients. However, the potential B-cells senescent state in severe
patients can drive the hyper-inflammatory environment
correlated with a worse outcome in COVID-19 patients.

Finally, the results obtained using PROGENy (Figure 11B)
supported an activation in several pathways unnoticed in GSEA.
For instance, in the moderate patients, we observed activation in
VEGF, WNT, p53, Trail, JAK-STAT, NFKb, TNFa, Hypoxia,
TGFß while in the severe patients EGFR, PI3K, Estrogen, and
MAPK are activated. By comparing these sets of activated
pathways that guide the B cells functions, we can explain in
part the severity observed in patients, mainly because the
activated pathways in the moderate patients lead to pro-
apoptotic phenotype. In particular, the expression of Trail in B
cells can induce preferential apoptosis for CD5(+) B cells (190),
and p53 prevents the accumulation of progenitor B cells, thereby
reducing the likelihood of incorrectly differentiated B cells (191).
Also, the moderate patients show pathways associated with a
higher maturation of B cells. For instance, NFKb and TNFa
signaling need to be active under a nonstimulated environment
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and during virus-mediated stimulation (151, 152). In addition to
these results, the JAK-STAT signaling pathway, specifically Stat3
and Jak1, is involved in B cells developmental responses (192),
and TGFb1 is a potent regulator of B cell development from the
pre-B cell stage up to immunoglobulin-secreting plasma cells
(193). In contrast, the severe patients show pathways associated
with B-cells identity, activation, proliferation, and survival
guided by PI3K, Estrogen, and MAPK pathways (194–196).
However, in the particular case of the EGFR pathway, other
reports demonstrate that it promotes viral replication through
increased virion uptake or suppression of cytokine production
(197) This specific case only applies when the virus can infect B-
cells. Moreover, EGFR appears to play a significant role in the
Frontiers in Immunology | www.frontiersin.org 21
severity of non-lethal infections (Influenza A) such that when it
is inhibited, the disease is more severe. However, in the highly
lethal infections (H5N1 or SARS-CoV), other mechanisms
potentially cloak the role of EGFR (198). In general, the
pathways obtained by PROGENy suggest control of the
homeostatic functions in B cells, such as tolerance,
development, maturation, and proliferation. In severe patients,
we observed a higher activation, proliferation, survival, and
infection pathways of B-cells. However, two questions remain
open: Do the pathways involved in proliferation, and survival
possess defects that jeopardize the B-cells function?, and Does
the activation of EGFR, PI3K, MAPK, and Estrogen pathways
trigger chronic inflammation?. Thus, a thorough understanding
A B

FIGURE 11 | TFs associated with the disease severity in B cells. (A) Resulting Heatmap from DoROthEA analysis. (B) Resulting Heatmap from PROGENy analysis.
Colorbar sets the activation (red) and inactivation (blue) values.
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of how B-cell proliferation and survival are regulated could
provide new insights for different severity conditions in
COVID-19.

