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Recent interest in cancer immunotherapy has largely been focused on the adaptive
immune system, particularly adoptive T-cell therapy and immune checkpoint blockade
(ICB). Despite improvements in overall survival and progression-free survival across
multiple cancer types, neither cell-based therapies nor ICB results in durable disease
control in the majority of patients. A critical component of antitumor immunity is the
mononuclear phagocyte system and its role in both innate and adaptive immunity. The
phagocytic functions of these cells have been shown to be modulated through multiple
pathways, including the CD47-SIRPα axis, which is manipulated by cancer cells for
immune evasion. In addition to CD47, tumors express a variety of other “don’t eat me”
signals, including beta-2-microglobulin and CD24, and “eat me” signals, including
calreticulin and phosphatidylserine. Therapies targeting these signals can lead to
increased phagocytosis of cancer cells; however, because “don’t eat me” signals are
markers of “self” on normal cells, treatment can result in negative off-target effects, such as
anemia and B-cell depletion. Recent preclinical research has demonstrated the potential of
nanocarriers to synergize with prophagocytic therapies, address the off-target effects,
improve pharmacokinetics, and codeliver chemotherapeutics. The high surface area-to-
volume ratio of nanoparticles paired with preferential size for passive targeting allows for
greater accumulation of therapeutic cargo. In addition, nanomaterials hold promise as
molecular imaging agents for the detection of phagocytic markers. This mini review
highlights the unique capabilities of nanotechnology to expand the application and
efficacy of immunotherapy through recently discovered phagocytotic checkpoint
therapies.

Keywords: immunotherapy, nanoparticles, drug delivery, contrast agent, don’t eat me, eat me

INTRODUCTION

Under normal circumstances, the body relies on a functioning innate immune system to rapidly
respond to cues for phagocytosis. This process includes detection of pathogen invasion, clearance of
apoptotic and necrotic cellular debris, and the processing and presentation of foreign or tumor
antigens. Critical molecular markers of phagocytosis, or “eat me” signals, trigger engulfment by
members of the mononuclear phagocyte system (see Figure 1) (Ravichandran, 2011; Li, 2012; Li
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et al., 2018; Feng et al., 2019). In healthy cells, the expression of
these signals increases as they age to recruit phagocytes to clear
them, while malignant cells can downregulate the expression of
these markers to evade phagocytosis and cell death. Normal
healthy cells also rely on antiphagocytic “don’t eat me”
markers that identify the cell as “self” and prevent premature
phagocytosis. By both suppressing “eat me” and amplifying
“don’t eat me” signals, cancer cells have been demonstrated to
evade destruction by phagocytic cells and the resulting adaptive
immune response which they stimulate. The potential benefit of
controlling phagocytic checkpoints for lasting treatment response
has been an area of significant research recently. Targeting
immune-modulating pathways present on antigen-specific
T-cells has been successful and resulted in substantial clinical
advances (CTLA-4, PD-1); however, there is growing evidence
that upregulation of antigen presentation and the direct
antitumor effects of macrophage and dendritic cells through
prophagocytic therapy will further improve outcomes. As a
result, prophagocytic therapies have been proposed as an
adjuvant treatment, alongside chemotherapy, radiation, and/or
immunotherapy (Feng et al., 2019). Administration of multiple
treatment modalities complicates the dosing schedule and
compromises patient adherence. Here, next-generation drug
carriers that allow for delivery of multiple therapies and
controlled spatiotemporal release may simplify dosing to
enable these advanced treatment regimens. In particular,
nanotechnology-based strategies for the delivery of phagocytic
regulating therapy may address these challenges, along with other
shortcomings of checkpoint blockade.

