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1. Summary

Redox conditions change in events such as immune and platelet activation, and
during viral infection, but the biochemical consequences are not well character-
ized. There is evidence that some disulfide bonds in membrane proteins are
labile while others that are probably structurally important are not exposed at
the protein surface. We have developed a proteomic/mass spectrometry
method to screen for and identify non-structural, redox-labile disulfide bonds
in leucocyte cell-surface proteins. These labile disulfide bonds are common,
with several classes of proteins being identified and around 30 membrane pro-
teins regularly identified under different reducing conditions including using
enzymes such as thioredoxin. The proteins identified include integrins, recep-
tors, transporters and cell-cell recognition proteins. In many cases, at least
one cysteine residue was identified by mass spectrometry as being modified
by the reduction process. In some cases, functional changes are predicted
(e.g. in integrins and cytokine receptors) but the scale of molecular changes
in membrane proteins observed suggests that widespread effects are likely on
many different types of proteins including enzymes, adhesion proteins and
transporters. The results imply that membrane protein activity is being modu-
lated by a ‘redox regulator’ mechanism.

2. Introduction

Membrane proteins that reside on the cell surface of leucocytes contain many
cysteine (Cys) residues that mainly exist in an oxidized redox state as disulfide
bonds. Disulfide bonds covalently link regions of proteins together and have
been thought to have a largely structural role, protecting membrane proteins
from proteolysis and denaturation in the harsh extracellular environment,
and linking individual polypeptides. Structural disulfide bonds are usually
buried inside the core of a protein or protein domain such as those found in
the core of the immunoglobulin (Ig) fold. These structural disulfide bonds are
protected from reduction by small molecule and enzymatic reducing agents
that can be present in the extracellular space.

Recently, it has become clear that there are disulfide bonds present in cell-
surface proteins that are involved in regulating molecular function upon
reduction to their constituent Cys residues. These disulfide bonds have been
termed ‘allosteric’, ‘redox-labile” or ‘forbidden” disulfides, as reducing them
often results in a change in protein structure, and hence function [1-3]. In
order for a disulfide bond to be redox-labile, it has to be accessible to reducing

© 2011 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.


mailto:neil.barclay@path.ox.ac.uk

agents; therefore, they are largely found at the surface of
proteins. They are also generally under torsional strain,
which makes them easier to reduce. A recent bioinformatics
study based on solvent-accessibility and torsional strain of
the disulfide bonds in cell-surface proteins found that about
7 per cent are potentially redox-labile [1,2].

Protein disulfide isomerases (PDIs) are present in the
endoplasmic reticulum at high concentrations, where they
are involved in protein-folding. There is, however, evidence
that they can relocate to the cell surface and affect membrane
proteins. The combination of ‘allosteric” disulfide bonds and
the presence of PDIs at the cell surface in unison offer a mech-
anism for regulating protein function through redox events.
Changes in redox potential have been observed in immune
responses and labile disulfide bonds have been implicated
in many different biological functions. For instance, PDIs
are secreted during platelet activation [4], where they
reduce disulfide bonds in the alIbBIII integrin [5], promoting
thrombus formation. Antibodies that block the catalytic
activity of PDI inhibit reduction of the integrin and reduce
thrombus formation [6]. HIV-1 virus entry into CD4" T
cells proceeds via reduction of disulfide bonds in HIV envel-
ope protein gp120 and in CD4 on the T cells, allowing fusion
of the virus and the T cell. HIV uptake can be blocked with
antibodies that inhibit PDI activity [7] and reagents that
react with reduced Cys in gp120 [8]. Similarly, in Newcastle
disease virus, entry is facilitated by PDI-reduced disulfide
bonds, which then allow viral fusion, a process that again
is inhibited with PDI antibodies [9]. Recently, it has been
shown that human beta-defensin 1 is protective at epithelia
against fungi and bacteria only after activation by reduction
of its disulfide bonds [10].

Redox chemistry plays a key role in immune cell activation.
Dendritic cells secrete the redox enzyme thioredoxin (TRX)
during priming and activation of T cells [11]. It is thought
that cell-surface disulfide bonds are reduced as there is an
increase of free Cys at the cell surface after activation [12,13].
This reduction can modulate the activity of proteins during
an immune response. For example, TRX can modulate the
activity of CD30, a member of the tumour necrosis factor
(TNF) receptor family through reduction of a disulfide bond;
other TNF receptor family members were unaffected despite
their high content of disulfide bonds [14]. In addition, macro-
phages secrete the enzymatically active precursor form of
gamma interferon-inducible lysosomal thiol reductase (pro-
GILT) when exposed to bacterial lipopolysaccharide (LPS),
and the enzyme accumulates in the serum of animals injected
with LPS [15,16].