3.10 Neutrophils Function Regulation
According to Disease Severity
Neutrophils are the most abundant immune cells in human
blood. They are present in many lung diseases associated with
acute respiratory distress syndrome (ARDS), as described in
infections led by the influenza virus and SARS-CoV-1 (199).
Even though their particular role during viral infection is not
fully understood. Several reports suggested that neutrophils
enhance antiviral defenses by interacting with other immune
Frontiers in Immunology | www.frontiersin.org 22
cells subpopulations, promote cytokine release, oxidative burst,
neutrophil extracellular traps (NETs), degranulation, virus
internalization, and virus clearance mechanisms (200, 201).
This section analyzed the potential phenotypes of neutrophils
corresponding to the disease severity in COVID-19 patients. As
described in previous sections, we employ a three-step analysis
conducted by the inference in the TFs activities using DoRothEA
(Figure 13A). Consecutively, we implement two independent
functional pathway analyses, on the one hand, PROGENy
(Figure 13B) and on the other hand GSEA for each disease
severity condition (Figure 14 and Table S4). From DoROthEA
results, we obtained the TFs that are activated or inactivated in
each disease severity condition. In general, moderate patients
A
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FIGURE 12 | Pathway Enrichment Analysis across various databases. Activity status of the TFs in a particular pathway found by DoROthEA across the disease
severity in B-cells. (A) GSEA in moderate patients. (B) GSEA in healthy controls. (C) GSEA in severe patients. The normalized enrichment score (NES) value
represents the activity status within the disease severity conditions, a positive value for active pathways (red), and a negative value for inactive pathways (blue). The
dataset for every pathway (rows) is indicated inside the colored bar.
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highly activate an extensive list of TFs involved in the leukocyte
differentiation (BATF, CEBPA, CEBPB, CREB1, EOMES,
ESRRA, IKZF1, IRF1, IRF4, JUNB, KLF6, LYL1, MAFB,
MEF2C, MYC, POU4F2, PRDM1, TBX21, RUNX1, RUNX2,
SPI1, TAL1, and TCF7; Figure 11A). Also, the results showed
the activation of GABPA, NRF1, and CREB1, which in turn
participate in the neutrophils maturation, modulate oxidative
stress response, and cytokine production, respectively (202–204).
Thus, in moderate patients, most activated functions are
implicated in maturation, differentiation, and response to stress
stimulus. Moreover, severe patients showed a slight activation of
some TFs: STAT3, STAT1, RELA, JUN, NFKB1, REL, FOXL2,
SP3, FOXA1, and IRF1 (Figure 13A). These TFs are primarily
associated with the mediation and stimulation of pro-
Frontiers in Immunology | www.frontiersin.org 23
inflammatory cascades (205, 206). To present a particular
function in the slightly activated pro-inflammatory cascades in
severe COVID-19 patients, we further discussed these results by
employing a complementary approach such as GSEA. In healthy
controls, most inactivated TFs are related to virus response
(FOSL1, IRF1, IRF2, IRF9, RELA, STAT1, STAT2;
Figure 11A). Besides activated TFs in healthy controls such as
ATF3, BHLHE40 and BCL6 are modulators of neutrophil
inflammation (73, 207, 208) (Figure 13A). Notably, in healthy
controls, the TFs pattern indicates the lack of response to
external stimuli, particularly a virus infection, while activating
the inhibition of inflammation.

Furthermore, we employed a GSEA over the list of TFs
identified with DoRothEA to survey the potential phenotype of
A B

FIGURE 13 | TFs associated with the disease severity in neutrophils. (A) Resulting Heatmap from DoROthEA analysis. (B) Resulting Heatmap from PROGENy
analysis. Colorbar sets the activation (red) and inactivation (blue) values.
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Vázquez-Jiménez et al. COVID-19 Severity Markers and Immune Landscape
the neutrophils. Results for the moderate patients present an
inactivation of a unique pathway involved in regulating
pluripotent phenotype. This result was also found in DCs and
may explain the same aspect of reducing this biological program
in a differentiated cell type (Figure 14A). Besides, in healthy
controls, we obtained inactivated pathways related to viral
responses (herpes, hepatitis B, hepatitis C, measles, Epstein-
Barr virus), antiviral pathways (IFN-1 production), and
inflammatory-related pathways (C-type lectin receptor
signaling pathway, NOD-like receptor signaling pathway, Th17
cell differentiation, and inflammation guided by chemokine and
cytokine signaling; Figure 14B). In comparison, the results in
severe patients showed activation of pathways involved in the
Frontiers in Immunology | www.frontiersin.org 24
cellular senescence, angiogenesis, and several pro-inflammatory
pathways (Figure 14C). Intriguingly, as the results in DCs, the
comparison in the activation status between infected conditions
showed that while the neutrophils functions in moderate patients
led to a pronounced maturation, differentiation, and response to
stress stimulus. Thus, processes in severe patients are related to a
pro-inflammatory phenotype. However, severe patients might
induce angiogenesis. Neutrophils can stimulate angiogenesis via
matrix metalloproteinase-9 (MMP-9) due to herpes simplex
infection (209). Nonetheless, the protective or harmful effects
guided by the activation of angiogenesis in SAR-CoV-2 disease
are still unknown. In this regard, the pronounced pro-
inflammatory phenotype observed in severe patients can also
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FIGURE 14 | Pathway Enrichment Analysis across various databases. Activity status of the TFs in a particular pathway found by DoROthEA across the disease
severity in Neutrophils. (A) GSEA in moderate patients. (B) GSEA in healthy controls. (C) GSEA in severe patients. The normalized enrichment score (NES) value
represents the activity status within the disease severity conditions, a positive value for active pathways (red), and a negative value for inactive pathways (blue). The
dataset for every pathway (rows) is indicated inside the colored bar.
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play a detrimental role. Another report demonstrated that an
excessive neutrophil activation linked to a pro-inflammatory
transcriptional signature correlates with lethal influenza
infection (206). Also, through prolonged or excessive responses
in the production of pro-inflammatory cytokines, neutrophils
can cause extracellular matrix damage, extensive cell death, and
tissue necrosis (201). Together these reports suggest that
neutrophils (as other cell types) pro-inflammatory pathways
can drive the hyper-inflammatory environment that
corresponds to a worse outcome in COVID-19 patients.
However, from our results, a question remains open: Is the
slight activation of pro-inflammatory pathways observed in severe
patients sufficient to promote a hyperinflammatory environment?