Nanotechnology offers solutions to fundamental issues with
systemic delivery of immunotherapies (Irvine and Dane, 2020).
Perhaps most importantly, nanocarriers can increase drug

localization—by both passive and active targeting—that increases
safety by preventing off-target effects (antigen sink), allowing for
lower, more effective doses. One of the initial rationales for the use of
nanomedicine in cancer therapy was a favorable size that allowed for
higher accumulation within tumor vasculature because of the
enhanced permeability and retention (EPR) effect. However, this
phenomenon and the enhancement of drug accumulation in
tumors are highly debatable (Wilhelm et al., 2016; Dai et al., 2018;
Ouyang et al., 2020). Despite this controversy, nanotechnologies have
much to offer as drug carriers and therapeutic biomaterials. First,
nanoparticles (NPs) have a high surface area-to-volume ratio, making
them ideal for coating with high-affinity ligands, i.e., targeting agents.
Second, they can serve as a depot for the payload they are delivering
and allow for controlled release that is pH-specific or triggered by
external stimuli (Irvine et al., 2015). Third, NPs arewell suited to act as
theranostic agents, with sensing capabilities to exploit the recent
discovery of “eat me” and “don’t eat me” signals differentially
expressed on cancer tissue compared to normal tissues (Li et al.,
2020; Garg et al., 2016). Nanomaterials are also capable of influencing
immune response based on size, charge, shape, and hydrophobicity, in
addition to carrying immunomodulating cargo or enhancing
immunomodulation upon external stimuli.

Nanomaterials may also serve as molecular imaging probes to
monitor immune-related markers by conventional medical
imaging modalities, such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) imaging
(Choi et al., 2020). Combined imaging and delivery platforms
have been developed with multifunctional nanomaterials for
immune-related applications. For instance, Xu et al.
synthesized mesoporous silica NPs for theranostic PET-guided
photodynamic therapy and neoantigen-based cancer vaccination
(Xu et al., 2019). Iron oxide NPs have also been found to be taken up

FIGURE 1 | Phagocytic checkpoints can be grouped by prophagocytic signals (“eat me,” in green) or antiphagocytic (“don’t eat me,” in purple). Known receptors
expressed on tumor associate macrophages are depicted on the right and their corresponding signals on the cancer cell on the left.
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by tumor-associated macrophages, which can then provide MRI
imaging of phagocytic activity (Mohanty et al., 2019a). Furthermore,
nanomaterials can capitalize on the inherent ability of these imaging
modalities and treatment modalities, such as radiation or
photodynamic/thermal therapy (PDT and PTT), to induce an
immune response (Zhang et al., 2020a). NPs formulated from
high-Z elements and reactive oxygen species (ROS) generating
metals can enhance the ROS generation when stimulated by
radiation (Ni et al., 2018; Neufeld et al., 2019; Choi et al., 2020;
Ni et al., 2020). This ROS production results in endoplasmic
reticulum (ER) stress and both calreticulin (CRT) and
phosphatidylserine (PS) exposure, which are potent “eat me”
signals and danger-associated molecular patterns (DAMPs).
Nanoparticle-enhanced PTT and PDT can likewise produce
increased ROS with potential immunological response (Tada and
Baptista, 2015; Gao et al., 2020).

“DON’T EAT ME” SIGNALS: CD47,
BETA-2-MICROGLOBULIN, AND
CD24

CD47
CD47 was the first phagocytic checkpoint to be identified and
the first with therapies in phase 2 clinical trials (Majeti et al.,
2009; Advani et al., 2018b). The expression of CD47, which is a
transmembrane protein, decreases in red blood cells as they
age; this “self”marker has also been found to be upregulated in
the majority of cancers. CD47 interacts with inhibitory
receptor signal regulatory protein alpha (SIRPα) on myeloid
cells, preventing phagocytosis. Disruption of the axis
stimulates antigen-presenting cells (APC)—specifically
CD8+/CD103 + dendritic cells—and cross-presentation of
tumor antigen, resulting in priming or reactivation of
tumor-specific T-cell immunity. CD47 therapies range from
blocking antibodies, such as Hu-5F9 (an anti-CD47 antibody),
to blocking peptides and high-affinity monomers for SIRPα
(Liu et al., 2004; Weiskopf et al., 2013; Sikic et al., 2019). These
therapies largely rely on CD47 blockade paired with a second
therapy that stimulates adaptive immunity, such as traditional
chemotherapy and/or immunogenic cell death (ICD)-
inducing chemotherapies (Advani et al., 2018a; Fisher et al.,
2020). In patient-derived xenograft models, CD47 blockade as
monotherapy has proven unsuccessful in regard to tumor
volume control and durability (Chao et al., 2010; Cioffi
et al., 2015). However, combined with other therapies,
CD47 blockade is able to enhance tumor volume control
and extend response to treatment. Both in research and
clinically, CD47 therapies have been limited by hematologic
toxicity (anemia and hemagglutination) (Sikic et al., 2019).
The need for a multimodal approach and reduction of off-
target side-effects makes NPs a promising solution as carriers
for both CD47 blockade and chemotherapy.

