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Abstract: The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) is a critical 

mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, 

proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates 

hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. 

These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target 

for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. 

Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available 

at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in 

silico high-throughput screening approach. A virtual library of six million lead-like compounds 

was docked against four different high-resolution Pyk2 kinase domain crystal structures and 

further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over 

focal adhesion kinase (FAK) was evaluated by comparative docking of ligands and measurement 

of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of 

a subset of the docking complexes was evaluated by molecular dynamics simulation, followed 

by intermolecular interaction analysis. These compounds may be considered as promising leads 

for further development of highly selective Pyk2 inhibitors.

Keywords: virtual screen, efficiency metrics, MM-GBSA, molecular dynamics

Introduction
The focal adhesion kinase (FAK) and its homologous FAK-related proline-rich tyrosine 

kinase 2 (Pyk2) define a distinct family of non-receptor tyrosine kinases that coordi-

nate adhesion and cytoskeletal dynamics with survival and growth signaling. FAK 

and Pyk2 exhibit ~48% amino acid sequence identity, common phosphorylation sites, 

and a similar domain structure, which includes an N-terminal four-point one, ezrin, 

radixin, and moesin (FERM) domain, a kinase domain, three proline-rich regions, and 

a C-terminal focal adhesion-targeting (FAT) domain. Following integrin or growth 

factor stimulation, Pyk2 and FAK are autophosphorylated on a tyrosine residue (Y402 

and Y397, respectively), which provides a critical binding site for Src kinase. Fol-

lowing its binding, Src phosphorylates additional tyrosines on Pyk2 or FAK, which 

are important for full activation of the kinases and for their binding to downstream 

signaling proteins.1 Although FAK is expressed in most cells, Pyk2 exhibits a more 

restricted expression pattern with the strongest expression in the central nervous sys-

tem and in hematopoietic cells.2 FAK is a major intracellular signaling component 

of integrin-mediated cell adhesion and plays a role in signaling pathways mediated 

by growth factor receptors. PYK2, however, is activated by a variety of extracellular 
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cues, including agonists of G protein-coupled receptors, 

increase in intracellular calcium concentration, inflammatory 

cytokines, and stress signals, as well as integrin-mediated 

cell adhesion.2–4 The differential expression and localization 

patterns of FAK versus Pyk2 might limit their functional 

redundancy and may suggest distinct and possibly antago-

nistic roles in cells.

Pyk2 appears to be important for the organization of 

cytoskeletal components in a polarized manner during 

directional motility in response to chemotactic gradients 

in macrophages5 and in B cells6 and for integrin-mediated 

degranulation response of neutrophils during infection.7 

Deletion of Pyk2 in mice leads to increase in bone mass 

due to enhanced differentiation and activity of osteopro-

genitor cells8 as well as impairment in osteoclast function.9 

Pyk2 was also found to regulate skin wound healing by 

controlling epidermal keratinocyte migration via a path-

way that requires the expression and function of matrix 

metalloproteinases.10 The gene encoding Pyk2 was recently 

found as one of 11 new susceptibility loci for late-onset 

Alzheimer’s disease11 and as an in vivo marker and modula-

tor of tau toxicity.12 Upregulation of Pyk2 expression has 

been noted in several human tumors, including glioma, 

hepatocellular carcinoma, nonsmall cell lung carcinoma, 

prostate cancer,13 and early and advanced breast cancers.14 

The different physiological and pathological roles of Pyk2 

present it as a high-value therapeutic target for inflamma-

tory cellular responses, osteoporosis, Alzheimer’s disease, 

and invasive cancers.

An increase in Pyk2 expression accompanied by a com-

pensatory function for Pyk2 upon FAK loss has been described 

in FAK-deficient mouse embryonic fibroblasts (MEFs),4,15 

following conditional deletion of FAK in macrophages;16 

in the in vivo regulation of bone architecture and density;17 

and in blood vessel formation during angiogenesis.18 The 

ability of Pyk2 to adopt a compensatory role in integrin-

mediated signaling pathways suggests that strategies that 

will selectively target FAK might lack efficacy due to Pyk2 

compensation, particularly in applications directed toward 

blocking inflammatory response, osteoporosis, and tumor 

angiogenesis.

Clinical translation of kinase inhibitors has mainly 

focused on competitive inhibition of the catalytic domain. 

While classical kinase inhibitors bind directly to the ATP 

binding site, this approach has been challenged by the sig-

nificant sequence and structure conservation of the catalytic 

domains among different protein kinases. With the excep-

tion of cancer therapeutics, where inhibition of multiple 

kinase targets might gain additional therapeutic benefits, 

minimizing off-target activity is most often desired in drug 

design. Therefore, an alternative approach has been the use 

of bipartite inhibitors that target both the adenosine triphos-

phate (ATP)-binding site and a less conserved adjacent 

hydrophobic region formed by the altered conformation of the 

activation loop containing the DFG (Asp–Phe–Gly) motif. 

Inhibitors of this group stabilize the inactive conformation 

of the kinase (DFG-out conformation) and offer a potential 

of improved selectivity.

Despite significant efforts to develop a potent and selec-

tive inhibitor for Pyk2 over the last several years, the avail-

able inhibitors for Pyk2 lack the potency, selectivity, or have 

impaired pharmacokinetics,19,20 and no selective inhibitor has 

yet proceeded beyond pre-clinical trials, including Pfizer’s 

lead compound (S)-14a from the series of sulfoximine-

substituted molecules. In spite of its increased selectivity 

for Pyk2 over FAK, N-methylsulfoximine (S)-14a lacks 

sufficient metabolic stability and is characterized by high 

in vivo clearance in rats.20

In this study, we used an in silico high-throughput 

screening approach in order to identify potential Pyk2 kinase 

inhibitors from a large library of small molecules. Results 

of these studies uncovered potential lead-like molecules that 

were subjected to comparative docking and free binding 

energy calculations, followed by molecular dynamics (MD) 

simulations in order to identify compounds that are pre-

dicted to have affinity and selectivity for Pyk2. A final set 

of potential candidates with predicted selectivity for Pyk2 

was assembled. These candidates may be considered as lead 

compounds that could be further developed into potent and 

selective Pyk2 inhibitors.