These studies show that labile disulfide bonds are impor-
tant in cell-activation events, but limited progress has been
made in identifying the repertoire of proteins that are modi-
fied and the particular disulfide bonds within those proteins
that are affected. We describe a proteomics-based method to
systematically screen for membrane proteins that contain
labile disulfide bonds. Mild reducing conditions comparable
with those expected during immune activation were applied
to a T cell clone, and the proteins with redox labile disulfide
bonds were identified by differential chemical labelling, affi-
nity enrichment and tandem mass spectrometry-based
proteomics analysis. A wide range of membrane proteins
was found to contain labile disulfide bonds. Application of
this screening method to a model of inflammation indicated
that modification of disulfide bonds is likely to be common

during immune activation and that the activity of membrane
proteins may be modified in these conditions.

3. Results

3.1. Identification of labile disulfide bonds on leucocyte
surface proteins

In order to screen the entire cell surface for proteins that con-
tain redox-labile disulfide bonds, we developed a proteomics
workflow based upon subjecting the cells to mild reduc-
ing conditions comparable with those expected during
an immune response [11] and differentially labelling Cys
residues with thiol-modifying reagents (figure 1). Methyl-
PEO;,-maleimide (MPM) was used to block any free Cys on
the cell prior to reduction. Maleimide-PEO,-biotin (MPB),
which contains a biotin moiety to enable purification of
labelled proteins, was used to label any free Cys formed after
mild reduction. Iodoacetamide (IAA) was used to label any
Cys generated after denaturation and full reduction of the
proteins prior to identification of tryptic peptides by mass spec-
trometry. Both MPM and MPB are cell-impermeable, ensuring
that only cell-surface proteins were labelled. We used a selec-
tion of reducing agents ranging from the chemical reductant
tris(2-carboxyethyl)phosphine (TCEP) to enzymatic reductants
TRX, PDI and GILT [17].

The method was developed using the well-characterized
mouse 2B4 T cell hybridoma (this line had also been trans-
fected with mouse CD2 and CD244, and also expressed
CD4) [18]. After labelling, cells were solubilized with non-
ionic detergent and membrane glycoproteins purified by
lectin affinity chromatography to reduce background in sub-
sequent steps, followed by affinity chromatography on a
monomeric avidin column to purify biotinylated surface gly-
coproteins. Prior to mass spectrometry analysis, N-linked
glycans were removed from the proteins by treatment with
PNGaseF and proteins were digested with trypsin. After
database searching, sorting and quantitation of the data,
87 proteins were identified as candidates to contain redox-
labile disulfide bonds or to be associated with proteins with
labile disulfides (table 1). These proteins were either only
identified in reduced cells and not controls, or they were
more abundant in the reduced sample than the control
based upon weighted spectral index counts (WSC).

3.2. Membranes proteins with labile disulfides are
common on T cells

A large repertoire of proteins was identified using the pro-
cedure to identify proteins with labile disulfides. The
proteins range from activating and inhibitory receptors to
cell-adhesion molecules such as integrins, molecules involved
in antigen presentation, transporters, and also secreted thiol
reductases, and metalloproteinases (tables 2—-5; summarized
in table 1). These included many of those that we predicted
due to the presence of exposed disulfide bonds easily accessi-
ble to reducing agents. For example, both partners of the
heterodimeric transporter 4F2 and the homodimeric transfer-
rin receptor were found. In both cases, these are known to be
disulfide-linked [19,20]. Integrins were commonly observed
and there are data indicating that these proteins contain
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Figure 1. Schematic of the differential labelling strategy for labelling Cys in their different redox states. Firstly, any free Cys residues at the cell surface were blocked
with MPM as indicated by S-Me. The cells were treated with one of the four reducing agents (TCEP, TRX, GILT and PDI) and labelled either with MBP (as indicated by
S-Biotin) or MPM (for the control sample). The proteins with free Cys residues revealed by reduction were purified by lectin and avidin affinity chromatography,

digested with trypsin and identified by mass spectrometry.

labile disulfides [21]. Several members of the CD2/SLAM
family were detected, including CD2, CD244, CD229 and
CD150. Many members of this family contain disulfide
bonds in addition to the conserved disulfide bond between
the sheets of the extracellular immunoglobulin superfamily
(IgSF) domain. Enzymes are rare at the leucocyte cell sur-
face [22], but members of the ADAM (‘a disintegrin and
metalloproteinase’) family were detected (ADAMI0,
ADAM15 and ADAM17). CD47 is predicted to contain a
labile disulfide that links the IgSF domain with one of the
extracellular loops (and an isoform of mouse CD47 has
additional extracellular sequence with potential labile Cys
residues [23,24]).