In preclinical models, CD47 nanomedicines have
exploited CD47 upregulation both for cell targeting to
increase drug delivery and as an innate immune
checkpoint. Multiple pro- and antiphagocytic signals play

a role in the endocytosis of tumor cells and NPs can be
beneficial as codelivery agents of two signal modulators, such
as to suppress CD47–SIRPα interactions and enhance CRT
presence at the tumor (Zhang et al., 2020b). Zhang et al. used
copper-free click-chemistry to conjugate CD47 antibodies
and CRT onto the surface of azide-modified silica NPs.
Similarly, Ramesh et al. co-loaded inhibitors of colony-
stimulating factor 1 receptor inhibitor (to prevent
macrophage polarization to the protumorigenic phenotype)
and Src homology region 2 domain phosphatase (activated
downstream of CD47–SIRPα) into a lipid NP (Ramesh et al.,
2019). They found that the co-loaded NP gave superior
phagocytic capabilities compared to individual drug
treatments and minimal effects from the free drug at later
timepoints. Additionally, CD47-coated NPs can act as stealth
coatings, taking advantage of CD47 as a marker of self (Qie
et al., 2016; Song et al., 2019). Qie et al. modified the surface of
polystyrene beads with polyethylene glycol or CD47 and found
CD47 is able to lower the phagocytic activity of classically
activated macrophages (Qie et al., 2016). Song et al. similarly
utilized the stealth coating by synthesizing nanoscale artificial
antigen-presenting cells (aAPC) to expand antigen-specific
T-cell populations (Song et al., 2019). Nanoscale aAPC offer
favorable biodistribution and reduced embolism compared to
conventional aAPC.

Recently, CD47 nanobodies have been effective at addressing
the toxicity limitation of anti-CD47 treatment (Ma et al., 2020).
Nanobodies, or single domain antibody fragmentations, have
been shown to reduce agglutination of RBC’s (Ma et al., 2020)
and synergize with PD-L1 therapy (Sockolosky et al., 2016;
Ingram et al., 2017).

Beta-2-Microglobulin
β2-Microglobulin (β2M) is a glycoprotein that functions as the
light-chain component of MHC-I and plays a critical role in the
thymic selection and host–pathogen interaction (Bevan, 2010).
β2M has been considered a therapeutic target in cancer due to the
activation of NK cells in β2M-deficient models. Treatment with
anti-β2M antibodies can result in the release of proinflammatory
cytokines. Recently, β2M has been demonstrated to interact with
inhibitory receptor leukocyte immunoglobulin-like receptor
subfamily B member 1 (LILRB1) to prevent phagocytosis.
Barkal et al. found that cancer cells with higher levels of MHC
class I proteins or upregulated LILRB1 on tumor-associated
macrophages (TAMs) were not responsive to anti-CD47
therapy and had lower levels of phagocytosis (Barkal et al.,
2018). Like CD47, MHC-I is expressed ubiquitously, resulting
in a need for tumor targeting to prevent unwanted adverse effects.
However, β2M has been found to be elevated in multiple
myeloma, lymphoma, and prostate cancer patients and is a
prognostic marker (Mink et al., 2008; Koelzer et al., 2012;
Miyashita et al., 2015).