Finally, the results obtained using PROGENy (Figure 14B)
established an activation in several pathways. We observed
activation in p53, WNT, TGFß, VEGF, and JAK-STAT in the
moderate patients, while in the severe patients MAPK, JAK-
STAT, NFKß, TNF-a, EGFR, and PI3K were slightly activated.
By comparing these activated pathways that guide the
neutrophils functions. In particular, the expression of p53 in
neutrophils can induce apoptosis (210). The determination of the
lifespan in neutrophils can be controversial due to the beneficial
or detrimental effects (211). Some evidence indicates that
inflammatory signals prolonged neutrophil survival in bacterial
infections (212), and NFKß and PI3K activation delay neutrophil
apoptosis in a mimic viral infection (213). Moreover, neutrophil
apoptosis is inhibited in human cytomegalovirus infection
(HCMV) (214), while simian immunodeficiency virus (SIV)
induces neutrophil apoptosis, and the extent of apoptosis
correlated positively with disease severity. Thus in some
infections, apoptosis shows both a protective and detrimental
role. Here, we can infer that the plausible induction of apoptosis
by P53 can lead to a protective role in moderate patients.
Additionally, in moderate patients, the functions related to the
activation of TGFß, VEGF and JAK-STAT can be the induction
of chemotaxis, inflammatory angiogenesis, and pro-
inflammatory signaling, respectively (215–217). In contrast, the
severe patients show the slight activation in pathways associated
with a pro-inflammatory phenotype, for instance, the activation
of JAK-STAT (217), TNF-a, required in the release of NETs
(218), and VEGF, which contribute to neutrophilic inflammation
through enhanced production of IL-8 (219). Overall, it is clear
that the pathways obtained by PROGENy control the
homeostatic functions in neutrophils, such as apoptosis,
chemotaxis, angiogenesis, and pro-inflammatory signaling.
However, in both disease conditions, pro-inflammatory
signaling is present, with higher activation in moderate
patients. These results seem contradictory since the worse
outcomes are prevalent in hyper-inflammatory environments.
Nonetheless, in moderate patients, the complementary pathways
related to apoptosis can adequately remove the neutrophils
population to restrain the potential reactive effects. Likewise, in
severe patients, the possible slight promotion of NETs by TNF-a
can drive the hazardous results observed in COVID-19 patients
(220). Here, we suggest that the activating neutrophils apoptosis
can efficiently modulate inflammatory phenotype in moderate
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patients, and the robust yet slight inflammatory phenotype in
severe patients may be sufficient to drive a worse outcome.
4 DISCUSSION