Methods
Database selection and ligand preparation
We used the commercially available ZINC12 database (http://

zinc.docking.org/)21 for virtual screening, which contains 

more than 35 million purchasable compounds in ready-to-

dock, three-dimensional formats. The lead-like subset of 

compounds, containing six million compounds, was selected 

on the basis of their properties to allow further optimiza-

tion. The lead-like criteria properties are molecular weight 

between 250 and 350  g/mol, predicted partition constant 

(xLogP) 3.5, and number of rotatable bonds (RBs) 7. 

The subset was processed by Raccoon22 utility where missing 

polar hydrogen atoms were added.

Target preparation and grid generation
Four high-resolution crystal structures of human Pyk2 kinase 

domain with distinct conformations of the active site and 
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activation loop were selected for our high-throughput in 

silico screening: 1) apo-Pyk2 (Protein Data Bank [PDB] ID: 

3FZO); 2) Pyk2 in complex with the inhibitor PF-431396 

(PDB ID: 3FZR); 3) Pyk2 in complex with the inhibitor 

PF-4618433 (PDB ID: 3FZT);19 and 4) Pyk2 in complex with 

N-methylsulfonamide 2a (PDB ID: 3H3C).20 The resolutions 

of the target PDB structures 3FZO, 3FZR, 3FZT, and 3H3C 

were 2.2, 2.7, 1.95, and 2.0 Å, respectively. Prior to docking 

simulations, missing side chains and loops were filled using 

Prime23 and termini were capped. Hydrogen atoms were 

added, bond orders were assigned, and ions were removed 

using the Protein Preparation Wizard.24 Crystallographic 

water molecules were removed as they contained less than 

three hydrogen bonds after sampling their orientations at pH 7  

using PROPKA25 and optimizing their hydrogen bonds. 

Following this step, the holo form of the structures was 

minimized by a restrained energy minimization using 

the OPLS2005 force field and default root-mean-square 

deviation (RMSD) constraint of 0.3 Å. Refined structures 

were imported to AutoDockTools26 where Gasteiger 

charges were assigned to all atoms and non-polar hydrogen 

atoms were merged. For each target, three-dimensional affin-

ity grids of dimensions up to 30×18×26 Å were centered 

around the active site with 1.0 Å spacing.

In silico high-throughput screening
AutoDock Vina27 was used for the docking simulation. The 

settings of exhaustiveness for finding the global minimums 

were defined as 4, and only the best ranked poses were 

retrieved. The screening calculations ran on a double-

threaded 480 CPU 2.67 GHz Xeon Linux cluster machine.

Efficiency metrics scoring
To promote hits with favorable affinity and pharmacokinet-

ics, several indices were utilized. The mean accumulated 

binding (MAB) index was developed to assess the contri-

bution of multiple conformational binding of a molecule 

without impairing other valid molecules that are predicted 

to bind fewer structures.

	
MAB

N
= =
∑∆G

n
n

N

1

�
(1)

where ∆Gn is the calculated free energy of a bound molecule 

to a specific conformation in kcal/mol and N denotes the total 

number of binding molecules. In this sense, binding is defined 

as any Vina docking score within the top 10,000 molecules 

of the corresponding structure. The binding efficiency index 

(BEI) quantifies the efficiency of the binding affinity based 

on a molecular weight scale.28

	

BEI = −
∆
×
G

M
w

1 4.
�

(2)

Surface-binding efficiency index (SEI) quantifies the 

efficiency of the binding affinity based on total polar surface 

area (TPSA).28

	
SEI

TPSA
= −

∆
×

G

1 4. �
(3)

Lipophilic Ligand Efficiency (LLE) estimates the speci-

ficity of a molecule in binding to the target relative to the 

calculated partition constant (xLogP).29

	
LLE xLogP= −

∆
−

G

1 4. �
(4)

Pareto score optimizes multiple objectives, BEI versus 

SEI (BvS) simultaneously in a trade-off approach.28

	
Pareto BEI SEI

r r
= +

�
(5)

where BEI
r
 and SEI

r
 are the ranking of the respective index. 

Cheminformatic analysis was performed using MATLAB.

Visual inspection
The top-ranked molecules containing undesirable chemi-

cal groups and substructures,30 including toxic and highly 

metabolized molecules, were filtered via visual inspection. 

Molecules containing more than four aliphatic or aromatic 

rings were filtered as too many rings pose a liability in drug 

design.31,32 In addition, compounds containing more than 

two merged aromatic rings were excluded to avoid highly 

planar structures.33,34

Selectivity evaluation and screening
The 240 top filtered molecules were submitted for a second 

screen in AutoDock Vina and Glide35 to collect the com-

pounds that are selective for Pyk2 compared to FAK. The 

crystal structures of Pyk2 (PDB ID: 3FZT and 3H3C) and 

FAK (PDB ID: 1MP8) were prepared as described earlier, 

including the grid generation for docking in Vina. As a 

preparation step for docking in Glide, the molecules were 

prepared using LigPrep Wizard36 and grids with similar 

box size were generated in the Receptor Grid Generation 

of Schrodinger.37

www.dovepress.com
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To assess the docking score more reliably, exhaustiveness 

in Vina was increased to 8 and the extra-precision (XP) mode 

was used in Glide. The resulting poses predicted in Glide XP 

for Pyk2 and FAK were rescored and compared using Prime 

MM-GBSA (molecular mechanics/generalized born surface 

area). Prime MM-GBSA is a physics-based method that 

calculates the force field energies of the bound and unbound 

states of the protein–ligand complex.38 The van der Waals 

surface-based surface generalized born 2.0 implicit solvation 

model was used with the OPLS2005 force field, and residue 

flexibility was defined throughout the structure. The MM-

GBSA binding free energy is defined as follows:39,40

	
MM-GBSA G

mm sol sa
∆ = ∆ + ∆ + ∆E G G

�
(6)