3.3. Identification of the cysteine residues involved in
labile disulfides

The above analysis identified proteins labelled by MPB after
reduction, but to work out the structural and functional
consequences of each labile disulfide, it is necessary to
identify the individual Cys residues that constitute these

disulfide bonds. This identification also allows the confir-
mation that a particular polypeptide contains a labile
disulfide bond and has not been co-purified with a biotin-
modified protein. To improve the chances of identifying
modified peptides, an avidin affinity enrichment step was
introduced after trypsin digestion to purify the biotinylated
peptides from the tryptic peptide preparation. The MPB-
modified peptides were detected in two forms—the second
being the maleimide hydrolysis product of MPB. This modi-
fied procedure gave increased recognition of MPB-labelled
peptides identified from 2B4 cells after reduction with
TCEP (table 2), TRX (table 3), PDI (table 4) and GILT (table
5). Only a limited number of Cys residues were detected,
indicating high selectivity for labile disulfide bonds. Those
Cys not modified were detected by their modification with
N-acetylamidomethyl from the IAA step prior to trypsin
digestion.

The analysis is illustrated for the membrane protein Thy-1
(table 1 and figure 2). The mature Thy-1 protein consists of
112 amino acids with two disulfide bonds. One is the typical
disulfide bond found between the beta sheets of IgSF
domains, whereas the other is predicted to be at the surface
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Table 1. Summary of proteins identified in the screen for membrane proteins with labile disulfide bonds from the 2B4 T cell hybridoma after reduction with
four reducing agents (TCEP, TRX, PDI and GILT). All the protein identifications are shown at 1% FDR relative to an empirical target decoy database and were
identified with at least two unique peptide sequences.
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Table 1. (Continued.)

gene protein description 2B4 TCEP 2B4 TRX 2B4 PDI 2B4 GILT
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Figure 2. Analysis of Thy-1 isolated after reduction with TCEP showing peptide coverage and MBP-modified peptide. (@) Amino acid sequence of mouse Thy-1
showing the peptides identified by mass spectrometry (underlined) and the peptide containing the biotin—maleimide modification (residue 9; yellow), which forms
a labile disulfide bond with the Cys (112; yellow) at the C-terminus. Cys (112) would not be expected to be recognized by MS as the predicted tryptic peptide is a
single residue that is coupled to the glycophosphatidylinositol anchor. The Cys residues for the other stable disulfide (Cys19 and Cys86) are shown in blue. (b). The
MS/MS spectrum of peptide VTSLTAC(MPB)LVNQNLR shows good unambiguous coverage of the b™ (red peaks) and y ™ (blue peaks) ion series. Sequential individual
amino acid masses were identified in both the b™ and y™ ions series except for Cys-7, which has the MPB tag attached. A mass difference of 646.25 kDa between
b6" b7 (red dashed lines) and y7" —y8™" (blue dashed lines) corresponds to the mass of Cys -+~ MPB.

linking the A strand to the C-terminal amino acid of the G
strand to which the glycophosphatidylinositol anchor is
attached [25]. The total sequence coverage of the mature poly-
peptide as determined by MS analysis was 36 per cent.
Peptides for the predicted inter-sheet disulfide were not cov-
ered by the MS analysis, but these inter-sheet disulfide bonds
in IgSF domains have a low solvent accessibility and are
unlikely to be labile.

There was high specificity for modification of disulfide
bonds in the extracellular regions of membrane proteins.
Most Cys inside the cell are free sulfhydryls because of
the reducing conditions present in the cell. Out of 45 pro-
teins identified with at least one MPB-labelled Cys, only
CD45, CD155, CD36L1 and PD-1 had any MPB labels
within their cytoplasmic domains, and these were found
only with one of the reducing conditions. It is possible
that these arise owing to cell death during the labelling
giving access to cytosolic Cys residues to the membrane-
impermeable MPB.