Currently, there are limited nano-based applications for β2M.
However, since β2M has been identified as a prognostic marker
for certain cancers, nanosensors have been proposed as a
noninvasive method of detection. Rizwan et al. reported the
development of a highly sensitive (fg ml−1) label-free
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electrochemiluminescence immunosensor for detecting β2M in
serum and urine (Rizwan et al., 2017). This sensor was composed
of a CdSe quantum dot screen-printed electrode modified with
gold NPs doped with a carbon nano-onion chitosan
nanocomposite. This nanoplatform was developed for renal
disfunction prior to the discovery of β2M’s role as a “don’t eat
me” signal, and it was not originally intended to be used in cancer
therapy. However, this application may be well suited for the
detection of β2M in the serum of cancer patients with elevated
β2M serum levels, which have been reported in prostate cancer,
Hodgkin lymphoma, and diffuse large B-cell lymphoma patients.
Others have used gold NPs as sensors for β2M as well, coating the
gold NPs with anti-β2M antibodies and forming a stable water
suspension (Maity et al., 2020). When we consider the high
sensitivity of the sensors and biocompatibility, their
application could potentially serve as a noninvasive method
compared to biopsies. Gold NPs are ideal as sensors for β2M
and other phagocytic checkpoints because they can be easily
conjugated with antibodies, nucleic acids, and other targeting
agents.

CD24
CD24 (heat-stable antigen) is a cell surface
glycosylphosphatidylinositol-anchored protein expressed
widely on various cell types, including hematopoietic T-
and B-cells and APCs, nonhematopoietic cells, and cancer
cells (Fang et al., 2010). CD24 is involved in inflammation with
roles as a costimulatory for T-cell activation in lymphoid
organs and in mediating apoptosis signaling (Suzuki et al.,
2001; Fang et al., 2010). CD24 is also responsible for
distinguishing between DAMPs and pathogen-associated
molecular patterns (PAMPs) via the interactions with sialic
acid-binding Ig-like lectin 10 (Siglec-10) (Liu et al., 2009).
Recently, CD24 was discovered as a “don’t eat me” signal that
interacts with Siglec-10 on TAMs to circumvent phagocytosis.
This mechanism was elucidated by Weissman and colleagues
(Barkal et al., 2019). CD24 (or heat-stable antigen) is a heavily
glycosylated GPI-anchored surface protein that is well-known
for other modes of action to dampen immune response (Barkal
et al., 2019). Barkal et al. found that tumors refractory to CD47
treatment are often responsive to CD24 blockade. Some
tumors respond to neither, indicating that there are likely
other phagocytic checkpoints regulating macrophage
response. In addition, others have found that upregulation
of CD24 is a poor prognostic factor for many cancer types
(Kristiansen et al., 2004; Yang et al., 2009; Kwon et al., 2015;
Wang et al., 2018). This is an area of opportunity in which
nanomaterials would be well suited as an agent to both target
and monitor CD24 expression, combined with blockade. Prior
to the discovery of CD24 as a “don’t eat me” signal, docetaxel-
loaded PLGA-PEG NPs conjugated with anti-CD24 were
found to have a 10-fold higher prostate tumor accumulation
in mice and showed potential for CD24-tagged NPs as an
imaging agent (Bharali et al., 2017). Barkal et al. also found
that CD24 does not undergo an FcR-dependent route of
phagocytosis, indicating that nanobodies would be well
suited for CD24 therapies.

“EAT ME” SIGNALS: CALRETICULIN AND
PHOSPHATIDYLSERINE

Calreticulin
Calreticulin is a membrane-anchored “eat me” signal that is
usually conserved in the ER. Under conditions of cell ER
stress, CRT is translocated to the exterior of the cell
membrane. CRT exposure triggers dendritic cell uptake and
has recently been used as a marker for ICD. CRT release acts
as a DAMP that can trigger cytokine release.