ΔE
mm

 is the difference in energy between the complex 

structure and the sum of the energies of the unbound ligand 

and protein. ΔG
sol

 is the difference in the solvation energy 

of the complex and the sum of the solvation energies for the 

unbound ligand and protein. ΔG
sa
 is the difference in the sur-

face area energy for the complex and the sum of the surface 

area energies for the unbound ligand and protein.40 Entropy 

terms related to the ligand and protein are not incorporated, 

due to the expensive computational demand and no apparent 

improvement in many cases.41,42

MD simulation
The final drug candidates were submitted to MD simulation 

performed using the Desmond package43 and OPLS2005 force 

field. The docking models of the most selective ligands as cal-

culated by MM-GBSA were used as the initial coordinates for 

the MD calculation. The TIP3 explicit water model was used 

to define the solvent.44 The simulation solvent cell box with 

periodic boundary conditions was set to orthorhombic shape 

with a buffer distance of 10 Å to each dimension. The system 

was neutralized by placing counter ions of 6Na+ and 3Cl− for 

the structures of Pyk2 and FAK, respectively, and background 

salt was added to the solvent with a concentration of 0.15 M.45 

Prior to the production of molecular dynamic simulations, the 

system was equilibrated using the default Desmond relaxation 

protocol. The final state of the system was set to 300 K and 

1 atm,39 and the equations of motions were integrated with a 

2 fs time step.46 The simulations were performed in the NPT 

(constant number of atoms, pressure, temperature) ensemble 

using Nosé–Hoover thermostat with 1  ps relaxation time 

and Martyana–Tobias–Klein barostat with a 2 ps relaxation 

time.47 The smooth particle mesh Ewald (PME) algorithm48 

was used to deal with long-range electrostatic interactions 

with a cutoff radius of 9 Å.49 The production of 20 ns long 

MD simulations was performed on each complex system, and 

dynamic trajectories were analyzed in Desmonds’ Maestro 

simulation analysis tools and MATLAB. Quantitative analysis 

of the ligand–protein molecular interactions was calculated 

over the MD simulation. The distances as defined in Desmond 

for hydrogen bonds were 2.5  Å. General hydrophobic 

interaction distances were within 3.6 Å, and π–cation and 

π–π distances were within 4.5 Å. Ionic interaction distances 

were within 3.7 Å, and hydrogen bonding via water bridge 

molecule distance was 2.7 Å.

Results
In silico high-throughput screening
In order to identify potential inhibitors of Pyk2 kinase domain, 

an in silico high-throughput screening approach was used. 

To enhance the sampling of the target conformational space, 

four different Pyk2 kinase domain crystallographic structures 

with unique conformations were processed and prepared for in 

silico screening. The four crystal structures represent different 

conformations that were induced by ligands that have differ-

ent selectivity profiles: 1) 3FZO is the apo, unbound state;19 

2) 3FZR adopts an active conformation state (DFG-in) and 

contains an ATP-mimetic inhibitor, PF-431396, with a low 

selectivity to Pyk2;19 3) 3FZT adopts an inactive conformation 

(DFG-out) and contains an allosteric inhibitor, PF-4618433, 

selective to Pyk2;19 and 4) 3H3C adopts an active form 

(DFG-in) and contains the inhibitor N-methylsulfonamide 2a, 

which is selective to Pyk2.20 The two-dimensional interac-

tion plots of the ligands are presented in Figure S1. A library 

of more than six million purchasable lead-like molecules 

from the ZINC database was screened against the binding 

pockets of each of the four structures (active site grids). The 

primary criterion used to select for initial set of molecules 

was binding free energy values (∆G) calculated by AutoDock 

Vina. A histogram of the affinity scores for 10,000 molecules 

for each of the structures is plotted in Figure 1 and depicts 

the highest scores for 3FZT and 3H3C, followed by 3FZR 

and 3FZO in a semi-logarithmic scale.

To compare the affinities of the screened compounds to 

affinities of existing Pyk2 inhibitors, we docked the known 

inhibitors into their corresponding structures using AutoDock 

Vina. The calculated binding energies of the reference com-

pounds ranged from −8.7 to −9.3 kcal/mol, which was similar 

to the range engaged by the top 10,000 molecules for the apo 

structure 3FZO and was higher than all the top compounds of 

the rest of the three structures. Therefore, the cutoff for our 

docking studies was set to include the top 10,000 molecules 

www.dovepress.com
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with the highest affinity for each of the four structures and 

considered for further evaluation, composing a pool of 40,000 

docked modes.

To insure proper target preparation, we calculated the 

RMSD between the crystallographic poses and the docked 

poses of PDB IDs 3FZR, 3FZT, and 3H3C (Figure S2). The 

RMSD values of the reconstituted pose ranged from 0.41 

to 2.57  Å, supporting the target preparation for docking 

protocols. To support the goodness of predictive docking 

screens, enrichment experiments were carried out. First, 

we collected a dataset comprising 124,000 decoys from the 

Directory of Useful Decoys (DUD) database50 and 18 actives 

known from the literature20 via Konstanz Information Miner 

(KNIME). In addition, we collected another dataset containing 

800 decoys generated by the DUD-enhanced (DUD-E) server51 

based on the 18 actives. These two datasets were then screened 

against all four Pyk2 target structures using AutoDock Vina. 

The docking enrichment plots for four protein targets are 

shown in Figure S3. The docking enrichment plots show that 

the percentage of true ligands found by docking, at any given 

percentage, of the docking-ranked database is almost always 

greater compared to being chosen by random selection.

Compound processing and ranking
We analyzed the retrieved compounds by combining the four 

sets of compounds to a single pool of compounds and scored 

via affinity and efficiency-based metrics: binding energy (ΔG), 

MAB, BEI, SEI, and LLE. The top 1,000 molecules for each 

index were ranked by the corresponding value and are pre-

sented as scatter plots in Figure 2. In an attempt to identify top 

hits, which are suitable for drug development, and to remove 

false positives, we used several sub-structural filters by manual 

review to remove unwanted groups.30 Owing to the potential 

detrimental effect of polycyclic compounds with a high ring 

count,31 molecules were additionally filtered out and restricted 

to a maximal limit of aromatic and aliphatic rings.

Figure 1 Histogram of binding affinities for the top 10,000 compounds docked to Pyk2.
Note: Shown are semi-logarithmic plots of the binding affinities (ΔG) calculated using AutoDock Vina of the top 10,000 compounds docked to Pyk2 for PDB IDs (A) 3FZO, 
(B) 3FZR, (C) 3FZT, and (D) 3H3C.
Abbreviation: Pyk2, proline-rich tyrosine kinase 2.

∆∆

∆∆
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An additional approach for compound selection is the 

Pareto-based ranking scheme. The Pareto-based ranking 

scheme takes into account multiple objectives for the 

optimization/selection process52 and combines their separate 

contribution in the final ranking. The multiple objectives, BEI 

and SEI, were optimized by scoring each compound with the 

sum of molecules dominating it in any of the indices. The top 

10 filtered molecules retrieved for every index and the map-

ping of BvS indices for the top 1,000 molecules are presented 

in Figure 2A. Pareto ranking is a strategy particularly well 

suited for competitive multi-objective problems. In many 

cases, the BEI and SEI objectives are correlated; however, 

this is not always true,53 and in this study, BEI and SEI were 

considered as partially competitive multi-object problems.