We have identified an actual labile disulfide bond in
approximately 50 per cent of the proteins identified. Not all
of the proteins are expressed at the same level on the cell sur-
face and one of the limitations of a proteomics approach is
dealing with a large dynamic range of abundances. There-
fore, it is possible that we are not detecting MPB-labelled
peptides from less abundant proteins on probability grounds.
It is also possible that proteins without a labelled peptide

may have been co-purified along with a binding partner
that did contain an MPB-labelled peptide, and therefore
do not contain a labile disulfide bond at all. The purification
step included a lectin affinity chromatography step. The
number of membrane proteins without glycosylation
is relatively few, but these, and those without suitable
glycosylation for the lectin, will not be detected. Immunopre-
cipitation of these molecules under reducing conditions and
analysis by mass spectrometry may increase the probability
of detecting labile disulfides in these proteins. Finally, the
tryptic peptides containing MPB labels might not ionize effi-
ciently in the mass spectrometer, rendering them inert to this
screen. Mass spectrometry technology is constantly improv-
ing and we predict that more MPB-labelled peptides will be
identified in the future.

Generally, the lability of disulfide bonds is dependent on
the interplay of a number of factors. First, the disulfide needs
to be accessible to the reducing agent; hence, surface disulfide
bonds tend to be more labile than buried disulfide bonds.
Recent bioinformatics studies that analysed all of the disul-
fide bonds in the protein data bank based on solvent
accessibility, Ca—Co distance and an estimation of torsion
strain on the S-S bonds [1,2] concluded that the most
common configuration of the known allosteric disulfide
bonds is the —~RHStaple. For instance, the allosteric disulfides
in the immune co-receptor, CD4, and the HIV envelope
protein, gpl120, are -RHStaple bonds. A feature of
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—-RHStaple bonds is the close proximity of the a-carbon
atoms of the two cysteine residues [26,27]. However, many
of the labile disulfide bonds identified in our study were
not —RHStaple. This suggests that both bond energetics
and solvent accessibility are equally crucial factors in
rendering a disulfide bond labile.

3.4. Different proteins were identified using various
enzymes and chemical-modifying agents

The different reducing conditions all gave proteins with
free sulfhydryl groups. The enzymatic treatments gave a
wider range of proteins than chemical reduction with
TCEP. One might hypothesize that small molecule chemical
reductant could ‘access” and reduce more structurally hin-
dered disulfide bonds than enzymatic reductants, and
therefore the proteins identified with enzyme reduction
would be a truncated version of the TCEP list. However,
this is not observed as PDI, TRX and GILT show a different
repertoire of reduced disulfide bonds. There is evidence
that enzymes such as TRX can reduce disulfides that have
limited solvent-accessibilities and that this is achieved
through partial unfolding of the protein domain containing
the disulfide bond (e.g. the inter-strand disulfide in domain
two of CD4) [28]. This disulfide bond is reduced by TRX
secreted by T cells even though the crystal structure [29,30]
shows the disulfide to be inward-pointing and totally con-
tained within the core of the tightly folded IgSF domain.
Partial unfolding of domain two would be needed to allow
access to the active site of TRX and to establish the disul-
fide-linked homodimer that is the preferred form for the
immune co-receptor [31], while the reduced monomer
appears to be the preferred receptor for HIV-1 [32]. In the
2B4 hybridoma screens, only three proteins were labelled
with MPB on Cys from their inter-sheet IgSF domains:
CD2, CD96 and basigin (CD147). All of these were identified
with the enzymatic reductants, but none with TCEP
reduction, further indicating that some ‘structural” disulfides
may be accessible by enzymes. Interestingly, CD4 was
not identified under the screening conditions employed in
this study.

3.5. Free cysteines are induced by immunological
stimuli in vivo

There are data to show that extracellular redox potential
increases on T cell activation [11] and there is an increase
in non-protein thiols at the cell surface following immuniz-
ation [12], but a key question is whether these changes are
sufficient to modify disulfide bonds in membrane proteins.
We screened for membrane proteins with free Cys residues
following a strong immunological stimulus with LPS given
in vivo in mice for 3 h, conditions that are known to induce
toxic shock and serum GILT accumulation [15,33]. Spleno-
cytes from LPS-treated and control mice were immediately
labelled with MPB upon release from the spleen to ensure
that the redox state of Cys residues in the proteins was pre-
served before exogenous oxygen could oxidize reduced
disulfide bonds. Cell-surface proteins were purified and
subjected to the differential labelling proteomics screen
(figure 1) in order to identify proteins that had been reduced
as a result of LPS treatment and labelled with MPB. Many