The COVID-19 pandemic has driven a sanitary emergency that
has caused millions of deaths worldwide. Patients have been
treated and classified according to the severity of their symptoms
(221). Moreover, biomarkers are used clinically for many
conditions reflecting pathological development. Particularly for
COVID-19, the proposed severity markers are isolated and have
not been analyzed integrally (222). Additionally, although the
changes that undergo some immune cells have been described,
there is a lack of information about how the different immune
cells promote or restrain the disease on the whole. Using BALF
single-cell data from 3 healthy controls and 9 patients classified
as moderate and severe (1), we focused this study on two issues,
illness severity classification and the lack of description regarding
immune cells as a whole. Hence, first, we proposed using a
classifier to differentiate moderate and severe patients according
to their single-cell gene expression profile. Second, we
characterized the immune hallmarks based on the activation of
the identified immune cells.

Using our XGBoost classifier, we obtained high accuracy
(0.98) in distinguishing moderate and severe patients samples
(Figure 2), an improved approach compared with similar models
in other studies with different human samples (223, 224).
Furthermore, we evaluated the model applicability in another
BALF data (21) with a high rate of accuracy. Thus, by getting a
severity COVID-19 gene-signature, we proposed a precise
alternative method to classify disease severity. Moreover, we
are aware that this result needs to be proved in more extensive
datasets from across the globe, which sets future work. In
addition, we identified a genetic signature conforme by 8 genes
and participating in various functions. Congruent with previous
reports (225, 226), this diversification of genes can be related to
the systemic damage due to the SARS-COV-2. Moreover, to
accurately describe the systemic dysregulation among patients, it
is necessary to evaluate the SARS-COV-2 effect in each cell type
involved in the infection dissemination.

The SARS-CoV-2 has a primary entrance to the human body
through respiratory epithelial cells. Moreover, the virus also
infects and impairs monocytes and macrophages (227, 228,
230). The axis monocytes-macrophages-NK-DCs coordinate
the innate immune response and promote viral clearance. Still,
as a consequence of SARS-CoV-2 infection, they get
dysregulated, promoting excessive cytokine release affecting
adaptive immunity (32, 64, 228, 229, 231, 232). We described
this downhill effect in three main dysregulated processes in
which the found cells take part: dysregulation of the innate
and adaptive immune response and the cytokine mayhem.

The strike of innate immune response starts with the
pulmonary epithelial cells. They control the balance between
limiting the viral spread and causing excessive inflammation and
tissue destruction by cytotoxic immune cells (233). Results
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Vázquez-Jiménez et al. COVID-19 Severity Markers and Immune Landscape
showed that AT1, AT2, and secretory epithelial cells from severe
patients had activated STAT and IRF genes, suggesting IFN-I
signaling is on for them and off for moderate patients. A relevant
consideration is that almost all patients (except for one
moderate) were treated with interferon. For severe patients,
samples were collected 6 to 10 days after initiation of the
treatment; for moderate patients were collected 2 to 3 days
after. An in-vitro study showed that IFN signaling was time-
dependent, it takes time to ISG, and IFN signaling mediated by
TGFb developed an antiviral state (234). Therefore, we
hypothesize that both patient groups were affected by the virus,
but the severe ones had the manifestations of the
pharmacological effect. Moreover, STAT1 is associated with the
cytokine storm (34), congruently with our findings. Additionally,
we observed an activity enhancement of several TFs leading to
possible tissue fibrosis for the severe patients through the
impairment of TGFb, inflammation, activation of EMT, and
EndMT pathways (Figure 3C) effect that we proposed is led by
the AT1, AT2, and secretory epithelial cells (Figure 4D). These
effects heighten the fact that despite ciliated, and squamous cells
have higher infectivity rate and ACE2 expression by the SARS2-
CoC-2 than AT1 and AT2 (235), alveolar epithelial cells seem to
be developing the infections havocs modifying their initial innate
response. Innate immune response promotes the recruitment of
the immune cells, activates the antigen presentation process, and
activates pathogen clearance. After the epithelial cells get
infected, monocytes, macrophages, and NK are the firsts cells
to be recruited.