To visualize target distribution of compounds that dis-

played the best docking scores and efficiency values for every 

parameter, a chart summarizing the distribution of the top 

1,000 compounds binding to a specific structure is depicted 

Figure 2 (Continued)
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in Figure 2B, where binding is defined as any docking score 

within the top 10,000 molecules of the corresponding 

structure. The resulting distribution revealed that 3FZT 

that possessed a DFG-out conformation was a dominating 

structure for the majority of the compounds.

Selection of the highest-ranked 
compounds
From each index, 40 molecules were independently collected 

for further examination. The two-dimensional structures 

and molecular weights of the top 5 filtered candidates with 

the highest ranking per index are shown in Table 1, and 

their physicochemical properties along with the calculated 

indices are shown in Table 2. The total 240 compounds were 

evaluated for appearance in the literature using KNIME54 

nodes, which facilitate querying and retrieving data from 

the ChEMBL55 bioactivity database via RESTful Web 

Services.56 These molecules were not detected as known 

inhibitors for Pyk2.

Selectivity prediction by calculation of 
binding free energies
To evaluate the potential specificity for Pyk2 over FAK 

among the top retrieved predicted filtered hits, two different 

approaches were used. To predict the difference in binding 

association with the targets, we performed a second docking 

Figure 2 Index scores of top 1,000 compounds docked to Pyk2.
Notes: (A) Scatter plots of the calculated index score of the top 1,000 compounds ranked by value. The calculated indices correspond to binding affinity (ΔG), MAB, BEI, 
SEI, LLE, and plot of SEI score as a function of BEI score (BvS). Data points are plotted in blue, and the top 10 filtered compounds are displayed by red circles. (B) Pie charts 
demonstrating the distribution of the top compounds to the PDB target with the highest scores for the six indices.
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; MAB, mean accumulated binding; BEI, binding efficiency index; SEI, surface-binding efficiency index; LLE, lipophilic ligand 
efficiency; BvS, BEI versus SEI.
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Table 1 Top 5 filtered predicted hits ranked by six indices

Affinity

ZINC ID: 97306129, 
Mw: 349

ZINC ID: 04497319, 
Mw: 348

ZINC ID: 60976516, 
Mw: 349

ZINC ID: 22506733, 
Mw: 345

ZINC ID: 89569030, 
Mw: 311

MAB

ZINC ID: 91775214, 
Mw: 347

ZINC ID: 77010348, 
Mw: 336

ZINC ID: 77977063, 
Mw: 320

ZINC ID: 19855164, 
Mw: 348

ZINC ID: 77197683, 
Mw: 348

BEI

ZINC ID: 83664860, 
Mw: 257

ZINC ID: 43646021, 
Mw: 266

ZINC ID: 96153562, 
Mw: 262

ZINC ID: 5942802,  
Mw: 263

ZINC ID: 32603600, 
Mw: 261

SEI

ZINC ID: 21364194, 
Mw: 296

ZINC ID: 04933001, 
Mw: 343

ZINC ID: 43670548, 
Mw: 300

ZINC ID: 55292595, 
Mw: 321

ZINC ID: 2810101, 
Mw: 338

LLE

ZINC ID: 07744353, 
Mw: 345

ZINC ID: 77585305, 
Mw: 348

ZINC ID: 29392239, 
Mw: 343

ZINC ID: 29347469, 
Mw: 333

ZINC ID: 57785087, 
Mw: 329

BvS

ZINC ID: 72128349, 
Mw: 261

ZINC ID: 83596759, 
Mw: 269

ZINC ID: 41384833, 
Mw: 267

ZINC ID: 82802913, 
Mw: 278

ZINC ID: 21996132, 
Mw: 269

Abbreviations: Mw, molecular weight; MAB, mean accumulated binding; BEI, binding efficiency index; SEI, surface-binding efficiency index; LLE, lipophilic ligand efficiency; 
BvS, BEI versus SEI; ZINC, Zinc is not commercial.
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screen with a higher precision using increased exhaustive-

ness in Vina and Glide XP modes and the generated docked 

mode of Glide was utilized as an input to additional binding 

free energy scoring using Prime MM-GBSA. By implement-

ing more precise docking methodologies and combining 

MM-GBSA, which outperforms docking in predicting the 

binding affinities to experimental data,57 we can predict more 

reliably the differences in ligand-binding efficiencies of Pyk2 

versus FAK. The correlation coefficient between calculated 

and experimental binding of Prime MM-GBSA, based on a 

diverse set of 855 complexes, was reported to be R2=0.63.58 

Since the predominant Pyk2 structure that bound the com-

pounds contains a DFG-out conformation, a high-resolution 

crystal structure of FAK domain that possesses a DFG-out 

conformation was selected (PDB ID: 1MP8).59 The FAK 

structure was imported and prepared for docking and was then 

used as a reference for estimating the selectivity of the top 

240 compounds that were selected as mentioned earlier. For 

selectivity prediction, both the DFG-in and DFG-out confor-

mations were used (PDB ID: 3FZT and 3H3C), as the predicted 

Vina scores of cognate ligands for both conformations were 

similar. Only 40 compounds that resulted in favorable binding 

to Pyk2, as calculated by the difference in at least 2 out of 3 

binding energies using Vina, Glide, and Prime MM-GBSA 

software, were further processed. Using these methods, we 

selected 20 potential inhibitors ranked by MM-GBSA for 

3FZT (ZINC06232011, ZINC02529497, ZINC01646132, 

ZINC15952140, ZINC18700196, ZINC00173518, 

ZINC00217347, ZINC35514633, ZINC04975487, 

ZINC07503677, ZINC03358424, ZINC05078298, 

ZINC09550062, ZINC03421151, ZINC65845103, 

ZINC02644767, ZINC03341864, ZINC00269705, 

ZINC10556478, and ZINC06648526) and 20 potential 

inhibitors ranked by MM-GBSA for 3H3C (ZINC06232011, 

Table 2 Molecular properties and index scores of the five highest ranked filtered compounds for Pyk2