labelled proteins were detected after LPS treatment, with
relatively few in the control untreated samples. The mass
spectrometry data from five separate experiments (12 LPS-
treated spleens and 12 control spleens in total) were
pooled and analysed using the Oxford Central Proteomics
Facility Pipeline, which incorporated normalized spectral
index quantitation (SINQ) at the protein level. Thirty-seven
proteins were identified (table 6) with at least 10-fold enrich-
ment in the spleens from LPS-treated mice. A diverse range
of proteins was identified, including proteins from B cells, T
cells and platelets. Proteins involved in B cell activation—
CD19, CD22 and CD14, which is a component of the B cell
LPS receptor—were identified. Proteins involved in T cell
activation and regulation—CD8, SLAM family receptors
(SLAM, CRACC, CD84 and Ly-9) and CD132—were ident-
ified in activated spleen. Disulfide-reducing enzyme PDI-
Al was also found in LPS-treated spleens. These enzymes
have been shown to be present at the cell surface and
perform reduction of disulfide bonds [34]. In these exper-
iments, maleimide—biotin-labelled peptides could not be
routinely identified by mass spectrometry. This is probably
a sensitive issue because of the complex mixture of cell
types in spleen, which results in relatively few cells of
one type compared with homogeneous cell lines used in
the global screens (tables 1-5). However, because the pro-
teins have been purified from the cell lysate using avidin
affinity chromatography that involves specific elution with
biotin, they must contain, or be associated with, proteins
that contain a biotinylated Cys. Many of the proteins ident-
ified in the T cell screen (such as integrins) were also
identified in this model of inflammation, indicating that
modification of membrane glycoproteins by changes in
extracellular redox conditions—redox potential and disul-
fide-modifying enzymes—may be common and affect the
activity of many cell-surface proteins.

4. Discussion

The application of the proteomics screen showed that a large
number of leucocyte membrane proteins had labile disulfide
bonds that could be reduced by chemical reductants and a
variety of enzymes known to be present extracellularly
under certain circumstances. The identification of many of
these proteins (tables 1-5) and additional ones in the spleens
from mice with inflammation induced by LPS (table 6) point
to changes in the disulfide bonds of many membrane
proteins. This is likely to have significant functional effects.
Examples of the effects of labile disulfides are discussed for
selected groups of proteins.

A labile disulfide bond was identified in CD132, the
common gamma chain of receptors for IL-2, IL-4, IL-7, IL-9
and IL-15 (table 4). There are extensive data indicating that
this disulfide bond is important for the activity of these recep-
tors [35]. We analysed this in more detail, showing that mild
reducing conditions that break this disulfide bond can affect
the activity of this receptor [36]. The presence of CD132 in the
LPS experiments suggests that inflammation may affect
cytokine receptor activity.

Given the frequency of IgSF domains on membrane pro-
teins of leucocytes, it is not surprising that they are
commonly detected [22]. In the example of Thy-1 (figure 2),
there are two disulfide bonds—one is the typical disulfide
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Table 6. Summary of proteomics data from mouse splenocytes that have been activated in vivo with LPS and differentially Cys-labelled. The data were filtered
to 1% FDR using an empirical target decoy database approach and the protein identifications are at least 10-fold enriched in the LPS spleens relative to control

spleens based on SINQ ratios.
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the other was predicted to be at the surface linking the A
strand to the final amino acid (of the G strand) to which the
glycophosphatidylinositol anchor is attached [25]. Many IgSF
domains in leucocyte surface proteins are predicted to have
disulfide bonds in addition to the inter-sheet disulfide (e.g.
several members of the CD2/SLAM family were identified
in the screens including CD2, CD224, CD229 and CD150).
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Apart from CD229 (discussed above), the precise Cys residues
involved are yet to be determined.

The majority of Cys residues in the extracellular regions
of membrane proteins form disulfide bonds with other Cys
residues within the polypeptide or between polypeptides.
One interesting exception is PD-1 (CD279), which was
detected in all the screens (tables 1-5). PD-1 contains a
single IgSF domain and the biotin-maleimide-modified Cys
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PD-1

Figure 3. Crystal structure of mouse PD-1 (blue) in complex with mouse
PD-L2 (green) extracted from PDB entry 3BP6. Cys 50 (mutated to Ser in the
protein used to determine the structure) is shown as yellow spheres and is at
the interface of PD-1/PD-L2. Any molecule linked to Cys 50 is likely to
interfere with PD-1 binding its ligands.