Monocytes and macrophages are two fundamental immune
cells with pivotal functions to induce immunity and host defense
against foreign agents. Although these cells have been reported to
promote COVID-19 infection in severe patients (236), the origin
of this behavior remains an open question. Moreover, we
postulate how these cells interact between them. According to
our cell classification, there is no difference between monocytes
and macrophages proportions for the patients (Figure 1C).
Quantification of HLA and IFN-stimulated genes (IFI6)
correlated with pathogen detection, and the inflammatory
response showed high expression in monocytes of moderate
patients (Figure 5). This critical condition for severe patients
may lead to a deficient or null peptide antigens presentation to
the immune system that modulates the production of antibodies
against foreign peptide antigens (61, 153–155). Moreover, this
inadequate antigen production is driven by IL-6, usually found in
high concentrations in severe patients (61, 228). Additionally,
monocytes from moderate patients suggest a controlled
inflammatory response is fundamental for viral clearance
related to IFI6 expression. Congruent with reports, the data
showed insights into the already reported non-regulated
inflammatory landscape and immune evasion by the immune
response in severe patients associated with SARS and systemic
failure (225, 226, 237). The immune system cells may get
involved in several critical changes within disease severity. It
has been suggested that monocyte-macrophage activation can
induce subsequent respiratory failure in severe patients (156).
Macrophages from severe patients activated genes and pathways
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related to IL-6 driven inflammation and cytokines release such as
TNFa pathway, MAPK pathway, the axis TREM2-APOE-
LGALS3, and the antigen SMAD family genes; to name a few
(Figure 6). Thus, in severe patients, monocytes/macrophages
guide the innate immune response to a dangerous positive
inflammation loop where monocytes and macrophages induce
IL-6 secretion, which hit antigen presentation, promote IL-6
pathway activation, and pro-inflammatory cytokines release,
promoting innate cells recruitment so on. This chicken-and-
egg condition hypothesizes that the breakpoint into this loop is
the timing of the first immune response and is still an open
question to unravel COVID-19 dynamics.

NK cells complement the innate immunity directly attacking
foreign pathogens. Thus, their immune role has a balance
between protection against pathogens and preventing
autoimmune responses. Moderate patients seem to induce an
effective immune response by the lysis of target cells through
cytotoxic degranulation and controlling an auto-apoptotic
response. NK cells regulate Th cells; for severe patients, this
regulation impairs the adaptive immune response. The NFKb
pathway seems to be playing a significant role for these cells and
controlling inflammation for severe patients.

The description of the immune response continues with the
DCs as they are the link between innate and adaptive immunity.
The primary function of adaptive cells is to mediate the
polarization of innate cells into effector cells and antibody
production (238). Interestingly, DCs have similar behavior as B
cells and neutrophils. According to our data, the main
characteristic was observed: whereas the moderate group has
mature and differentiated DCs and neutrophils, severe patients
show a homeostasis dysregulation promoting cytokine release
and inflammation (Figures 8, 9, 13, 14). Particularly for DCs,
there might be a negative effect mediated by the Th17 immune
response (Figures 8, 9). Th17 cells differentiate in part through
the actions of IL-6 (239). IL-6 induced by coronaviruses in the
lung appears to promote in susceptible hosts Th17 responses that
may lead to severe lung pathology (240). In addition, neutrophils
and DCs from moderate patients seem to be regulated by a
tolerogenic effect setting an equilibrium point that controls the
pro-inflammatory response. As for the severe patients, immature
and proliferative cells lead to a possible non-development
adaptive response making them susceptible to enter into the
positive inflammation loop. Therefore, B and DCs from severe
cases might have a delayed response and senescence state
promoting viral replication and make the immune response
susceptible to enter into the positive inflammation loop.
Particularly for B and neutrophils, cellular senescence and the
activation p53 pathway induce the pro-inflammatory state. As an
important remark, DCs, B, and neutrophils from moderate
patients strongly activate inflammatory regulation pathways,
but severe patients show a slight activation of pro-
inflammatory pathways. This condition suggests that pro-
inflammatory pathways do not need an exacerbate activation
to induce a magnified production of cytokines.