Score ZINC ID Mw xLogP TPSA No of structures Affinity MAB BEI SEI LLE BvS

Affinity 97306129 349 3.25 72 3 −11.8 −11.8 0.024 0.12 5.18 –
04497319 348 3.13 49 4 −11.4 −10.4 0.023 0.17 5.01 –
60976516 349 3.49 76 3 −11.3 −11.3 0.023 0.11 4.58 –
22506733 345 3.4 61 3 −11.3 −10.5 0.023 0.13 4.67 –
89569030 311 2.24 61 3 −11.3 −11.3 0.026 0.13 5.83 1,132

MAB 91775214 347 2.35 63 3 −11.5 −11.5 0.024 0.13 5.86 –
77010348 336 1.58 90 3 −11.3 −11.3 0.024 0.09 6.49 –
77197683 348 2.67 61 3 −11.3 −11.3 0.026 0.13 5.83 –
77977063 320 3.3 49 4 −11.3 −11.3 0.025 0.16 4.77 1,204
19855164 348 3.49 24 4 −11.3 −11.3 0.023 0.34 4.58 –

BEI 83664860 257 3.28 32 3 −10.3 −10.3 0.029 0.23 4.08 249
43646021 266 3.32 32 3 −10.6 −10.6 0.028 0.24 4.25 247
96153562 262 2.91 56 3 −10.4 −10.4 0.028 0.13 4.52 724
05942802 263 3.16 29 3 −10.4 −10.4 0.028 0.26 4.27 234
32603600 261 2.91 62 3 −10.2 −10.2 0.028 0.12 4.38 905

SEI 21364194 296 1.00 4 4 −10.3 −10.5 0.025 1.84 6.36 –
04933001 343 0.86 9 3 −10.3 −10.3 0.021 0.82 6.50 –
43670548 300 3.28 16 3 −10.5 −10.5 0.025 0.47 4.22 992
55292595 321 3.38 16 4 −10.3 −10 0.023 0.46 3.98 –
02810101 338 1.95 20 3 −10.6 −10.6 0.022 0.38 5.62 –

LLE 07744353 345 −1.44 50 3 −10.2 −10.2 0.021 0.15 8.73 –
77585305 348 −1.03 44 3 −10.6 −10.6 0.022 0.17 8.60 –
29392239 343 −1.00 24 3 −10.5 −10.5 0.022 0.31 8.50 –
29347469 333 −1.43 50 2 −9.8 −9.8 0.021 0.14 8.43 –
57785087 329 −0.97 62 3 −10.3 −10.3 0.022 0.12 8.33 –

BvS 72128349 261 3.32 29 2 −10.8 −10.8 0.030 0.27 4.49 175
83596759 269 3.41 21 2 −10.4 −10.4 0.028 0.35 4.02 227
41384833 267 3.33 33 2 −10.2 −10.2 0.027 0.22 3.96 392
82802913 278 2.32 32 3 −10.4 −10.4 0.027 0.23 5.11 466
21996132 269 3.23 39 3 −10.3 −10.3 0.027 0.19 4.13 493

Note: Gray shadings represent the scoring index by which the compounds were enriched. 
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; Mw, molecular weight; TPSA, total polar surface area; MAB, mean accumulated binding; BEI, binding efficiency index; 
SEI, surface-binding efficiency index; LLE, lipophilic ligand efficiency; BvS, BEI versus SEI; ZINC, Zinc is not commercial.
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ZINC02529497, ZINC18700196, ZINC01646132, 

ZINC15952140, ZINC05244105, ZINC71894482, 

ZINC08104814, ZINC00094214, ZINC58514284, 

ZINC04842554, ZINC00470121, ZINC64790378, 

ZINC67630577, ZINC00004724, ZINC25251328, 

ZINC00782941, ZINC82137153, ZINC05626761, and 

ZINC00617844). Notably, the top 5 predicted selective candi-

dates for 3H3C were among the top 8 selective compounds for 

3FZT. Results showed that ZINC06232011 was predicted to 

be the most selective ligand based on MM-GBSA scoring with 

Pyk2 (PDB ID 3FZT) ΔG of −35.37 kcal/mol and FAK ΔG 

of −5.50 kcal/mol, which results in ΔΔG of −29.87 kcal/mol. 

The top eight candidates (PDB ID 3FZT) were ranked by the 

energy difference MM-GBSA ΔΔG, and their two-dimensional 

structures with calculated binding energies are presented in 

Table 3. Although MM-GBSA was the main method to rank 

the compounds, it should be pointed out that the procedure 

used a continuum model of the solvent and this approximation 

can strongly affect the calculated binding energies, which may 

result in unreliable results.57

To support the predictive goodness of this selectiv-

ity assay, we compared the predicted binding energy and 

interaction profile of the native control compounds of 

PDB IDs 3FZR (PF-431396), 3FZT (PF-4618433), and 

3H3C (N-methylsulfonamide 2a) with those obtained using 

experimental data (Table S1). The predicted binding energies 

agreed with experimental activity assays, and the interaction 

profile was similar. 3FZR displayed the smallest predicted 

selectivity (largest ∆∆G), followed by 3H3C and 3FZT. By 

consensus, the predicted ∆∆G ranked the cognate ligands 

according to experimental data and thus substantiated our 

techniques for finding potential selective Pyk2 inhibitors.

Analysis of the identified molecules
The binding poses of the top candidate compounds bound 

to Pyk2 (3FZT) as predicted by MM-GBSA are given 

in Figure 3, and two-dimensional interaction plots are 

presented in Figure S4. Docking pose analysis revealed 

one hydrogen bond between Tyr505 and ZINC06232011, 

ZINC01646132, and ZINC00217347, in which the last two 

form π–π interactions with Phe568. Also observed were two 

hydrogen bonds of ZINC02529497 with Asp567 and with 

Glu474, respectively, as well as a cation–π interaction with 

Arg572. Compounds ZINC159521402, ZINC00173518 

and ZINC97378786 were involved in a similar interaction 

forming two hydrogen bonds with Glu474 and one hydrogen 

bond to Asp657, while the last compound also formed π–π 

interaction with His547. Interestingly, ZINC18700196 

was located furthest away from the ATP-binding site and 

formed a total of four hydrogen bonds with residues Lys457, 

Asp567, and Arg572, while still involved in π–π interaction 

with Phe436 and two cation–π interactions with Arg572. 

Molecular descriptors of physicochemical properties, ligand 

efficiency scores, and bound structures with the predicted 

highest binding affinity are presented in Table S2.