NP-based therapies can induce CRT exposure by the material
themselves or by serving as carriers of ICD-inducing drugs
(Landry et al., 2020). Ni et al. utilized hafnium metal-organic
frameworks (MOFs) in CT26 cells to stimulate CRT exposure and
induce an immune response (Ni et al., 2018). The MOFs
themselves led to the expression of CRT on the cell surface,
which was further enhanced by radiation. Nanomaterials may
offer the advantage of synergizing with other treatment
modalities, such as radiation and ultrasound, in a localized
manner. These modalities alone are able to increase CRT
exposure as well, further contributing to phagocytosis.
Sethuraman et al. found that encapsulating a CRT plasmid in
a liposome and delivering with focused ultrasound (FUS) was
sufficient to modulate the CRT-CD47-PD-L1 axis (Sethuraman
et al., 2020). Specifically, they found that delivering the CRT
nanoparticle alone increased the surface exposure of CRT twofold
but also increased “don’t eat me” signal CD47 in B16F10
melanoma cells. However, when they delivered the CRT
nanoparticle with FUS heating, they found a 3-fold increase in
CRT and no significant change in CD47. Furthermore, in vivo,
they found melanoma-specific immunity and an increased PD-1/
PD-L1 expression in T-cells with the combination. Others have
similarly applied different forms of targeted thermal therapy. Li
et al. targeted PDT/PTT to the ER to directly induce CRT
exposure and inflict ICD (Li et al., 2019). They localized the
therapy to the ER by ER-specific pardaxin peptide modified
indocyanine green conjugated-hollow gold nanospheres with
an oxygen-delivering hemoglobin liposome. Using the NP and
external near IR light, they could effectively control and monitor
treatment.

Phosphatidylserine
Phosphatidylserine (PS) is a negatively charged lipid usually
constrained to the inner leaflet of the cell membrane. During
apoptosis, PS is translocated to the outer leaflet, marking cells for
uptake by macrophages and other APCs. In cancer, the
membrane integrity is likewise disrupted, and
phosphatidylserine is flipped to the outer leaflet. While PS acts
as an “eat me” signal by sending out abnormal signals that
macrophages can detect, it is also immunosuppressive by
inducing macrophage polarization from the proinflammatory
M1 phenotype to the protumor M2 phenotype, resulting in
secretion of anti-inflammatory cytokines IL-10 and TGF-β
(Birge et al., 2016). PS has long been recognized as a
promising imaging target (Bagalkot et al., 2016; Chang et al.,
2020). Annexin V is commonly used to stain phosphatidylserine
as an apoptosis marker. Prior to discovery as an “eat me” signal,
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Thorpe and colleagues reported on PS as a marker of tumor
vasculature with expression ranging from 4 to 40% of cancer
vessels in six different tumor types. Additionally, they found
hypoxia/reoxygenation, acidity, inflammatory cytokines,
thrombin, or hydrogen peroxide-induced PS exposure on
cultured endothelial cells (Ran and Thorpe, 2002). Advanced
cancer states promote this environment, while many treatment
modalities also further induce these conditions, indicating PS as
an ideal target.

Recent interest in targeting PS with nanoparticles has largely
involved saposin C (SapC), a lysosomal protein with an affinity
for PS. Chu et al. formulated stable nanovesicles composed of
SapC and dioleoylphosphatidylserine (DOPS), which were also
labeled with CellVue Maroon dye for fluorescent microscopy and
fluorescence imaging (Qi et al., 2009). SapC showed high-
coupling efficiency with DOPS and was effectively
incorporated into the lipid bilayer with a facile sonication-
based synthesis. Saposin is ideal for PS targeting in a tumor as
it preferentially interacts with unsaturated, negatively charged
lipids in an acidic environment. When applied in an orthotopic
pancreatic cancer mouse model, extended survival and enhanced
nanoparticle accumulation were observed in the tumor for four
days (vs. clearance from the liver within 24 h) (Chu et al., 2013).
More recently, Davis et al. applied the same nanovesicle system to
radiation-treated tissue (Davis et al., 2019). As mentioned
previously, radiation enhances the surface exposure of certain
“eat me” signals, including PS and CRT. This phenomenon can be
capitalized on by locally delivering radiation prior to PS-targeting
NPs to further selectively target tumors. Davis et al. found that
cancer cells with low expression of PS had a more pronounced
increase in PS exposure after irradiation than cells with low PS
exposure. Additionally, they found that radiation-induced
increase in surface PS is both dose- and time-dependent.
Zhang et al. likewise used radiation to prime the cells with PS.
They designed a SapC-containing liposomal nanoprobe
composed of PEG-coated nanoparticles conjugated with a
human mAb for PS. The NP was designed for delivery after
irradiation of a breast cancer tumor (Zhang et al., 2014). The core
also contained an MR contrast agent, superparamagnetic iron
oxide NPs, and the bilayers of the liposomes were loaded with
near-infrared dye. With these nanoparticles, the investigators
were able to longitudinally monitor changes in tumor contrast via
dual MRI/optical imaging, revealing enhanced tumor contrast
from the anti-PS-tagged NPs.