(residue 50) was identified under three reducing conditions
(tables 2—4). This residue had been mutated to Ser in the protein
used in determining the X-ray crystal structure (PDB; 3BP5)
[37]. As labelled Cys 50 was detected only after reduction,
itis not present as a free Cys but disulfide-linked to another sul-
fhydryl group. Biochemical analysis shows that PD-1 is a
monomer and hence this residue does not normally cause
dimerization [38]. The nature of this interaction is unclear.
What is surprising is that this residue is close to the binding
site of its ligand (figure 3), and it is possible that some of the
PD1 is normally modified in a manner that prevents ligand-
binding and that this can be controlled by redox changes that
occur during inflammation. However, this cannot occur in
humans as there is no free Cys 50 in human PD-1.

Another free Cys was identified in the V-domain of the
T cell receptor beta chain. This is not one of the conserved
Cys residues but an extra one in this particular V-domain.
In some TCR V-domains, a Cys at this position forms a
disulfide with an additional Cys in the adjacent strand [39].
The finding that this residue is revealed by reduction
suggests that it is disulfide-linked. It should be noted that
the finding of a protein in this screen does not imply that
all the protein has been modified, but just sufficient levels
for detection.

Integrins were among the most common groups of pro-
teins identified in the screens (tables 1-6), and included
several alpha and beta chains. Integrins are known to be
affected by mutation or reduction of disulfides [5,40], and
this indicates that their activity may be modulated by redox
changes. For instance, a labile disulfide detected in CD18
(EIFGQYCE*CDNVNCER; table 2) corresponds to the Cys
31 (residue 536) in human CD18, which when mutated and
expressed in COS-7 cells gave increased ligand-binding
activity [39]. The lifting of constraints by selected disulfides
may increase the activity of integrin, and a detailed analysis
of labile disulfides in integrins is in progress.

Galectin 1, galectin 8 and galectin 9 were identified. Galec-
tins are cytosolic lectins but can come to the surface and give
functional effects [41]. Galectins contain free Cys residues, so

it is surprising that they are detected in this screen as any
cell-surface galectin should be blocked by the MPM reagent.
The finding that Cys residues can be detected raises the possi-
bility that these Cys residues were modified by forming a
disulfide bond with either another Cys residue (presumably
on another protein) or another adduct that might affect the
activity of the galectin in the extracellular environment.

Three members of the ADAM family of metalloprotei-
nases—ADAMY9, ADAM15 and ADAM17—were detected in
the T cell screen and ADAM9 was also identified from spleen
cells; modified Cys were not detected. However, there are
data for ADAM17 showing that PDI can cause conformational
changes that maintain this enzyme in an inactive state, thus lim-
iting its ability to mediate shedding of cell-surface proteins [42].
This would imply that the activation events discussed here
might lead to reduced turnover of cell-surface proteins or pro-
teins in the vicinity via this mechanism, at least through
ADAM]17, and possibly the other ADAMs.

Members of the scavenger receptor family, CD36L1 and
CD26L2, were detected under several reducing conditions.
Cys384 in the human CD36L1 has recently been shown to
be important in lipid uptake [43]. Both the Cys251 and
Cys384 were reported to be free sulfhydryls in CD36L1
[43], whereas in our experiments reducing agent was
required before free Cys was detected. It is possible that the
culture conditions dictate the status of the disulfide bonds,
but these data suggest that the redox state of at least
Cys384 may be important in the regulation of lipid uptake.

In some cases, the Cys residue seems unlikely to affect the
functional activity. The dimeric state of the transferrin recep-
tor is dependent on two Cys residues (89 and 98 in humans)
[19], but surprisingly these disulfide bonds and the dimeric
state are not necessary for cell-surface expression and trans-
ferrin uptake [44]. The precise labile disulfide bond was not
identified in the amino acid transporter system involving dis-
ulfide-linked heterodimers with the common CD98 (4F2)
chain [45], although it seems likely to be the inter-chain dis-
ulfide. It is possible that the generation of free Cys residues
is important in forming new associations of cell-surface
proteins or affecting their turnover.

The method detected a variety of different types of mem-
brane proteins with labile disulfide bonds, indicating that
redox changes during events such as inflammation have broad
functional affects. As mentioned above, one cannot rule out pro-
teins being identified on the basis of their association with
proteins with labile disulfides, but even concentrating on those
proteins where modified Cys-containing peptides have been
identified the effects are potentially wide-ranging.