As the adaptive immune response is triggered, the role of T
cells emerges. Data from patients showed activation of pro-
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inflammatory pathways. Although T cells from patients have
inactivation of BCL6, ATF3, and MNT affecting immune
memory formation and B cells maturation, moderate patients
B cells showed activated pathways suggesting an adequate
antiviral response. An effect that cannot happen with impaired
B cells. Moreover, an important consideration is the dynamics; T
cells in moderate patients have non-stationary dynamics that
decrease after reaching their peak concentration (168, 241).
According to this hypothesis, moderate patients activated TFs
that regulate the expression of IL-6, NFKb, and Th17 suggesting
a controlled inflammatory state contrary to severe patients.
Interestingly, although severe cells promote inflammation by
the activation of NFKb, not all cells take part. Some of them
potentially may induce an anti-distress condition. Moreover, the
pro-distress is so strong that only a few T cells are needed to
dysregulate the system and push it into the positive inflammation
loop to end a systemic failure.

On the whole, used data might reflect an advanced stage in
the infection. At this stage, moderate patients exert a possible
efficient immune response settled by an IFN-I decrease and the
presence of pro-inflammatory cytokines setting the precise
balance promoting viral clearance and immune memory.
Furthermore, the immune response involves several activation/
inactivation from epithelial response through mature B cells. On
the contrary, severe patients might be reflecting their
dysregulation starting with some innate immunity cells
(monocytes, monocytes, and NK) promoting IL-6 and innate
cell recruitment, which exert a massive pro-inflammatory
condition affecting the adaptive response blocking antigen
presentation. Carrying on this downfall process, immature DCs
impairment induces massive cytokine release, leading to more
innate cell recruitment, cytokine release, and fibrosis. T, B, DCs,
and neutrophils exacerbate the condition releasing IL-6
deploying an infective adaptive response aggravated by the loss
of germinal centers, consequently impairing immune memory.
Thus, despite severe patients showing activation IFN-I, their
response might not be adequate. NFKb pathway has been
identified impaired in the broncho-alveolar space cells; mostly
all the analyzed cells show impairments. Overall, severe patients
activated the described cells pushing the system into a hyper-
inflammation state that might cause patients to die.

Several studies have used the same dataset to evaluate the
immunological effect in COVID patients. Among the differences:
Park and Lee identified the effect on neutrophils glucocorticoid
receptors on severe patients and described in general terms
cytokines released by myeloid cells (15). Overholt el al. studied
balf and pbmc samples finding differences among compartments
setting the crosstalk among them (242). Garg et al. perform a
meta-analysis with balf data and pbmc. They studied myeloid
impairment independently for each cell (243). Finally, Tang et al.
analyzed the origin of cytokine release on balf and pbmc samples
(244). Moreover, all the previous studies had different
perspectives correlating the airway and blood compartments,
and centered their study in one cell-type. As their valuable
endeavors, they do not describe a systemic interaction among
cells and how the downhill effects are transduced to the other
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cell-types comprising patients to a dreadful or hopeful condition.
In addition, we implemented a decision model useful to
classify patients.

It is essential to consider that patients were under
pharmacological treatment at the moment samples were taken.
Four of six severe patients took interferon, methylprednisolone,
and ribavirin. Methylprednisolone is an immunosuppressive
drug; it stops or delays pneumonia. Moreover, severe patients
did not show an immunosuppressive effect. Cells for this group
have activation of pro-inflammatory pathways and cytokine
release. Therefore, the drug effectiveness might be
reconsidered. All patients except one moderate were under
interferon treatment. Despite the implication that the
interferon might be beneficial, we considered that these effects
are conserved across data, excluding a possible bias.