For selectivity prediction, both the DFG-in and DFG-

out conformations were used. The predicted Vina scores of 

cognate ligands for the DFG-out and DFG-in were similar 

and differed by 1.0–1.5 kcal/mol (which is lower than Vina’s 

standard error of 2.85 kcal/mol).27 Thus, we decided to use 

both DFG-in (PDB ID 3FZT) and DFG-out (PDB ID 3H3C) 

conformations.

An alternative way to interpret the contribution of each 

scoring profile is to visualize the ranking of the compound 

instead of its scoring value. The information is displayed in 

Figure 4 by radar plots, where the value of each property 

corresponds to the ranking of the score; closer to the center 

indicates a property with a good result, while far from the 

center fails to compete with the rest of the compounds.

MD simulation
To take into account structural flexibility, the behavior of 

a subset of the predicted complexes of Pyk2 and FAK was 

compared by MD simulation. The top 8 Pyk2 DFG-out 

candidates were incorporated in Desmond, and MD simula-

tion was performed in explicit aqueous solution for 20 ns for 

each complex (Figure 5A). To explore the dynamic stability, 

RMSD of protein–ligand complexes of Pyk2 (3FZT) and 

FAK (1MP8) against their initial structure was generated 

and analyzed using MATLAB. The backbone RMSDs were 

stable throughout the simulations, with the exception of com-

pound ZINC02529497, where there was a sudden increase in 

deviation at 9 ns within the FAK complex (Figure 5B).

Ligand positional RMSDs were generated to evaluate and 

compare the binding stability of the lead molecules for each 

of the targets. Pyk2 complexes demonstrated conformational 

stability of the ligand in which the RMSD values remained 

within 0.15  nm (Figure 5C), whereas half of the FAK 

complexes showed higher RMSD values throughout most 

of the simulation time (Figure 5D). The computed RMSD 

values of the ligands ZINC02529497, ZINC01646132, 

ZINC159521402, and ZINC97378786 in complex with 

FAK were 0.15 nm and reached 0.25 nm, indicating lower 

stability.

Root-mean-square fluctuations (RMSFs) were gener-

ated to evaluate and compare the residual mobility of Pyk2 
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RMSFs of the residues were lower than 0.6 nm and did not 

produce any abnormal fluctuations, with the exception of 

ZINC02529497 and ZINC01646132, which produced fluc-

tuations 0.6 nm in FAK (Figure 5F).

and FAK while bound to each of the lead compounds. The 

RMSFs were integrated along the MD simulation time for 

each protein–ligand complex and were plotted against the 

residue number (Figure 5E). In all cases, the computed 

Table 3 Candidates docking and MM-GBSA binding energy of Pyk2 and FAK ligand complexes

Structure Vina  
Pyk2 ∆G

Vina  
FAK ∆G

Vina  
∆∆G

Glide  
Pyk2 ∆G

Glide  
FAK ∆G

Glide  
∆∆G

Pyk2  
MM-GBSA ∆G

FAK  
MM-GBSA ∆G

MM-GBSA  
∆∆G

F

O NH

F
F

ZINC ID: 06232011

−9.2 −9.9 −0.7 −7.6 −7.1 −0.5 −35.37 −5.50 −29.87

N

HN

F
F F

O

ZINC ID: 02529497

−8.7 −10.2 −1.5 −9.5 −6.4 −3.1 −22.77 5.97 −28.74

O
O O

ZINC ID: 01646132

−7.9 −9.8 −1.9 −7.9 −6.2 −1.7 −23.42 2.62 −26.04

O NH

NH

ZINC ID: 15952140

−9.6 −11.3 −1.7 −7.1 −5.8 −1.3 −32.77 −7.71 −25.06

O
O

O
N
H N

ZINC ID: 18700196

−8.7 −9.8 −1.1 −6.8 −5.5 −1.3 −34.35 −11.86 −22.49

ZINC ID: 00173518

−7.9 −10.4 −2.5 −8.7 −5.2 −3.5 −47.05 −26.94 −20.10

ZINC ID: 00217347

−7.8 −10.6 −2.8 −9.0 −5.45 −3.6 −21.09 −1.80 −19.29

ZINC ID: 97378786

−9.8 −10.4 −0.6 −10.7 −7.7 −3.0 −52.77 −33.73 −19.04

Abbreviations: Pyk2, proline-rich tyrosine kinase 2; FAK, focal adhesion kinase; MM-GBSA, molecular mechanics/generalized Born surface area; ZINC, Zinc is not 
commercial.
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Figure 3 Binding poses of the eight candidates in the Pyk2 (PDB ID: 3FZT) binding site.
Notes: Shown are the predicted interactions formed by the compounds (A) ZINC06232011, (B) ZINC02529497, (C) ZINC01646132, (D) ZINC15952140, (E) ZINC18700196, 
(F) ZINC00173518, (G) ZINC00217347, and (H) ZINC97378786 in the active site. The compounds are represented in cyan sticks. The Pyk2 structure is shown as a green 
ribbon diagram with exception to the activation loop containing the DFG-motif, which is shown in purple sticks. The yellow dashed lines represent hydrogen bonds, and blue 
dashed lines denote hydrophobic interactions. The binding poses were obtained by Prime MM-GBSA.
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; PDB, Protein Data Bank; MM-GBSA, molecular mechanics/generalized Born surface area; DFG, Asp-Phe-Gly.

Figure 4 (Continued)
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Intermolecular interaction analysis
To determine the stability of protein–ligand binding during 