The in vivo LPS experiments indicated that many of the pro-
teins identified in the in vitro T cell experiments could also be
identified under physiological conditions of inflammation. In
addition, many other proteins could be identified that were
derived from the various cell types in spleen, including B cells,
platelets and endothelium, suggesting that a wide variety of
cell types could have membrane protein alteration induced by
redox changes (note that for these examples the precise Cys
residues involved remain to be identified).

5. Conclusion

The development of a screening method to detect labile di-
sulfide bonds has demonstrated (i) that they are common in
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membrane proteins and (ii) that they can be modified during
inflammation. This widespread occurrence of labile disulfide
bonds in membrane proteins, together with data on the
changes in redox potential and secretion of disulfide-altering
enzymes, points to a ‘redox-regulator’ mechanism that can
give altered membrane protein activity during events such
as platelet and immune activation, with implications for
their regulation and also events such as virus uptake.

6. Experimental procedures

6.1. Gamma interferon-inducible lysosomal thiol
reductase protein expression and purification

Full-length mouse precursor GILT with an N-terminal 6X His
tag behind the signal sequence was cloned into the pFastBac
vector (Invitrogen) and expressed in Sf21 insect cells. To
purify recombinant protein, cells were pelleted at 1000g for
15 min at room temperature and the clarified supernatant
was supplemented with 0.5mM phenylmethylsulfonyl
fluoride, 5 mM CaCl,, 1mM NiSO; and 50 mM Tris—Cl
(pH 8.0), and stirred at room temperature for 15 min. This
solution was then centrifuged at 8000g for 15 min at room
temperature. The resultant supernatant was filtered and
loaded onto TALON beads pre-equilibrated with 20 mM
Tris—-Cl (pH 8.0), 300 mM NaCl and 10 mM imidazole.
Protein was eluted with buffer supplemented with 300 mM
imidazole and dialysed into phosphate-buffered saline
(PBS) containing 25 pM dithiothreitol (DTT).

6.2. Differential labelling of cell lines with thiol-reactive
labels

2B4 mouse T cell hybridoma cells (2 x 10%) were treated with
MPM (2.5 mM in PBS containing 1% bovine serum albumin,
BSA) for 30 min at 4°C to label any free Cys on the cell sur-
face. After washing the cells with 3 x 50 ml of 1 per cent
BSA in PBS, the cell surface was reduced with either
2.5 mM TCEP, or 0.5 pg ml ™! of enzymatic reductant (TRX,
PDI or GILT) [17] and 10 pM DTT as a supply of electrons,
for 30 min at 25°C. After washing (3 x 50 ml 1% BSA in
PBS), the sample was split into two suspensions of 1 x 10°
cells. One sample was treated with 2.5 mM MPM for
30 min at 4°C to form a control, and any free Cys formed
after reduction in the analyte sample was labelled with
2.5 mM MPB. The cells were washed (3 x 50 ml 1% BSA in
PBS) and pelleted for further processing.

6.3. Labelling of labile disulfide bonds following
inflammation induced by lipopolysaccharide

One microgram of LPS (Sigma Chemical Company, St
Louis, MO) in PBS was given intraperitoneally to each
adult Balb/c mouse and the spleen taken after 3 h. Control
mice received PBS alone. The spleen cells were teased out
into RPMI containing 2.5 mM MBP and gently agitated at
4°C for 30 min. The cells were washed with RPMI (3 x
50 ml) and pelleted for further processing. The viability
and cell number were comparable between controls and
experimental spleens.

6.4. Extraction and purification of biotinylated
cell-surface glycoproteins

The labelled cell pellets were resuspended in 5ml lysis
buffer (Tris-buffered saline containing 1% Triton X-100
and 5mM N-ethylmaleimide) and rotated at 4°C for
20 min. The cell debris was pelleted at 1600g for 30 min
and the cell extract was transferred to a clean tube.
Lentil lectin beads (300 pl) were added, mixed by rotation
overnight at 4°C, washed with 50 ml of wash buffer (TBS
containing 0.1% Triton X-100) and pelleted. The cell-sur-
beads by
rotating them in 5ml of 10 per cent a-methyl glucoside

face glycoproteins were eluted from the

in wash buffer for 4 h at 4°C. The eluant was transferred
to a new tube and 300 ul of monomeric avidin beads
(Pierce Chemical Company, Northumberland, UK) added,
followed by rotation of the mixture overnight at 4°C.
The beads were washed with 50 ml of wash buffer and
the biotinylated glycoproteins were eluted by rotation in
5ml of 5mM biotin in wash buffer for 4h at 4°C, after
which the beads were pelleted and 2.5ml of the eluant
was concentrated into two microcon YM-10 concentrators
for in-filter tryptic digest and mass spectrometry.