As a final remark, the present study set the integration of cells
belonging to the immune landscape for COVID-19 patients.
Having each cell’s global and particular contribution made the
therapeutic options clearer with their scopes and limitations.
Along with this work, we have drawn some future perspectives.
First, as soon as more available single-cell RNAseq data from
BALF and PBMC, it will allow us to explore the scope of our
conclusions and its limitations regarding variables such as
ancestry, treatments, and the prevalence of different
comorbidities. Second, given the complex nature of the disease,
we should move toward integrative studies capable of integrating
clinical data and other high-throughput technologies that
complement our conclusions and set tactics to control illness
severity. Machine-learning and systems biology are
indispensable tools to reach this goal (245, 246). We expect
this integrative strategy to elucidate how COVID-19 affects our
health and eventually design suitable strategies to reduce their
lethal consequences in human life.
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de Ciencia y Tecnologıá (CONACYT). EM-O is a doctoral
student from Programa de Doctorado en Ciencias Biomé dicas,
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142. Mourão-Sá D, Robinson MJ, Zelenay S, Sancho D, Chakravarty P, Larsen R,
et al. CLEC-2 Signaling via Syk in Myeloid Cells Can Regulate Inflammatory
Responses. Eur J Immunol (2011) 41:3040–53. doi: 10.1002/eji.201141641
September 2021 | Volume 12 | Article 705646

https://doi.org/10.1182/blood-2005-04-1351
https://doi.org/10.1182/blood-2005-04-1351
https://doi.org/10.1038/ni1582
https://doi.org/10.1097/01.aids.0000304691.32014.19
https://doi.org/10.1097/01.aids.0000304691.32014.19
https://doi.org/10.1038/s41392-020-00426-x
https://doi.org/10.1007/s10787-020-00773-9
https://doi.org/10.1007/s10787-020-00773-9
https://doi.org/10.1016/j.antiviral.2017.03.022
https://doi.org/10.1016/j.antiviral.2017.03.022
https://doi.org/10.1016/j.ejphar.2020.173748
https://doi.org/10.1371/journal.pone.0008248
https://doi.org/10.1371/journal.pone.0008248
https://doi.org/10.18632/oncotarget.22933
https://doi.org/10.1038/onc.2008.312
https://doi.org/10.3390/genes8020083
https://doi.org/10.1371/journal.pbio.3000270
https://doi.org/10.4049/jimmunol.1000223
https://doi.org/10.1038/cmi.2008.44
https://doi.org/10.3389/fimmu.2016.00251
https://doi.org/10.1128/JVI.02576-13
https://doi.org/10.1093/intimm/dxh391
https://doi.org/10.4049/jimmunol.176.1.7
https://doi.org/10.1038/sj.onc.1204380
https://doi.org/10.1186/s12920-015-0142-9
https://doi.org/10.1182/blood.v118.21.548.548
https://doi.org/10.1038/s41467-018-03618-w
https://doi.org/10.1126/sciimmunol.aaz8154
https://doi.org/10.1158/1535-7163.MCT-15-0706
https://doi.org/10.1371/journal.ppat.1007634
https://doi.org/10.15252/embj.201487900
https://doi.org/10.1038/ni.1694
https://doi.org/10.1016/j.celrep.2017.06.071
https://doi.org/10.3389/fimmu.2021.641886
https://doi.org/10.1111/imm.12888
https://doi.org/10.1016/j.immuni.2012.10.018
https://doi.org/10.1016/j.immuni.2010.03.017
https://doi.org/10.4049/jimmunol.1002923
https://doi.org/10.1016/j.mod.2019.05.001
https://doi.org/10.1126/sciimmunol.aai7677
https://doi.org/10.1016/j.imbio.2012.06.009
https://doi.org/10.1016/j.imbio.2012.06.009
https://doi.org/10.1111/j.1600-065x.2008.00731.x
https://doi.org/10.1111/j.1600-065x.2008.00731.x
https://doi.org/10.1099/jgv.0.000401
https://doi.org/10.1016/j.it.2012.12.003
https://doi.org/10.1002/eji.201141641
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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