the trajectory period of the MD simulation, the intermolecular 

interactions of ligands in complex with Pyk2 and FAK 

were analyzed. The intermolecular interaction analysis of 

the complexes was generated in Desmond and processed in 

MATLAB, and the time-dependent data were integrated for 

each interaction type to compare the results as illustrated in 

Figure 4 Radar plot scores of the top 8 eight candidates for Pyk2 (PDB ID: 3FZT).
Notes: Each radial axis represents the compound ranking in the index scoring profile of (A) ZINC06232011, (B) ZINC02529497, (C) ZINC01646132, (D) ZINC15952140, 
(E) ZINC18700196, (F) ZINC00173518, (G) ZINC00217347, and (H) ZINC97378786. The cutoff value above which the rankings are omitted was set to 1,000.
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; PDB, Protein Data Bank; SEI, surface-binding efficiency index; LLE, lipophilic ligand efficiency; BvS, BEI versus SEI; 
MAB, mean accumulated binding; BEI, binding efficiency index.
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Figure 5 RMSDs during MD simulation of Pyk2 (3FZT) and FAK (1MP8) of protein–ligand complexes.
Notes: Plotted are the RMSDs of the protein backbone of (A) Pyk2 and (B) FAK of protein–ligand complexes during 20 ns MD simulation. Similarly shown are the RMSDs 
of the ligand position in the binding site of (C) Pyk2 and (D) FAK of protein–ligand complexes during the same 20 ns MD simulation. Also shown are the RMSFs of (E) Pyk2 
and (F) FAK residues along the 20 ns MD simulation. Note the ligands selectivity for Pyk2 as indicated by low dispersion.
Abbreviations: RMSD, root-mean-square deviation; MD, molecular dynamics; Pyk2, proline-rich tyrosine kinase 2; FAK, focal adhesion kinase; RMSF, root-mean-square 
fluctuation.
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Figure 6. The analysis revealed that ZINC18700196 was 

superior in binding to Pyk2 compared to FAK in all interac-

tion types: hydrogen bond, hydrophobic, ionic, π–cation, 

π–π, and water bridge. ZINC159521402 exhibited a similar 

profile, excluding redundant ionic and π–π interactions, 

which are very low for Pyk2 and FAK. The compounds 

ZINC06232011, ZINC02529497, and ZINC97378786 bound 

preferably to Pyk2 in most of the interactions, particularly 

by hydrogen bonds and hydrophobic interactions, while π–π 

and water bridges had similar or lower values for Pyk2. The 

candidate molecules ZINC01646132 and ZINC00217347 

maintained higher amount of hydrogen bonds to FAK, while 

Figure 6 (Continued)
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ZINC00173518 showed more hydrophobic, ionic, and sub-

stantial increase in water bridge interactions to FAK. Over-

all, the MD simulations of the ligand complexes with Pyk2 

display stability under dynamic conditions and the analysis 

supports the binding energy predictions.

Discussion
The identification of a proper lead compound for a given 

molecular target is a critical step in the process of drug 

discovery. Traditional high-throughput screening of large 

chemical libraries has been a primary source for identification 

of novel lead compounds. However, the high cost and low hit 

rate, which are associated with high-throughput screening, 

have stimulated the development of computational alterna-

tives and the broad application of the cheaper and faster in 

silico screening approach.60 With an increasing number of 

targets being identified by high-throughput genomics and pro-

teomics efforts, in silico screening may provide an excellent 

complementary approach to the traditional high-throughput 

screening and will potentially improve the speed and effi-

ciency of drug discovery and development processes.

As part of our effort to identify novel candidates for Pyk2 

(Figure 7), potency and several efficiency metrics that attempt 

to define aspects of compound quality have been used. The 

tendency to focus on enhancing potency rather than practicing 

a more holistic approach in drug discovery was suggested to be 

responsible for failing drug discovery projects with molecules 

burdened by excessive molecular weight and lipophilicity, 

referred to as molecular obesity.61 In order to avoid biasing 

toward molecules where the dominating attractor is potency, 

we allowed only part of the retrieved predicted hits to be benefi-

cially prioritized for potency. Since the best performing single 

structure is not known in advance and using multiple fixed 

protein conformation is useful in predicting active compounds 

by docking calculations,62,63 we virtually screened four different 

Pyk2 structures and defined MAB to score the contribution 

of a well docking compound versus multiple conformations. 

With the increasing popularity of ligand efficiency indices 

(Figure S5) and increasing involvement in contemporary 

drug discovery,64 we aimed to balance potency and ADMET 

(absorption, distribution, metabolism, excretion and toxicity) 

with BEI, SEI, LLE, and the combination of BEI and SEI. 

These indices are among the most used and robust metrics,64–66 

and we have implemented them computationally with calculat-

ing the binding energy as a surrogate for in vitro potency, as 

has been proposed by Abad-Zapatero.53 To our knowledge, 

this is the first study to test the efficiency metrics, including 

BEI, SEI, and LLE, in an in silico high-throughput screening 

approach that combines selectivity scoring methodologies and 

incorporates molecular docking, MM-GBSA, and MD.

Despite the advances in computational aided drug design 

and widespread application of docking methods, there are 

still limitations that affect the accuracy of the predictions. 

These limitations include unavoidable imprecision of crystal 

structures67 and the lack of information about the number and 

free energy of water molecules.57 In addition, the inhibition 

of kinase activity is not necessarily a direct indicator of 

binding affinity, and the idealized conditions of the docking 

simulations that predict binding free energies rarely reflect 

the conditions in experimental assays.68

Figure 6 Total number of intermolecular interactions of the candidates.
Notes: Hydrogen bond, hydrophobic, ionic, π–cation, π–π, and water bridge interactions involved in Pyk2 (3FZT; red) and FAK (1MP8; blue) complexes: (A) ZINC06232011, 
(B) ZINC02529497, (C) ZINC01646132, (D) ZINC15952140, (E) ZINC18700196, (F) ZINC00173518, (G) ZINC00217347, and (H) ZINC97378786. The results were 
integrated over 20 ns MD simulation and presented as the amount of interactions per 1 ns.
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; FAK, focal adhesion kinase; MD, molecular dynamics; ZINC, Zinc is not commercial.
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The top predicted selective candidates exhibit fairly low 

SEI scores, and the Pareto-based BvS score was mostly 

dominated by BEI, which is also demonstrated in Figure 2A. 

Among these candidates, LLE was the least enriched metric. 

Although the initial compound enrichment in the virtual 

screen was scored by potency, the affinity and MAB rankings 

Figure 7 Overview of the virtual screen workflow.
Notes: Candidate inhibitors of the Pyk2 kinase domain were identified by in silico high-throughput screening. Binding sites of four different Pyk2 crystal structures were 
generated and prepared for screening using the ZINC lead-like dataset of six million compounds. The compounds were screened against the four structures, and the top 
10,000 compounds were retrieved for each conformation. The compounds were scored by six indices, which measure potency and efficacy. For each index, the 1,000 top 
molecules were filtered by sub-structural features using visual inspection to obtain the top 40 filtered candidates. Ligand selectivity for Pyk2 over FAK was evaluated by the 
difference in binding energy using two docking algorithms Vina and Glide and by Prime MM-GBSA to obtain 40 potential candidates. The top eight compounds in complex 
with Pyk2 (PDB ID: 3FZT) and FAK (PDB ID: 1MP8) were subjected to MD analysis.
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; FAK, focal adhesion kinase; PDB, Protein Data Bank; MD, molecular dynamics; ZINC, Zinc is not commercial.

show that most of the top predicted selective candidates were 

not among the top predicted potent compounds.