6.5. Infilter PNGase F and trypsin digest

The samples on the filter membranes were washed three times
with 200 pl of PBS, spinning the membrane to dryness in-
between, then resuspended in 50 pl of PBS to which 6 pl of
reaction buffer and 1 pl of PNGase F (New England BioLabs,
Ipswich, MA; 500 000 units mlfl) were added, incubated over-
night at 37°C and spun to dryness on the membrane.

The proteins were digested for mass spectrometry by
in-filter digestion of proteins [46]. Briefly, the samples on the
filter membranes were denatured by suspending in 8 M urea
(500 pl) and incubating at 50°C for 1h, then washed with 3 x
500 ul aliquots of 25 mM ammonium bicarbonate sample.
The proteins were resuspended in 500 pl of reducing buffer
(10 mM DTT in 25 mM ammonium bicarbonate) and left at
room temperature for 30 min, washed twice with 500 ul of
25 mM ammonium bicarbonate, spinning the membrane to
dryness in-between. Alkylating solution of 500 pl (20 mM
iodoacetamide in 25 mM ammonium bicarbonate) was added
to the sample, incubated in the dark for 1h and washed
twice with 200 pl of 25 mM ammonium bicarbonate, spinning
the membrane to dryness in-between. The sample was resus-
pended in 200 wl 25 mM ammonium bicarbonate and 1 pg
trypsin added, and left overnight at 37°C with shaking.
The tryptic peptides were eluted through the membrane (3 x
200 ul, 25 mM ammonium bicarbonate) by centrifugation.

6.6. Enrichment of maleimide-PEQ,-biotin-labelled
peptides

The pooled eluants containing tryptic peptides were
passed over a 50l monomeric avidin micro-column.
The flowthrough that contained all non-MPB-labelled pep-
tides were collected and evaporated to dryness. MPB-
labelled peptides were eluted with acidified acetonitrile
(500 pl, 0.4% TFA in 30% acetonitrile) and evaporated to
dryness.
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6.7. L(-mass spectrometry

The tryptic peptide samples were desalted on a C18 packed
pipette tip system and injected onto an Ultimate 3000 nano
HPLC (Dionex, Sunnyvale, CA) system coupled to an Orbi-
trap XL mass spectrometer (Thermo Electron, Waltham,
MA). Samples were resolved on a 12 cm x 75 wm inner diam-
eter picotip column (New Objective, Woburn, MA), which
was packed in-house with ProntoSIL 120-3 C18 ace-EPS
(3 micron) phase (Bischoff Chromatography, Leonberg,
Germany). Samples were resolved using a 120 min gradient
at a flow rate of 300 nl min~!. The mass spectrometer was
operated in data-dependent acquisition mode, in which 2+,
3+ and 4+ ions were selected for fragmentation. Precursor
scans were performed in the Orbitrap at a resolving power of
60000 (full width half maximum), from which five precursor
ions were selected and fragmented in the linear ion trap
('top-5 method’). Charge state 1+ ions were rejected. Dynamic
exclusion was enabled.

6.8. Data analysis

RAW data files were converted to the mzXML format using
REAAW (v. 4.2.1) (http://tools.proteomecenter.org/wiki/
index.php?title=Software:ReAdW), and submitted to the
in-house Central Proteomics Facilities Pipeline (CPFP
version) [47], which uses Mascot (Matrix Science, Boston,
MA), X!Tandem [48] and OMSSA [49] search engines. Datasets
were searched with variable peptide modifications like
carbamidomethyl cysteine, oxidized methionine, deamidated
asparagine/glutamine, and the appropriate cysteine-modify-
ing label (NEM, MPM or MPB) and maleimide-hydrolysed
versions of the labels. Precursor mass tolerance was set at
+20 ppm and MS/MS fragment ion tolerance at +0.6 Da.
Searches were performed against v. 3.64 of the IPI mouse
protein sequence database [50].

The resulting peptide identifications from each search
engine were validated with PepTIDEPROPHET [51]. IPROPHET
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