DISCUSSION

The role of phagocytic checkpoints has been recognized as an
essential component of the cross-talk between malignant cells and
the innate immune system. In cancer, tumor cells balance both the
suppression of antiphagocytic signals and the enhancement of
prophagocytic signals to achieve immune escape. To date,
monotherapies targeting these checkpoints have seen minimal
success, suggesting these drugs are better suited as combination
therapies. Recent reports have indicated that the durable success of
ICB is dependent on the ability of the monotherapy or combination

therapy to stimulate adaptive immunity (Sockolosky et al., 2016;
Feng et al., 2019). More importantly, not all cancers uniformly
overexpress or suppress all of these signals and significant variability
may exist betweenmalignancies and even individual patients. There
are still many unknowns regarding the pathways of phagocytic
signals. Interestingly, the expression of certain phagocytic
checkpoints has recently been identified as a prognostic factor:
CD47 (Majeti et al., 2009), CD24 (Kwon et al., 2015), and β2M
(Mink et al., 2008). Though not currently utilized, expression levels
of phagocytic checkpoints may potentially provide the same
prognostic and predictive value as PD-L1 tumor proportion
scores. Furthermore, highly sensitive NP-based contrast agents
are ideal for detecting the expression of “don’t eat me” signals
on cancer cells despite the ubiquitous expression of “self” markers.

Nanotechnology may be particularly beneficial to phagocytic
checkpoint therapy for both 1) altering and 2) imaging the
checkpoint (see Table 1). Functional nanomaterials offer a
variety of novel applications to alter the checkpoint, such as
targeted delivery, immunomodulatory capabilities, co-delivery of
therapeutic agents, and synergy with other treatment modalities.
Some novel nanoparticles are inherently immune-stimulating based
on size, shape, charge, and material. These materials enable
combination with other prophagocytic modalities, such as
radiation, PDT/PTT, and ultrasound. Furthermore,
nanomaterials and nanoscale carriers can act as radiosensitizers
used to enhance a myriad of immune-stimulating events upon
irradiation, including ROS generation, DNA double- and single-
strand breaks, DAMP release/ICD, and CRT/PS exposure on the
cell surface. NPs can serve the dual purpose of acting as an imaging
probe and enabling tracking of immune cells and checkpoints by
ultrasound, PET, and MRI (Kirschbaum et al., 2016; Ou et al.,
2020). For instance, ultrasound can be used to both express “eatme”
signals that can be targeted by NPs and temporarily disrupt cell-cell
junctions, allowing for NP entry. Iron oxide nanoparticles are
commonly used for MRI and can be encapsulated in lipid
nanoparticles containing “eat me” targeting moieties (Bagalkot
et al., 2016). As imaging agents for phagocytic checkpoints, NPs
are advantageous due to the selection of nanoscale materials (metal,
metal-organic, nanobubbles, and tagged polymers) that are
preferentially endocytosed. Additionally, they allow for
noninvasive tracking and diagnosis, as compared to surgical
resection and histological staining. Altogether, nanomaterials
hold potential as theranostic agents for phagocytic checkpoints
and have only just begun to be employed for this application. Given
the ongoing debate surrounding the efficiency of NP-mediated drug
delivery, the applications mentioned herein exploiting phagocytic
checkpoint therapy present an alternative path toward realizing the
grand potential of cancer nanomedicine. Further development of
advanced combination therapies incorporating nanotechnology
that target and modulate phagocytic checkpoints is warranted
and has the potential to improve tumor immunogenicity and
subsequent response to therapy.
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