The high structural similarity of Pyk2 and FAK kinase 

domains may pose a challenge in discovering novel selec-

tive and potent inhibitors. Selective ligands with reduced 

potency for Pyk2 such as PF-4618433 were observed, and 
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other studies have identified selective compounds but at the 

expense of potency.69–71 We aimed to avoid focusing mainly 

on enhancing potency and to fulfill our preconditions by 

using efficiency metrics; the compounds were subjected to 

more stringent criteria affecting their affinity. In addition, the 

affinity of the identified ligands was compromised by small 

molecular weight, lipophilicity, and polarity.

Clinical experience with kinase inhibitors has demon-

strated that inhibition of protein tyrosine kinases should not 

rely exclusively on modulation of catalytic activity due to 

specificity issues and the unexpected emergence of resis-

tance. Thus, combining kinase inhibition with approaches 

that inhibit extra-catalytic modules that regulate effector 

functions of tyrosine kinases would be a welcome asset 

to the therapeutic arena. In addition to its tyrosine kinase 

activity, Pyk2 has scaffolding functions in the formation 

of multi-protein signaling complexes. Therefore, targeting 

extra-catalytic protein modules that regulate complex assem-

bly may provide a complementary approach for efficient and 

specific inhibition of Pyk2. Future studies that will charac-

terize Pyk2-mediated signaling complex formation will be 

necessary in order to achieve this significant goal.
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Supplementary materials

Figure S1 Two-dimensional representation of intermolecular interactions of Pyk2 inhibitors with the Pyk2 kinase domain.
Notes: Interactions are illustrated for ligands with the following PDB IDs: (A) 3FZR (Pyk2 kinase domain in complex with PF-431396); (B) 3FZT (Pyk2 in complex with 
PF-4618433); and (C) 3H3C (Pyk2 in complex with N-methylsulfonamide 2a).
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; PDB, Protein Data Bank.

π π

Figure S2 Predicted binding modes’ comparison of Pyk2 crystallographic ligands.
Notes: (A) PDB ID 3FZO: apo state of Pyk2. Overlay of the predicted (turquoise) binding poses by AutoDock Vina versus crystallographic (gray) poses of (B) PDB ID 3FZR: 
Pyk2 binding pocket with inhibitor stabilizing the DFG-in motif, (C) PDB ID 3FZT: Pyk2 binding pocket with inhibitor stabilizing the DFG-out motif, and (D) PDB ID 3H3C: 
Pyk2 binding pocket with inhibitor stabilizing the DFG-in motif. In the rightmost column, the chemical structures of the bound inhibitors are shown. Note the residues of 
the DFG motif highlighted in purple in (B–D).
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; PDB, Protein Data Bank.
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Table S1 Predicted binding energies of the cognate ligands

Cognate ligand Vina ∆∆G Glide ∆∆G Prime ∆∆G IC50 (Pyk2) IC50 (FAK)

3FZR (PF-431396) −0.6 −0.35 −0.1 +++ +++
3FZT (PF-4618433) −0.7 −6.54 −6.75 ++ +
3H3C (N-methyl-sulfonamide 2a) −1 −2.23 −4.15 ++ +

Abbreviations: Pyk2, proline-rich tyrosine kinase 2; FAK, focal adhesion kinase.

Figure S3 Docking enrichment plots for four Pyk2 protein targets using DUD.
Notes: The docking-ranked database (x-axis) is plotted against the percentage of docked known ligands found by calculations (y-axis) in (A) 3FZO, (B) 3FZR, (C) 3FZT and 
(D) 3H3C. The gray line represents the results expected from selecting ligands randomly. The blue and red lines show the docking enrichment against the DUD database and 
the active-based decoys datasets, respectively. Note that the percentage of true ligands found by docking is greater compared to being chosen randomly.
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; DUD, Directory of Useful Decoys.
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Figure S4 Two-dimensional representation of intermolecular interactions of the candidate ligands of Pyk2 with the Pyk2 kinase domain.
Notes: Interactions are illustrated for the following ligands: (A) ZINC06232011, (B) ZINC02529497, (C) ZINC01646132, (D) ZINC15952140, (E) ZINC18700196, 
(F) ZINC00173518, (G) ZINC00217347, and (H) ZINC97378786.
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; ZINC, Zinc is not commercial.

π π
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Table S2 Molecular properties and index scores of the top candidates for Pyk2 (PDB ID: 3FZT)

ZINC ID Mw xLogP TPSA No of 
structures

Affinitya MAB BEI SEI LLE BvS Bound 
structurea

06232011 319 3.46 29 2 −9.6 −9.1 0.021 0.24 3.39 3FZR
02529497 345 −0.07 32 1 −10.3 −10.3 0.021 0.23 7.42 3H3C
01646132 278 3.45 43 1 −10.4 −10.4 0.027 0.14 3.98 645 3FZT
15952140 280 3.33 41 1 −10.0 −10.0 0.025 0.17 3.81 1,002 3FZR
18700196 330 3.33 72 2 −11.2 −10.8 0.024 0.11 4.67 3H3C
00173518 268 3.13 80 1 −10.4 −10.4 0.028 0.09 4.30 1,067 3FZT
00217347 302 3.43 33 1 −10.6 −10.6 0.025 0.23 4.14 1,097 3FZT
97378786 336 3.29 50 1 −11.0 −11.0 0.023 0.16 4.57 3FZT

Note: aRelates to the Pyk2 structure with the best binding energy.
Abbreviations: Pyk2, proline-rich tyrosine kinase 2; PDB, Protein Data Bank; Mw, molecular weight; TPSA, total polar surface area; MAB, mean accumulated binding; 
BEI, binding efficiency index; SEI, surface-binding efficiency index; LLE, lipophilic ligand efficiency; BvS, BEI versus SEI; ZINC, Zinc is not commercial.

Figure S5 Increase in the number of annual publications using ligand-binding efficiency indices.
Note: Total annual publications in the years 1968–2015 as obtained by a PubMed search for the topic ligand efficiency.
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